[go: up one dir, main page]

JPH0456431A - Feedback control optical communication equipment - Google Patents

Feedback control optical communication equipment

Info

Publication number
JPH0456431A
JPH0456431A JP2166498A JP16649890A JPH0456431A JP H0456431 A JPH0456431 A JP H0456431A JP 2166498 A JP2166498 A JP 2166498A JP 16649890 A JP16649890 A JP 16649890A JP H0456431 A JPH0456431 A JP H0456431A
Authority
JP
Japan
Prior art keywords
optical
level
section
signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2166498A
Other languages
Japanese (ja)
Inventor
Nobuyuki Tanaka
信行 田中
Kayoko Morikawa
森川 佳洋子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2166498A priority Critical patent/JPH0456431A/en
Publication of JPH0456431A publication Critical patent/JPH0456431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To facilitate the adjustment for the dispersion in a light emitting element by transferring optical reception level information measured by a reception section to a transmission section and controlling the optical transmission level automatically so that the optical reception level reaches a prescribed range. CONSTITUTION:An optical signal is sent from a transmission section 1 to a reception section 2 through an optical fiber 18. An optical level sensor section 16 smoothes a branched optical signal 15 to measure the resulting level to calculate a reception optical signal 9 from the measured value. The calculated data is coded by a feedback transfer section 17 and transferred to an optical output level control section 8 as optical reception level information 7 to control the optical output level of a light emitting element 5. When the signal 9 exceeds an upper limit reference value as the operation of the entire system, the system controls the optical output level to be decreased. Furthermore, when the received optical signal 9 is lower than the lower limit reference value, the system controls the level so as to be increased. The upper and lower limit reference values are adjusted by the feedback transfer section 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は帰還制御光通信装置に関し、特に受信部で受信
した光受信レベルによって光出力レベルを制御し光受信
レベルを常に一定範囲内に保持する帰還制御光通信装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a feedback control optical communication device, and in particular to a feedback control optical communication device that controls the optical output level according to the optical reception level received at the receiving section and always maintains the optical reception level within a certain range. The present invention relates to a feedback control optical communication device.

〔従来の技術〕[Conventional technology]

従来、光通信装置にあっては、光出力レベルを一定に固
定しておき、受信部の光受信可能レベルに範囲を持たせ
て、光ファイバの長さ、温度、経年変化等によるレベル
変動に対応してきた。光受信レベルが受信部の光受信可
能レベルよりも高い場合には光学式のアッテネータを入
れていた。又光受信可能レベルよりも低い場合には中間
に中継器を入れていた。
Conventionally, in optical communication equipment, the optical output level is fixed at a constant level, and the optical reception level of the receiving section is set within a range to compensate for level fluctuations due to the length of the optical fiber, temperature, aging, etc. We have responded. An optical attenuator was installed when the optical reception level was higher than the optical reception level of the receiver. Also, if the level was lower than the optical reception level, a repeater was installed in the middle.

第2図は従来の光通信装置の構成図である。FIG. 2 is a block diagram of a conventional optical communication device.

従来の光通信装置は光ファイバ18を介して送信部1a
と受信部1bが対向し、送信部1aは送倍電信号4を出
光する発光素子5と、入力信号を受けてこれを発光素子
5を駆動する送信電気信号3とする駆動回路6と、送信
光信号4のレベルを調整する光出力レベル調整部19を
備えて成り、一方受信部2aは、光ファイバ18を介し
て受光した受信光信号9を受信電気信号12に変換する
受光素子13と、受信電気信号12を増幅して出力信号
とする増幅回路14とを備えて構成され、上述した運用
条件のもとで利用されていた。
The conventional optical communication device connects the transmitter 1a via the optical fiber 18.
The transmitting unit 1a has a light emitting element 5 that emits a multiplication power signal 4, a driving circuit 6 that receives an input signal and converts it into a transmitting electric signal 3 that drives the light emitting element 5, and a transmitting unit 1a. The receiver 2a includes a light output level adjuster 19 that adjusts the level of the optical signal 4, while the receiver 2a includes a light receiving element 13 that converts the received optical signal 9 received via the optical fiber 18 into a received electrical signal 12; It was configured to include an amplifier circuit 14 that amplifies the received electrical signal 12 and outputs it as an output signal, and was used under the above-mentioned operating conditions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の光通信装置は、主として次の3つの欠点
を有する。
The conventional optical communication device described above mainly has the following three drawbacks.

