JPH0457637B2 - - Google Patents
Info
- Publication number
- JPH0457637B2 JPH0457637B2 JP59055787A JP5578784A JPH0457637B2 JP H0457637 B2 JPH0457637 B2 JP H0457637B2 JP 59055787 A JP59055787 A JP 59055787A JP 5578784 A JP5578784 A JP 5578784A JP H0457637 B2 JPH0457637 B2 JP H0457637B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetic
- rare earth
- film
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
- H01F10/20—Ferrites
- H01F10/24—Garnets
- H01F10/245—Modifications for enhancing interaction with electromagnetic wave energy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/16—Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
- G11B11/10589—Details
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
- G11B11/10589—Details
- G11B11/10591—Details for improving write-in properties, e.g. Curie-point temperature
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Description
【発明の詳細な説明】
a 産業上の利用分野
本発明は、磁性薄膜の製造方法に関し、より詳
細には磁気記録及び光熱磁気記録材料として用い
て好適な希土類鉄ガーネツト薄膜の製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to a method of manufacturing a magnetic thin film, and more particularly to a method of manufacturing a rare earth iron garnet thin film suitable for use as a magnetic recording and photothermal magnetic recording material.
b 従来技術
近年、希土類鉄ガーネツトR3(Fe,M)5o12
(R:希土類元素、M:Al3+、Ga3+、Sc3+、
Tl3+、(Co2++Tl4+)など)のRの一部をBiで置
換した鉄ガーネツトR3-X Bix(Fe,M)5O12が光
熱磁気記録材料として注目されている。このBi
置換希土類鉄ガーネツトは、希土類元素の一部を
Biで置換することにより、吸収係数αをあまり
大きくすることなくフアラデー回転角θFを大き
くすることができるという性質を有し、一般的に
言つて光熱磁気記録材料として優れたものであ
る。b Conventional technology In recent years, rare earth iron garnet R 3 (Fe, M) 5 o 12
(R: rare earth element, M: Al 3+ , Ga 3+ , Sc 3+ ,
Iron garnet R 3-X Bix (Fe, M) 5 O 12 , in which part of R in Tl 3+ , (Co 2+ +Tl 4+ ), etc.) is replaced with Bi, is attracting attention as a photothermal magnetic recording material. This Bi
Substituted rare earth iron garnet contains some of the rare earth elements.
By substituting Bi, it has the property that the Faraday rotation angle θF can be increased without increasing the absorption coefficient α too much, and is generally an excellent photothermal magnetic recording material.
このような性質を有するBi置換希土類鉄ガー
ネツトの光熱磁気記録材料としての性能を高める
ためには、Bi置換量Xを大きくしてフアラデー
回転角θFを大きくすればよいが、従来の液相エピ
タキシヤル法等の製造方法ではBi置換量Xが大
きいBi置換希土類鉄ガーネツト薄膜を製造する
ことは困難であつた。 In order to improve the performance of Bi-substituted rare earth iron garnets having such properties as photothermal magnetic recording materials, it is possible to increase the Bi substitution amount X and increase the Faraday rotation angle θ F , but conventional liquid phase epitaxy It has been difficult to produce a Bi-substituted rare earth iron garnet thin film with a large Bi substitution amount X using production methods such as the Yall method.
本発明者等は、特願昭58−216750号において、
固溶限界(十二面体位置の50%)までBiが固溶
している高濃度Bi置換希土類鉄ガーネツト単結
晶薄膜をスパツタリング法によりGGG基板上に
エピタキシヤル成長させることのできる磁性薄膜
の製造方法を提案した。しかし、この製造方法
は、用いることのできる基板がGGG基板に限定
されてしまう点で不利であるため、例えばガラス
基板等の非晶質基板上に高濃度Bi置換希土類鉄
ガーネツト薄膜を形成することのできる製造方法
が望まれていた。 The present inventors, in Japanese Patent Application No. 58-216750,
A method for manufacturing a magnetic thin film in which a high concentration Bi-substituted rare earth iron garnet single crystal thin film in which Bi is dissolved in solid solution up to the solid solution limit (50% of dodecahedral positions) can be epitaxially grown on a GGG substrate by sputtering method. proposed. However, this manufacturing method has the disadvantage that the substrates that can be used are limited to GGG substrates, so it is difficult to form a high concentration Bi-substituted rare earth iron garnet thin film on an amorphous substrate such as a glass substrate. A manufacturing method that would allow for this was desired.
