JPH0467896B2 - - Google Patents
Info
- Publication number
- JPH0467896B2 JPH0467896B2 JP61252598A JP25259886A JPH0467896B2 JP H0467896 B2 JPH0467896 B2 JP H0467896B2 JP 61252598 A JP61252598 A JP 61252598A JP 25259886 A JP25259886 A JP 25259886A JP H0467896 B2 JPH0467896 B2 JP H0467896B2
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- aperture
- detector
- detection element
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J5/061—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0806—Focusing or collimating elements, e.g. lenses or concave mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0808—Convex mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0814—Particular reflectors, e.g. faceted or dichroic mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0831—Masks; Aperture plates; Spatial light modulators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は地上用、及び航空、宇宙用の赤外線撮
像装置、あるいは放射温度計等として用いる赤外
放射計に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared radiometer used as an infrared imaging device for ground use, aviation, or space, or a radiation thermometer.
現在多くの赤外線検出器は、ある程度周囲から
の不用な放射(迷光)が検出器に入射して、周囲
温度の変化による検出器出力のドリフトが発生し
ても問題とならないよう、チヨツパを用いて信号
光をAC化し、検出器出力のDC成分を取り除いて
いる(例えば、Henry L.Hackforth著、和田正
信、中野朝安共訳「赤外線工学」、1963、近代科
学社、p102〜109)。
Currently, many infrared detectors use a chipper to prevent problems even if a certain amount of unnecessary radiation (stray light) from the surroundings enters the detector and causes a drift in the detector output due to changes in ambient temperature. The signal light is converted to AC and the DC component of the detector output is removed (for example, "Infrared Engineering" by Henry L. Hackforth, co-translated by Masanobu Wada and Toyasu Nakano, 1963, Kindai Kagakusha, p102-109).
さらに迷光の低減が要求される場合は、検出器
を入れたデユワ内にバツフルを設け、迷光を遮断
している。また、絞りが必要な場合は、黒化絞り
が用いられている。 If a further reduction in stray light is required, a baffle is installed inside the dewar that houses the detector to block stray light. Furthermore, when an aperture is required, a blackened aperture is used.
このように、チヨツパを用いて信号光を変調
し、AC的に検出する方法は数多く開発されてい
るが、チヨツパを用いず、信号光をDC的に検出
する方式の赤外放射計は実用化されていない。 In this way, many methods have been developed to modulate the signal light using a chopper and detect it in an AC manner, but an infrared radiometer that detects the signal light in a DC manner without using a chopper has not been put into practical use. It has not been.
しかし、高速応答が要求される場合には信号光
をチヨツプすることは困難であるし、チヨツパが
光路を遮つている間の分だけ信号光の検出時間が
短かくなるため、S/N比が低下してしまう。 However, when high-speed response is required, it is difficult to chop the signal light, and the signal light detection time is shortened by the time the chopper blocks the optical path, resulting in a low S/N ratio. It will drop.
また、赤外CCDのような多素子センサにより
熱画像を取得する場合は、頻繁にチヨツパを挿入
して信号光を遮断することは画像の欠損を招くと
いう点でも好ましくない。 Further, when a thermal image is acquired using a multi-element sensor such as an infrared CCD, it is not preferable to frequently insert choppers to block the signal light, as this may lead to image defects.
コールドシールだけでは、検出素子の面積が広
い場合、特に多素子センサでは実質的なFOV
(Field of View:第1図)を明確に定められな
い。現在はFOVを定めるのに黒化絞りや、冷却
されたバツフル(第2図)が用いられている。し
かし、常温の黒化絞りはそれ自信が赤外線を放射
し、それを検出器が検知するので好ましくなく、
バツフルも十分な性能のものを作ると大型にな
り、冷却が困難になる。 Cold sealing alone can reduce the effective FOV when the sensing element area is large, especially for multi-element sensors.
(Field of View: Figure 1) cannot be clearly defined. Currently, blackened apertures and cooled buttfuls (Figure 2) are used to determine the FOV. However, a blackened aperture at room temperature itself emits infrared rays, which is detected by the detector, which is undesirable.
If you make a Batsuful with sufficient performance, it will become large and difficult to cool.
本発明の目的は、上記チヨツパ、バツフル、黒
化絞りを用いることなく、十分な性能の赤外放射
計を提供することにある。
An object of the present invention is to provide an infrared radiometer with sufficient performance without using the above-mentioned chopper, buffer, or blackening aperture.
第1図はデユワの検出素子付近、中央に穴を開
けた凹面鏡(以後ミラーアパーチヤと呼ぶ)、及
びリレーレンズの縦断面図である。検出素子の左
側の斜線の部分には液体窒素などの寒剤が入つて
おり、コールドシールドまでが冷却される。ミラ
ーアパーチヤは、凹面を構成する球の中心が検出
素子付近に来るようにして置かれる。穴は信号光
が通過する部分に開け、絞りとする。検出素子は
穴の開いている部分だけから外部の信号光を見る
ことになり、穴が絞りとして働く。それ以外の視
野は凹面鏡による反射の効果により、冷却された
低い放射レベルにある素子自信の周辺の鏡像を見
ることになる。
FIG. 1 is a vertical cross-sectional view of the vicinity of the detection element of the Deyuwa, a concave mirror with a hole in the center (hereinafter referred to as mirror aperture), and a relay lens. The shaded area to the left of the detection element contains a cryogen such as liquid nitrogen, which cools down to the cold shield. The mirror aperture is placed so that the center of the sphere constituting the concave surface is near the detection element. A hole is made in the area through which the signal light passes, and is used as an aperture. The detection element sees external signal light only through the hole, and the hole acts as an aperture. The rest of the field of view sees a mirror image of the periphery of the element itself, which is cooled and at a low radiation level, due to the effect of reflection by the concave mirror.