第1は、発光素子の光出力レベルにバラツキがあること
である。発光素子は光出力レベルと駆動電流との対応関
係のバラツキが非常に大きく、従来は光出力レベルの調
整に時間を要していた。又、完全な調整は非常に困難で
規格には幅を持たせざるを得ないという欠点がある。
The first problem is that there are variations in the light output level of the light emitting elements. Light emitting elements have very large variations in the correspondence between optical output level and drive current, and conventionally it took time to adjust the optical output level. Another drawback is that it is very difficult to make complete adjustments, and the standard has to have a wide range.

第2は、従来の光通信装置のダイナミックレンジが受信
部の初段の増幅回路の能力によって決りてしまうことで
ある。光通信装置の光受信レベルは、温度、経年変化、
スプライスによるファイノ〈−ロスの増大等により変化
するので、光受信可能レベルにはこれらのマージンも考
慮する必要がある。このため光受信可能レベル範囲の一
部をマージンと考えるため、実際の光受信可能レベル範
囲が狭くなり、光信号の伝送距離が短かくなってしまう
という欠点かある。
The second problem is that the dynamic range of conventional optical communication devices is determined by the capability of the first-stage amplifier circuit of the receiving section. The optical reception level of optical communication equipment depends on temperature, aging,
Since it changes due to an increase in fiber loss due to splicing, etc., it is necessary to consider these margins when determining the optical reception level. For this reason, since a part of the optical receivable level range is considered as a margin, the actual optical receivable level range becomes narrower and the transmission distance of the optical signal becomes shorter.

第3は、光受信レベルの予測が困難なことである。通常
光通信装置は設置前にシステム設計を行ない、光信号の
伝送距離に問題はないか検討を行なうことになっている
。伝送距離が短かすぎる場合は、光学式のアッテネータ
を入れていた。又、伝送距離が長すぎる場合は中間に中
継器を入れていた。しかし、これらの検討はそれぞれの
要因の規格値で行なっているので、実際に装置を設置し
てみると検討値と実測値が大きく居なる場合もある。し
たがって、不要な中間中継装置を設置したり、光学式ア
ッテネータが不足したりすることも避けられないという
欠点がある。
Third, it is difficult to predict the optical reception level. Normally, before installation of optical communication equipment, the system is designed and it is considered whether there are any problems with the transmission distance of optical signals. If the transmission distance was too short, an optical attenuator was installed. Also, if the transmission distance was too long, a repeater was inserted in the middle. However, these studies are conducted using standard values for each factor, so when the equipment is actually installed, there may be a large difference between the study values and the actual measured values. Therefore, there are disadvantages in that it is inevitable to install unnecessary intermediate relay devices and to run out of optical attenuators.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の帰還制御光通信装置は、送信電気信号を送信光
信号に変調する発光素子と、この発光素子を駆動する駆
動回路と、光ファイバーを介して送出した前記送信光信
号の受光レベルを所定の範囲内に保持するように前記発
光素子の光出力レベルを制御する光出力レベル制御部と
を有する送信部と、前記光ファイバーを介して受信した
受信光信号を透過および分岐するハーフミラ−と、この
ハーフミラ−を透過した通過光信号を受信電気信号に復
調する受光素子と、前記ハーフミラ−で分岐した分岐光
信号にもとづいて光受信レベルを測定する光レベルセン
サー部と、この光レベルセンサー部で測定した光受信レ
ベル情報を前記送信部の前記光出力レベル制御部に帰還
供給する帰還伝送部とを有する受信部とを備えて構成さ
れる。
The feedback control optical communication device of the present invention includes a light emitting element that modulates a transmitted electrical signal into a transmitted optical signal, a drive circuit that drives this light emitting element, and a light receiving level of the transmitted optical signal sent out via an optical fiber. a transmitter having an optical output level controller that controls the optical output level of the light emitting element so as to maintain the optical output level within a range; a half mirror that transmits and branches a received optical signal received via the optical fiber; - a light receiving element that demodulates the transmitted light signal transmitted through the half mirror into a received electrical signal; a light level sensor section that measures the light reception level based on the branched light signal branched by the half mirror; and a receiving section having a feedback transmission section that feeds back optical reception level information to the optical output level control section of the transmitting section.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の構成図である。第1図に示
す実施例の構成は、送信部1と受信部2から成る。
FIG. 1 is a block diagram of an embodiment of the present invention. The configuration of the embodiment shown in FIG. 1 consists of a transmitting section 1 and a receiving section 2.