このような要求は上記以外の希土類鉄ガーネツ
ト薄膜についても従来からあり、種々の試みがな
されている。しかしながら、現在までに得られて
いる薄膜はその面と平行な方向に磁化が存在する
多結晶の面内磁化膜であり、磁気記録及び光熱磁
気記録材料として好ましい垂直磁化膜は未だ得ら
れていない。また特にBi置換希土類鉄ガーネツ
ト垂直磁化膜を非晶質基板上に形成する試みは全
くなされていないのが現状であつた。 Such requirements have existed for rare earth iron garnet thin films other than those mentioned above, and various attempts have been made. However, the thin films obtained to date are polycrystalline in-plane magnetized films with magnetization in a direction parallel to the plane, and a perpendicularly magnetized film preferable as a magnetic recording and photothermal magnetic recording material has not yet been obtained. . Furthermore, at present, no attempt has been made to form a perpendicularly magnetized Bi-substituted rare earth iron garnet film on an amorphous substrate.
本発明者らは上述の問題にかんがみ、良好な垂
直磁化特性を有するBi置換希土類鉄ガーネツト
薄膜等の希土類鉄ガーネツト薄膜を非晶質基板等
の種々の基板上に形成することのできる磁性薄膜
の製造方法を提供することを目的として気相成長
法によつて所定の基板上に非晶質の希土類鉄ガー
ネツト薄膜を形成し、該非晶質の希土類鉄ガーネ
ツト薄膜上に保護膜を形成し、次いで熱処理を行
うことにより上記非晶質の希土類鉄ガーネツト薄
膜を結晶化させる磁性薄膜の製造方法を先の特許
出願(特願昭59−6134)に示した。 In view of the above-mentioned problems, the present inventors have developed a magnetic thin film that can be formed on various substrates such as an amorphous substrate by using a rare earth iron garnet thin film such as a Bi-substituted rare earth iron garnet thin film having good perpendicular magnetization characteristics. In order to provide a manufacturing method, an amorphous rare earth iron garnet thin film is formed on a predetermined substrate by a vapor phase growth method, a protective film is formed on the amorphous rare earth iron garnet thin film, and then a protective film is formed on the amorphous rare earth iron garnet thin film. A method for producing a magnetic thin film in which the amorphous rare earth iron garnet thin film described above is crystallized by heat treatment was disclosed in an earlier patent application (Japanese Patent Application No. 1983-6134).
上記方法は、保護膜を磁性薄膜上に設けること
により、磁性薄膜の結晶化による面荒れおよび磁
性薄膜中のBiの飛散防止など結晶化のための熱
処理の悪影響を防止して、垂直磁化膜が得られる
利点を有するが、保護膜を形成するという付加的
工程を有し、又通常磁性膜表面に設けられる反射
膜を利用した磁気書きこみの際、加熱された反射
膜の熱の磁性薄膜への伝導が保護膜の存在により
妨げられ、書きこみ時の応答が遅くなるという欠
点があつた。 The above method prevents the adverse effects of heat treatment for crystallization, such as surface roughening due to crystallization of the magnetic thin film and scattering of Bi in the magnetic thin film, by providing a protective film on the magnetic thin film. However, it has the additional process of forming a protective film, and during magnetic writing using a reflective film usually provided on the surface of a magnetic film, the heat of the heated reflective film is transferred to the magnetic thin film. The disadvantage was that the presence of the protective film impeded the conduction of data, resulting in a slow response when writing.
c 発明の目的
本発明は、スパツタリング法で極めて良好な垂
直磁化特性を有する希土類鉄ガーネツト薄膜を、
非晶質基板などの任意な基板上に製造する方法を
提供することをその目的とする。c. Purpose of the Invention The present invention aims to produce rare earth iron garnet thin films with extremely good perpendicular magnetization characteristics by a sputtering method.