送信部1は、送信電気信号3を送信光信号4に変調する
発光素子5と、発光素子5を駆動する駆動回路6と、受
信部2から受けた光受信レベル情報7により発光素子5
の光出力レベルを制御する光出力レベル制御部8とを備
えて成る。
The transmitting section 1 includes a light emitting element 5 that modulates a transmitted electrical signal 3 into a transmitted optical signal 4, a drive circuit 6 that drives the light emitting element 5, and a light receiving level information 7 received from the receiving section 2.
and a light output level control section 8 for controlling the light output level of the light source.

一方、受信部2は受信光信号9を分岐するハーフミラ−
10と、ハーフミラ−10を通過した通過光信号11を
受信電気信号12に復調する受光素子13と、受信電気
信号12の増幅及び波形成型を行なう増幅回路14と、
ハーフミラ−10で分岐した分岐光信号15から光受信
レベルを測定する光レベルセンサー部16と、測定した
光受信レベル情報7を光出力レベル制御部8へ転送する
帰還転送部17を備えて成る。
On the other hand, the receiving section 2 includes a half mirror that branches the received optical signal 9.
10, a light receiving element 13 that demodulates the transmitted optical signal 11 that has passed through the half mirror 10 into a received electrical signal 12, and an amplifier circuit 14 that amplifies and waveforms the received electrical signal 12.
It comprises an optical level sensor section 16 that measures the optical reception level from the branched optical signal 15 branched by the half mirror 10, and a feedback transfer section 17 that transfers the measured optical reception level information 7 to the optical output level control section 8.

次に、第1図の実施例の動作について説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

送信部1から受信部2への光信号の伝送は光ファイバ1
8を利用しているが、運用条件によっては空中伝搬も可
能である。受信部2から送信部へ転送する光受信レベル
情報7は、双方向の光通信装置の場合は逆方向信号の余
剰ビットに乗せて転送する。片方向の光通信装置の場合
は別に転送手段が必要となる。
Optical fiber 1 is used to transmit optical signals from transmitter 1 to receiver 2.
8 is used, but aerial propagation is also possible depending on operational conditions. In the case of a bidirectional optical communication device, the optical reception level information 7 transferred from the receiving section 2 to the transmitting section is carried on surplus bits of the reverse direction signal. In the case of a one-way optical communication device, a separate transfer means is required.

ハーフミラ−10の通過光信号11と分岐光信号15と
の比率は、10:1.20:1程度の値を利用し、受信
光信号のごく一部を光受信レベルの測定用に用いる。
The ratio of the optical signal 11 passing through the half mirror 10 to the optical signal branching 15 is approximately 10:1.20:1, and a small portion of the received optical signal is used for measuring the optical reception level.