The objective is to provide a method for manufacturing on arbitrary substrates, such as amorphous substrates.
d 発明の構成
本発明は、下記化学式で表される組成の酸化物
または下記化学式で表される組成となるように混
合された複数の酸化物からなるターゲツトを減圧
した雰囲気中でスパツタリングして、前記ターゲ
ツト成分を含む非晶質磁性薄膜を300〜500℃に加
熱されている基板上に被覆するスパツタリング工
程と、その後前記非晶質磁性薄膜を500〜900℃に
加熱して結晶化する工程とからなる、基板上に垂
直磁化特性を有する希土類鉄ガーネツト薄膜の製
造方法である。d Structure of the Invention The present invention comprises sputtering a target consisting of an oxide having a composition represented by the following chemical formula or a plurality of oxides mixed to have a composition represented by the following chemical formula in a reduced pressure atmosphere. A sputtering step of coating the amorphous magnetic thin film containing the target component on a substrate heated to 300 to 500°C, and then a step of heating the amorphous magnetic thin film to 500 to 900°C to crystallize it. This is a method of manufacturing a rare earth iron garnet thin film having perpendicular magnetization characteristics on a substrate.
化学式
(Bi2O3)X(R2O3)Y(F2O3)Z(M2O3)U
0<x≦3/2、0<y≦3/2、
0<z<5/2、0≦u≦5/2
Rは希土類元素、MはAl3+、Ga3+、Sc3+、
Tl3+、(Co2++Tl4+)
本発明に使用する基板としては、ガラス基板等
の非晶質基板、金属、半導体、絶縁体等の結晶性
基板等700℃程度の加熱に耐える基板であれば使
用出来る。Chemical formula (Bi 2 O 3 ) X (R 2 O 3 ) Y (F 2 O 3 ) Z (M 2 O 3 ) U 0<x≦3/2, 0<y≦3/2, 0<z<5 /2, 0≦u≦5/2 R is a rare earth element, M is Al 3+ , Ga 3+ , Sc 3+ ,
Tl 3+ , (Co 2+ + Tl 4+ ) Substrates used in the present invention include substrates that can withstand heating of about 700°C, such as amorphous substrates such as glass substrates, and crystalline substrates such as metals, semiconductors, and insulators. If so, you can use it.
非晶質の希土類鉄ガーネツト薄膜を形成する気
相成長法としては、スパツタリング法が用いられ
る。(Bi2O3)X(R2O3)Y(Fe2O3)Z(M2O3)Uで表
されるような少なくともBi原子、Fe原子及び希
土類原子を含む酸化物又は酸化物の混合物から成
る材料をターゲツトとした高周波スパツタリング
方が好ましい。上記式中で0<x≦3/2、0<
y≦3/2、0<z<5/2、0≦u≦5/2で
あり、RはY,Sm等の希土類元素、MはAl3+、
Ga3+、Sc3+、Tl3+、(Co2++Tl4+)である。 A sputtering method is used as a vapor phase growth method to form an amorphous rare earth iron garnet thin film. Oxide or oxide containing at least Bi atom , Fe atom and rare earth atom as represented by ( Bi 2 O 3 ) High frequency sputtering targeting a material consisting of a mixture of is preferred. In the above formula, 0<x≦3/2, 0<
y≦3/2, 0<z<5/2, 0≦u≦5/2, R is a rare earth element such as Y or Sm, M is Al 3+ ,
Ga 3+ , Sc 3+ , Tl 3+ , (Co 2+ + Tl 4+ ).
上記気相成長法で形成された非晶質磁性薄膜
は、希土類鉄ガーネツトを作成する組成であれば
熱処理によつて磁性薄膜となるが、ガーネツト構
造の十二面体位置の20%以上がBiにより置換さ
れたBi置換希土類鉄ガーネツト相当の組成であ
れば、ガーネツト構造に結晶化した際に磁気異方
性が増すので好ましい。この様なBiを多く含有
する非晶質磁性薄膜は、Biを多く含んだターゲ
ツトを用いたスパツタリング法により製造され
る。 The amorphous magnetic thin film formed by the above vapor phase growth method becomes a magnetic thin film by heat treatment if it has a composition that creates rare earth iron garnet, but more than 20% of the dodecahedral positions of the garnet structure are due to Bi. A composition equivalent to Bi-substituted rare earth iron garnet is preferable because the magnetic anisotropy increases when crystallized into a garnet structure. Such an amorphous magnetic thin film containing a large amount of Bi is manufactured by a sputtering method using a target containing a large amount of Bi.
スパツタリング法により非晶質磁性薄膜を作成
する際には非晶質磁性薄膜を付着させる基板の温
度を300〜500℃に加熱することが必要である。さ
らに望ましくは400〜450℃と設定することが光磁
気記録材料を得るために好ましい。上記温度に基
板を設定することにより、その後の熱処理によつ
て磁化膜の面荒れが少ない光磁気記録材料として
も良好な垂直磁化薄膜を製造出来る。ここで300
℃未満の温度で作成した非晶質磁性薄膜は当初は
平滑な非晶質磁性膜であるが、熱処理を行うと面
荒れを起こした磁性膜しか得られず、又500℃よ
りも高い温度では基板上に非晶質の磁性薄膜が得
られずに直接面荒れを起こした結晶性の磁性薄膜
が作成されてしまう。300℃未満の基板温度で作
成した非晶質膜は熱処理により面荒れを起こした
磁性膜となり、300〜500℃の基板温度で作成した
非晶質膜が熱処理によつて平滑な垂直磁化薄膜と
なる理由ははつきりしないが、低い基板温度で作
成した非晶質薄膜中には非常に微細な結晶が多数
あり、これが熱処理によつて成長するために面荒
れを起こすが、比較的高い温度で作成した非晶質
薄膜ではこの微細な結晶の大きさが大きく、数が
少ないためではないかと考えられる。 When creating an amorphous magnetic thin film by the sputtering method, it is necessary to heat the substrate to which the amorphous magnetic thin film is attached to a temperature of 300 to 500°C. More preferably, the temperature is set at 400 to 450°C in order to obtain a magneto-optical recording material. By setting the substrate at the above temperature, it is possible to produce a perpendicularly magnetized thin film that can be used as a magneto-optical recording material with less surface roughness of the magnetized film by subsequent heat treatment. 300 here
An amorphous magnetic thin film prepared at a temperature below 500°C is initially a smooth amorphous magnetic film, but after heat treatment, only a magnetic film with a rough surface is obtained, and at a temperature higher than 500°C, it becomes a smooth amorphous magnetic film. Instead of obtaining an amorphous magnetic thin film on the substrate, a crystalline magnetic thin film with surface roughness is produced directly. An amorphous film created at a substrate temperature of less than 300°C becomes a magnetic film with a rough surface due to heat treatment, and an amorphous film created at a substrate temperature of 300 to 500°C becomes a smooth perpendicularly magnetized thin film by heat treatment. The reason for this is unclear, but there are many very fine crystals in an amorphous thin film created at a low substrate temperature, and these grow during heat treatment, causing surface roughness. This is thought to be due to the large size and small number of these fine crystals in the amorphous thin film prepared by .
面荒れを起こした磁性膜は光磁気記録材料とし
て使用する際、磁性膜の表面で光が乱反射を起こ
して使用出来ないなどの欠点がある。 When a magnetic film with surface roughness is used as a magneto-optical recording material, it has the disadvantage that light is diffusely reflected on the surface of the magnetic film, making it unusable.