光レベルセンサー部16では、分岐光信号15を平滑化
してレベルを測定し、この測定値から受信光信号9を計
算する。計算したテークは帰還転送部17で符号化し、
光受信レベル情報7として光出力レベル制御部8へ転送
され、発光素子5の光出力レベルの制御を行なっている
The optical level sensor section 16 smoothes the branched optical signal 15, measures the level, and calculates the received optical signal 9 from this measured value. The calculated take is encoded in the feedback transfer unit 17,
The signal is transferred as optical reception level information 7 to the optical output level control section 8, and the optical output level of the light emitting element 5 is controlled.

システム全体の動作としては、受信光信号9が上限基準
値を超えると、光出力レベルを下げるように制御を行な
う。又、受信光信号9が下限基準値を下まわると光出力
レベルを上げるように制御を行なう。上限基準値と下限
基準値は帰還転送部17で調整が可能である。したがっ
て受信側から送信側の光出力レベルを手動で変化される
ことも可能である。
As for the operation of the entire system, when the received optical signal 9 exceeds the upper limit reference value, control is performed to lower the optical output level. Further, when the received optical signal 9 falls below the lower limit reference value, control is performed to increase the optical output level. The upper limit reference value and the lower limit reference value can be adjusted by the feedback transfer section 17. Therefore, it is also possible to manually change the optical output level on the transmitting side from the receiving side.

このようにして、光受信レベル情報にもとづいて光送信
レベルを制御することにより、発光素子のバラツキを大
幅に吸収することができる。一般に、発光素子はバラツ
キが大きく、装置出荷時に1台づつ調整を行なうのは時
間がかかる作業である。しかし、本実施例にあっては、
自動調整機構を有しているため、発光素子の調整には従
来はとの精密さは要求されなくなり、出荷調整か著しく
容易になる。
In this way, by controlling the optical transmission level based on the optical reception level information, variations in light emitting elements can be largely absorbed. In general, light emitting elements have large variations, and it is a time-consuming task to adjust each device one by one when the device is shipped. However, in this example,
Since it has an automatic adjustment mechanism, the adjustment of the light-emitting element no longer requires the same precision as in the past, making shipping adjustment much easier.

また、装置のダイナミックレンジを従来より著しく広く
することが可能となる。従来の光通信装置は、ダイナミ
ックレンジを受信部に持たせていた。しかし、受信部の
ダイナミックレンジは初段の増幅回路のノイズレベル2
飽和レベル等の能力によって決まってしまっていた。し
かし、本実施例にあっては、装置のダイナミックレンジ
が受信部のダイナミックレンジと送信号の発光素子の光
出力レベル制御部による可変範囲の和になり、したがっ
て従来より全体のダイナミックレンジが著しく広くなり
、光信号の伝送距離が長くできるとともに、受信部のマ
ージンをそれだけ広くとることも可能となる。
Furthermore, the dynamic range of the device can be made significantly wider than before. In conventional optical communication devices, the receiving section has a dynamic range. However, the dynamic range of the receiving section is limited to the noise level of the first stage amplifier circuit.
It was determined by abilities such as saturation level. However, in this embodiment, the dynamic range of the device is the sum of the dynamic range of the receiving section and the variable range of the light output level control section of the light emitting element of the transmitting signal, so the overall dynamic range is significantly wider than that of the conventional device. Therefore, the transmission distance of the optical signal can be increased, and the margin of the receiving section can be increased accordingly.

さらに、システム設計時の光受信レベルの予測が容易と
なる。従来は、システム設計時の光信号の伝送距離の検
討をそれぞれの要因の規格値で行なっていたので、検討
値と実測値が大きく異なる場合もあった。しかし、本実
施例にあっては、光受信レベルを測定して光送信レベル
を制御するため、検討値と実測値の差を吸収することも
可能となる。
Furthermore, it becomes easier to predict the optical reception level during system design. Conventionally, when designing a system, the transmission distance of an optical signal has been examined based on the standard values for each factor, so there have been cases where the examined value and the actual measured value differ greatly. However, in this embodiment, since the optical reception level is measured and the optical transmission level is controlled, it is also possible to absorb the difference between the considered value and the actual measurement value.