非晶質磁性膜の熱処理条件としては、500℃以
上の温度が必要である。500℃より低い温度では
結晶化が起こりにくく好ましくない。又900℃よ
りも高い温度とすると磁性膜中からBiの揮発が
起こるので、900℃以下とすることが必要である。 The heat treatment conditions for the amorphous magnetic film require a temperature of 500°C or higher. A temperature lower than 500°C is not preferred because crystallization is difficult to occur. Furthermore, if the temperature is higher than 900°C, Bi will volatilize from the magnetic film, so it is necessary to keep the temperature below 900°C.
実施例
以下に本発明の磁性薄膜の製造方法を(Y,
Bi)3(Fe,Al)5O12で表されるBi置換希土類鉄ガ
ーネツトの薄膜の製造に適用した一実施例につき
図面を参照しながら説明する。なおこの(Y,
Bi)3(Fe,Al)5O12は、イツトリウム鉄ガーネツ
トY3Fe5O12(YIG)において、Yの一部をBiで置
換すると共にFeの一部をAlで置換したものであ
り、前者は吸収係数αをあまり増大することなく
フアラデー回転角θFを高め、後者は吸収係数αを
減少させると共に飽和磁化を小さくして垂直磁化
膜を得られやすくし、またキユリー温度も下げる
ことが知られている。Examples The method for manufacturing a magnetic thin film of the present invention will be described below (Y,
An embodiment applied to the production of a thin film of Bi-substituted rare earth iron garnet represented by Bi) 3 (Fe, Al) 5 O 12 will be described with reference to the drawings. Furthermore, this (Y,
Bi) 3 (Fe, Al) 5 O 12 is a yttrium iron garnet Y 3 Fe 5 O 12 (YIG) in which part of Y is replaced with Bi and part of Fe is replaced with Al. The former increases the Faraday rotation angle θ F without significantly increasing the absorption coefficient α, while the latter decreases the absorption coefficient α and lowers the saturation magnetization, making it easier to obtain a perpendicularly magnetized film and also lowering the Curie temperature. Are known.
まず第1図に示すように、高周波(RF)スパ
ツタリング装置のステンレス製の電極板(試料
台)1の上に石英ガラス基板2を載置すると共
に、電極板3に第1のターゲツト4を取り付け
る。なおこの第1のターゲツト4は、組成式
Bi2・0Y1・0Fe3・8Al1・2O12で表される多結晶状
の鉄ガーネツトの円盤状の焼結体から成る。 First, as shown in FIG. 1, a quartz glass substrate 2 is placed on a stainless steel electrode plate (sample stage) 1 of a radio frequency (RF) sputtering device, and a first target 4 is attached to the electrode plate 3. . Note that this first target 4 has the composition formula
It consists of a disc-shaped sintered body of polycrystalline iron garnet expressed as Bi 2.0 Y 1.0Fe 3.8 Al 1.2 O 12 .
次にスパツタリング装置内を所定の真空度に排
気した後、このスパツタリング装置内にArとO2
との混合ガス(Ar:O2=9:1)を7Pa程度ま
で導入する。真空度が安定した状態で、電極板1
と電極板3との間に所定の高周波電圧を印加して
グロー放電を開始させる。この放電で生じたAr+
イオンは第1のターゲツト4の表面をスパツタ
し、このスパツタにより上記第1のターゲツト4
からBi、Y、Fe、Al、O等の原子が離脱する。
これらの離脱した原子は、電極板1を介してヒー
タ5により例えば440℃に加熱されている石英ガ
ラス基板2上に被着し、この石英ガラス基板2上
に(Y、Bi)3(Fe、Al)5O12の非晶質薄膜(以下
薄膜と称する)6が形成される。なおスパツタに
用いる電力を110Wとし、またスパツタ時間を2
時間30分とした場合、得られた薄膜6の厚さは
0.8μmであつた。 Next, after evacuating the inside of the sputtering device to a predetermined degree of vacuum, Ar and O 2 are added to the sputtering device.
A mixed gas (Ar:O 2 =9:1) is introduced up to about 7Pa. With the degree of vacuum stable, electrode plate 1
A predetermined high frequency voltage is applied between the electrode plate 3 and the electrode plate 3 to start glow discharge. Ar + generated by this discharge
The ions spatter the surface of the first target 4, and the sputtering causes the first target 4 to sputter.