〔発明の効果〕 以上説明したように本発明は、受信部で測定した光受信
レベル情報を送信部へ転送し、光受信レベルが一定範囲
内となるように光送信レベルを自動的に制御することに
より、発光素子のバラツキに対する調整を著しく容易と
し、また装置のダイナミックレンジならびに受信部のマ
ージンを大幅に増大し、さらにシステム設計時における
光受信レベルの予測を著しく容易にすることができる効
果がある。
[Effects of the Invention] As explained above, the present invention transfers the optical reception level information measured by the receiving section to the transmitting section, and automatically controls the optical transmission level so that the optical reception level is within a certain range. This makes it extremely easy to adjust for variations in the light emitting elements, greatly increases the dynamic range of the device and the margin of the receiver, and also makes it much easier to predict the optical reception level during system design. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は従来の光
通信装置の構成図である。 1・・・送信部、2・・・受信部、3・・・送信電気信
号、4・・・送信光信号、5・・・発光素子、6・・・
駆動回路、7・・・光受信レベル情報、8・・・光出力
レベル制御部、9・・・受信光信号、10・・・ハーフ
ミラ−111・・・通過光信号、12・・・受信電気信
号、13・・・受光素子、14・・・増幅回路、15・
・・分岐光信号、16・・・光レベルセンサー部、17
・・・帰還転送部、18・・・光ファイバー、19・・
・光出力レベル調整部。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional optical communication device. DESCRIPTION OF SYMBOLS 1... Transmission part, 2... Receiving part, 3... Transmission electric signal, 4... Transmission optical signal, 5... Light emitting element, 6...
Drive circuit, 7... Optical reception level information, 8... Optical output level control section, 9... Received optical signal, 10... Half mirror 111... Passing optical signal, 12... Received electricity Signal, 13... Light receiving element, 14... Amplifying circuit, 15.
・Branch optical signal, 16 ・Light level sensor section, 17
...Return transfer section, 18...Optical fiber, 19...
・Light output level adjustment section.

Claims (1)

【特許請求の範囲】[Claims] 送信電気信号を送信光信号に変調する発光素子と、この
発光素子を駆動する駆動回路と、光ファイバーを介して
送出した前記送信光信号の受光レベルを所定の範囲内に
保持するように前記発光素子の光出力レベルを制御する
光出力レベル制御部とを有する送信部と、前記光ファイ
バーを介して受信した受信光信号を透過および分岐する
ハーフミラーと、このハーフミラーを透過した通過光信
号を受信電気信号に復調する受光素子と、前記ハーフミ
ラーで分岐した分岐光信号にもとづいて光受信レベルを
測定する光レベルセンサー部と、この光レベルセンサー
部で測定した光受信レベル情報を前記送信部の前記光出
力レベル制御部に帰還供給する帰還伝送部とを有する受
信部とを備えて成ることを特徴とする帰還制御光通信装
置。
A light emitting element that modulates a transmitted electrical signal into a transmitted optical signal, a drive circuit that drives this light emitting element, and a light emitting element that maintains a light reception level of the transmitted optical signal sent out via an optical fiber within a predetermined range. a transmitting unit having an optical output level control unit that controls the optical output level of the optical fiber; a half mirror that transmits and branches the received optical signal received via the optical fiber; a light receiving element that demodulates the signals; a light level sensor section that measures the light reception level based on the branched optical signal branched by the half mirror; and a light reception level information measured by the light level sensor section that is transmitted to the transmitter. 1. A feedback control optical communication device comprising: a receiving section having a feedback transmission section that feeds feedback to an optical output level control section.
JP2166498A 1990-06-25 1990-06-25 Feedback control optical communication equipment Pending JPH0456431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166498A JPH0456431A (en) 1990-06-25 1990-06-25 Feedback control optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166498A JPH0456431A (en) 1990-06-25 1990-06-25 Feedback control optical communication equipment