Atoms such as Bi, Y, Fe, Al, and O are released from the
These detached atoms adhere to a quartz glass substrate 2 heated to, for example, 440°C by a heater 5 via an electrode plate 1, and (Y, Bi) 3 (Fe, An amorphous thin film (hereinafter referred to as thin film) 6 of Al) 5 O 12 is formed. The power used for sputtering was 110W, and the sputtering time was 2.
When the time is 30 minutes, the thickness of the obtained thin film 6 is
It was 0.8 μm.
次に上述のように形成された薄膜6つき石英ガ
ラス基板2を空気中において700℃、3時間熱処
理し、磁性薄膜の結晶化を行なつた。 Next, the quartz glass substrate 2 with the thin film 6 formed as described above was heat treated in air at 700° C. for 3 hours to crystallize the magnetic thin film.
こうして作成された磁性薄膜は比較的面荒れが
少なく光熱磁気記録材として、使用するに耐える
表面状態であつた。 The magnetic thin film thus produced had a relatively low surface roughness and was in a surface condition suitable for use as a photothermal magnetic recording material.
こうして製造された薄膜6の結晶性をX線回折
により調べたところ、優勢方位のない多結晶であ
ることが判明した。しかし、光学顕微鏡による観
察の結果、多結晶であるにもかかわらず薄膜6は
唐草模様状及びバブル状の磁区構造を有し、また
次のような優れた特性を有する極めて良好な垂直
磁化膜であることが測定によつて明らかにされ
た。 When the crystallinity of the thin film 6 thus produced was examined by X-ray diffraction, it was found that it was a polycrystal without a dominant orientation. However, as a result of observation using an optical microscope, thin film 6, despite being polycrystalline, has an arabesque-like and bubble-like magnetic domain structure, and is an extremely good perpendicularly magnetized film with the following excellent properties. This was revealed through measurements.
即ち、第2図に示すように、膜面に垂直な方向
に磁界Hに対する薄膜6のフアラデー回転角θFの
ヒステリシス特性を測定したところ、角形性が良
好なループが得られ、磁気トルク測定から垂直磁
化膜であることが判明した。またフアラデー回転
角θFは約1.5°と極めて大きく、また保磁力Hcも約
200Oeと十分に大きい。このように薄膜6は磁気
記録材料として極めて好ましい性質を有している
ことがわかる。なお第2図に示すような優れた特
性を有する垂直磁化膜が得られることから、薄膜
6中にはより大きな垂直磁気異方性を賦与する
Biが固溶限界程度まで固溶していることが推定
される。なお第2図において、フアラデー回転角
θF測定用の光源としては、He−Neレーザー(波
長6328Å)を用いた。また測定は、上記薄膜6に
光を透過させて行なつた。 That is, as shown in FIG. 2, when we measured the hysteresis characteristics of the Faraday rotation angle θ F of the thin film 6 with respect to the magnetic field H in the direction perpendicular to the film surface, a loop with good squareness was obtained, and from the magnetic torque measurement It turned out to be a perpendicularly magnetized film. Furthermore, the Faraday rotation angle θ F is extremely large at approximately 1.5°, and the coercive force Hc is also approximately
It is large enough at 200Oe. It can thus be seen that the thin film 6 has extremely favorable properties as a magnetic recording material. Note that since a perpendicularly magnetized film having excellent properties as shown in FIG. 2 can be obtained, larger perpendicular magnetic anisotropy is imparted to the thin film 6.
It is estimated that Bi is dissolved in solid solution up to the solid solution limit. In FIG. 2, a He--Ne laser (wavelength: 6328 Å) was used as a light source for measuring the Faraday rotation angle θ F . Further, the measurement was performed by transmitting light through the thin film 6.
f 発明の効果
本発明によれば、実施例からも明らかな様に任
意の基板上にフアラデー回転角θF、保磁力Hcが
十分に大きく、面荒れの少ない磁性薄膜が保護膜
などを磁性薄膜上に付着させることなく作成出来
ている。f Effects of the Invention According to the present invention, as is clear from the examples, a magnetic thin film having a sufficiently large Faraday rotation angle θ F and a sufficiently large coercive force Hc and with little surface roughness can be coated with a protective film, etc. It can be created without attaching anything to the top.
この様に保護膜を持たない磁性薄膜は光熱磁気
記録材料として使用する様、磁性薄膜上に直接反
射膜を形成することが出来るため比較的低い強度
の光で書きこむことが出来、非常に早い書きこみ
速度が得られる効果を持つている。 In this way, a magnetic thin film without a protective film can be used as a photothermal magnetic recording material, and since a reflective film can be formed directly on the magnetic thin film, it is possible to write with relatively low intensity light, and it is very fast. It has the effect of increasing writing speed.
第1図は本発明の磁性薄膜の製造方法の実施例
に用いた高周波スパツタリング装置の概略を示す
断面図、第2図は本発明の磁性薄膜の製造方法の
実施例により製造された(Y、Bi)3(Fe、Al)5
O12薄膜のヒステリシス特性を示すグラフであ
る。
なお図面に用いた符号において、1……電極板
(試料台)、2……石英ガラス基板、3……電極
板、4……第1のターゲツト、5……ヒータ、6
……(Y、Bi)3(Fe、Al)5O12薄膜である。
FIG. 1 is a cross-sectional view schematically showing a high-frequency sputtering apparatus used in an embodiment of the method for producing a magnetic thin film of the present invention, and FIG. Bi) 3 (Fe, Al) 5
3 is a graph showing hysteresis characteristics of an O 12 thin film. In the symbols used in the drawings, 1... electrode plate (sample stand), 2... quartz glass substrate, 3... electrode plate, 4... first target, 5... heater, 6
...(Y, Bi) 3 (Fe, Al) 5 O 12 thin film.
Claims (1)
記化学式で表される組成となるように混合された
複数の酸化物からなるターゲツトを減圧した雰囲
気中でスパツタリングして、前記ターゲツト成分
を含む非晶質磁性薄膜を300〜500℃に加熱されて
いる基板上に被覆するスパツタリング工程と、そ
の後前記非晶質磁性薄膜を500〜900℃に加熱する
結晶化工程とからなる、基板上に垂直磁化特性を
有する希土類鉄ガーネツト薄膜の製造方法。 化学式 (Bi2O3)X(R2O3)Y(F2O3)Z(M2O3)U 0<x≦3/2、0<y≦3/2、 0<z<5/2、0≦u≦5/2 Rは希土類元素、MはAl3+、Ga3+、Sc3+、
Tl3+、(Co2++Tl4+)[Claims] 1. Sputtering a target consisting of an oxide having a composition represented by the following chemical formula or a plurality of oxides mixed so as to have a composition represented by the following chemical formula in a reduced pressure atmosphere, It consists of a sputtering process in which an amorphous magnetic thin film containing a target component is coated on a substrate heated to 300 to 500°C, and then a crystallization process in which the amorphous magnetic thin film is heated to 500 to 900°C. A method for producing a rare earth iron garnet thin film having perpendicular magnetization characteristics on a substrate. Chemical formula (Bi 2 O 3 ) X (R 2 O 3 ) Y (F 2 O 3 ) Z (M 2 O 3 ) U 0<x≦3/2, 0<y≦3/2, 0<z<5 /2, 0≦u≦5/2 R is a rare earth element, M is Al 3+ , Ga 3+ , Sc 3+ ,
Tl 3+ , (Co 2+ + Tl 4+ )
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5578784A JPS60200887A (en) | 1984-03-23 | 1984-03-23 | Manufacture of magnetic film |
| US06/763,789 US4608142A (en) | 1983-11-17 | 1984-11-15 | Method of manufacturing magneto-optic recording film |
| PCT/JP1984/000547 WO1985002292A1 (en) | 1983-11-17 | 1984-11-15 | Method of manufacturing photothermomagnetic recording film |
| DE8484904169T DE3482886D1 (en) | 1983-11-17 | 1984-11-15 | METHOD FOR PRODUCING PHOTOTHERMOMAGNETIC RECORDING FILMS. |
| EP19840904169 EP0196332B1 (en) | 1983-11-17 | 1984-11-15 | Method of manufacturing photothermomagnetic recording film |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5578784A JPS60200887A (en) | 1984-03-23 | 1984-03-23 | Manufacture of magnetic film |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS60200887A JPS60200887A (en) | 1985-10-11 |