Publications (1)

Publication Number Publication Date
JPH0456431A true JPH0456431A (en) 1992-02-24

Family

ID=15832479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166498A Pending JPH0456431A (en) 1990-06-25 1990-06-25 Feedback control optical communication equipment

Country Status (1)

Country Link
JP (1) JPH0456431A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053376A (en) * 1999-06-01 2001-02-23 Advantest Corp Calibration method for optical signal transmission system and optical signal transmission system using the method
WO2001082516A1 (en) * 2000-04-24 2001-11-01 Lucent Technologies Inc. Gain equalization in dwdm networks
WO2003019824A1 (en) * 2001-08-22 2003-03-06 Fujitsu Limited Optical transmission system
JP2009038464A (en) * 2007-07-31 2009-02-19 Sumitomo Electric Ind Ltd In-vehicle optical communication system
JP2009182673A (en) * 2008-01-30 2009-08-13 Fujifilm Corp Electronics
JP2013192796A (en) * 2012-03-21 2013-09-30 Olympus Medical Systems Corp Endoscope system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053376A (en) * 1999-06-01 2001-02-23 Advantest Corp Calibration method for optical signal transmission system and optical signal transmission system using the method
WO2001082516A1 (en) * 2000-04-24 2001-11-01 Lucent Technologies Inc. Gain equalization in dwdm networks
US6944401B2 (en) 2000-04-24 2005-09-13 Lucent Technologies Inc. Gain equalization in DWDM networks
WO2003019824A1 (en) * 2001-08-22 2003-03-06 Fujitsu Limited Optical transmission system
JP2009038464A (en) * 2007-07-31 2009-02-19 Sumitomo Electric Ind Ltd In-vehicle optical communication system
JP2009182673A (en) * 2008-01-30 2009-08-13 Fujifilm Corp Electronics
JP2013192796A (en) * 2012-03-21 2013-09-30 Olympus Medical Systems Corp Endoscope system

Similar Documents

Publication Publication Date Title
US4553268A (en) Circuit arrangement with a laser diode for transmission of communication signals through a light waveguide
US6275315B1 (en) Apparatus for compensating for dispersion of optical fiber in an optical line
US5940209A (en) Interactive optical fiber amplifier, system and method
US20040264956A1 (en) Optical wavelength multiplexing transmission apparatus and optical output control method for optical wavelength multiplexing transmission apparatus
US7020092B1 (en) Method for channel adjustment of transmission signal power in a wavelength division multiplexing transmission system
US5636054A (en) Regulated optical amplifier having an optical circulator
JPH0456431A (en) Feedback control optical communication equipment
US6810173B2 (en) Pump power monitor system and method for gain control of optical amplifier
CA2366039A1 (en) Optical amplifier, optical communication system including the same, and optical fiber module included in the same
JPH02119328A (en) Monitoring and control method for optical repeaters
WO2001090790A1 (en) Method and system for compensating for chromatic dispersion
JP2002524902A (en) Optical amplifier and optical transmission section
US7236708B2 (en) Optical communication system with optical output level control function
US6873801B1 (en) Optical transmitter and optical transmission system using electro absorption modulator
US7769291B2 (en) Optical communication network and component therefore
KR100314673B1 (en) Multi-directional optical amplifier and wavelength gain control method
EP0431654B2 (en) Adapter for amplified optical lines
WO2009093304A1 (en) Optical transmission system and repeater
JPH05316045A (en) Optical output device
JPH04269023A (en) optical transmission equipment
US4542536A (en) Device and method for reducing level dynamics in an optical transmission system
JPH04248727A (en) Transmission output level control circuit
EP0828357A3 (en) Optical element power control
JPH08274719A (en) Optical output control circuit of optical communication system
JPS6142975B2 (en)