| JPH0457637B2 true JPH0457637B2 (en) | 1992-09-14 |
Family
ID=13008613
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5578784A Granted JPS60200887A (en) | 1983-11-17 | 1984-03-23 | Manufacture of magnetic film |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS60200887A (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3424467A1 (en) * | 1984-07-03 | 1986-01-16 | Philips Patentverwaltung Gmbh, 2000 Hamburg | METHOD FOR PRODUCING BISMUT-SUBSTITUTED FERRIMAGNETIC GRANATE LAYERS |
| JPH07120596B2 (en) * | 1987-10-23 | 1995-12-20 | 株式会社安川電機 | Method of forming ferromagnetic thin film |
| EP1050877B1 (en) | 1998-08-28 | 2011-11-02 | Nippon Telegraph And Telephone Corporation | Opto-magnetic recording medium and its manufacturing method, and opto-magnetic information recording/reproducing device |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS568000B2 (en) * | 1973-07-27 | 1981-02-20 | ||
| JPS5613710A (en) * | 1979-07-13 | 1981-02-10 | Nec Corp | Material for magnetic element |
| JPS5659694A (en) * | 1979-10-18 | 1981-05-23 | Agency Of Ind Science & Technol | Manufacture of thin film |
| JPS58116739A (en) * | 1981-12-29 | 1983-07-12 | Matsushita Electric Ind Co Ltd | Method for controlling particle size of film polycrystalline material |
-
1984
- 1984-03-23 JP JP5578784A patent/JPS60200887A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS60200887A (en) | 1985-10-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Carosella et al. | Pulsed laser deposition of epitaxial BaFe12O19 thin films | |
| EP0410627A1 (en) | Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium | |
| US4608142A (en) | Method of manufacturing magneto-optic recording film | |
| US5607781A (en) | Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium | |
| Kobayashi et al. | Large uniaxial magnetic anisotropy in amorphous Tb‐Fe evaporated thin films | |
| JPH0457637B2 (en) | ||
| Goml et al. | Sputtered Iron Garner Fills for Magneto-Optical Storage | |
| JPH0354454B2 (en) | ||
| US3539383A (en) | Preparation of manganese bismuth | |
| EP0196332B1 (en) | Method of manufacturing photothermomagnetic recording film | |
| JPH0558251B2 (en) | ||
| JPS60185237A (en) | photothermal magnetic recording medium | |
| JPH09202697A (en) | Production of bismuth-substituted type garnet | |
| JPH0354443B2 (en) | ||
| JP2636860B2 (en) | Method for manufacturing thin film for magneto-optical recording | |
| US4468438A (en) | Garnet epitaxial films with high Curie temperatures | |
| KR0169583B1 (en) | Process for producing epitaxial yttrium-iron-garnet thin film | |
| US5599605A (en) | Magneto-optical recording medium and method for producing the same | |
| JPS6276710A (en) | Manufacture of magnetic thin film | |
| JPH0377158B2 (en) | ||
| Terada et al. | Magnetic properties of Pr‐Co and Nd‐Co thin films deposited by ion beam sputtering | |
| RU2068026C1 (en) | Method to produce oriented monocrystalline films of magnetic materials | |
| JP3059332B2 (en) | Microwave device material | |
| JP2553145B2 (en) | Magneto-optical recording medium | |
| JP2756273B2 (en) | Oxide garnet single crystal and method for producing the same |