検出素子から十分に離れた所に絞りとしてミラ
ーアパーチヤを置くことにより、信号光の検出器
への出射瞳を明確に定めることができる。これに
よつて、設計上のFOVと素子の端の部分が実際
に見る視野との差が小さくなる。FOVよりも外
側の視野は、検出素子自身の周辺の低温域を見る
ので、迷光レベルは低くなる。 By placing a mirror aperture as a diaphragm at a sufficient distance from the detection element, the exit pupil of the signal light to the detector can be clearly defined. This reduces the difference between the designed FOV and the field of view actually seen by the edge of the element. The field of view outside the FOV sees the low-temperature region around the detection element itself, so the level of stray light is low.
第3図は単素子のインジウムアンチモン検出器
(3〜5μm)と穴の開いていない金蒸着凹面鏡を
用いて、ミラーアパーチヤの効果を推定した結果
を示している。検出器の点光源に対する応答の角
度分布を入射角90°からθ°まで立体角積分し、全
体で100%に規格化して表したものである。グラ
フは片側半分について書かれているので、角度は
半角で表されている。例えば実験に用いた検出器
のFOVは25°であるので、横軸が12.5°の所が幾何
光学的FOVに相当する。そこでの縦軸の値は37
%であり、12.5°よりも外側から全入射量の37%
の放射が、迷光として入つてきていることを表し
ている。f=70mm、画角19.4°(半角)の凹面鏡を
用いたときの応答の実験値と、その補正値が四角
で表されている。点線の横線は、金蒸着平面鏡で
デユワの窓を塞いだときの応答である。この状態
は半球面鏡(画角が半角で90°)を用いた状態に
近いので、このときの応答の値から凹面鏡に蒸着
された金の出す放射と、窓材(サフアイア)の出
す放射が凹面鏡で反射して入つてくる分を計算
し、これを実験値から引くことによつて補正値を
得た。補正値は曲線と良く一致しており、凹面鏡
が画角内の放射を遮断していることが分る。従つ
て、ミラーアパーチヤも同様な効果を発揮するも
のと考えられる。 Figure 3 shows the results of estimating the mirror aperture effect using a single-element indium antimony detector (3 to 5 μm) and a gold-deposited concave mirror without holes. The angular distribution of the response of the detector to a point light source is expressed by integrating the solid angle from the incident angle of 90° to θ° and normalizing the total to 100%. The graph is drawn on one half, so the angles are expressed in half-width units. For example, the FOV of the detector used in the experiment is 25°, so a position of 12.5° on the horizontal axis corresponds to the geometric optical FOV. The value on the vertical axis there is 37
% and 37% of the total incidence from outside 12.5°
This indicates that the radiation enters as stray light. The experimental values of the response when using a concave mirror with f=70 mm and an angle of view of 19.4° (half-angle) and their correction values are represented by squares. The dotted horizontal line is the response when the dewar window is covered with a gold-deposited plane mirror. This state is similar to using a hemispherical mirror (the angle of view is 90 degrees), so the response value at this time shows that the radiation emitted by the gold deposited on the concave mirror and the radiation emitted by the window material (saphire) are the same as those of the concave mirror. The amount reflected and incoming was calculated and subtracted from the experimental value to obtain the corrected value. The correction values match well with the curve, indicating that the concave mirror blocks radiation within the field of view. Therefore, it is thought that mirror apertures also exhibit similar effects.
第4図にミラーアパーチヤを組み込んだ放射温
度計の光学系を示す。迷光(周囲からの不用な放
射)に対して十分な配慮を払つた検出器とミラー
アパーチヤの組み合わせにより、チヨツパを用い
て常時参照放射源と比較することなく、DC的に
赤外放射を検出することができる。 Figure 4 shows the optical system of a radiation thermometer incorporating a mirror aperture. The combination of a detector and mirror aperture that takes sufficient consideration to stray light (unwanted radiation from the surroundings) allows infrared radiation to be detected in a DC manner without the need for constant comparison with a reference radiation source using a chopper. can do.
ドリフトの原因となる迷光が抑制されることに
より、検出器は高い安定性を持つことになる。そ
のため、チヨツパを用いることなく、連続して
DC的に対象を観測することができ、高速性が得
られると共に、画像の欠損を防ぐことができる。
By suppressing stray light that causes drift, the detector has high stability. Therefore, it is possible to continuously
The object can be observed in a DC manner, high speed can be obtained, and image loss can be prevented.
多素子センサ等の受光面が広い素子であつて
も、黒化絞りやバツフル等を用いることなく
FOVを明確に定められる。そのため、黒化絞り
からの不用な赤外線を検知することもなく、バツ
フルの冷却に対する負担を増やすこともない。 Even for elements with a wide light-receiving surface such as multi-element sensors, it can be used without using blackened apertures or rounded apertures.
FOV can be clearly defined. Therefore, unnecessary infrared rays from the blackening aperture are not detected, and there is no increase in the burden on cooling the buffer.
〔第1図ミラーアパーチヤ〕
デユワの検出素子付近、ミラーアパーチヤ、及
びリレーレンズの断面図である。
1……検出素子、2……コールドシールド、4
……ミラーアパーチヤ、5……リレーレンズ、点
線、設計上のFOV、一点鎖線、検出素子の端の
方が見る視野。
〔第2図バツフル〕
バツフルを設けた場合の検出素子付近の縦断面
図である。検出素子の左側は、デユワの寒剤を入
れる部分の外壁である。
1……検出素子、6……バツフル。
〔第3図90°からθ°までの検出器の応答の角度分
布の立体角積分〕
凹面鏡を用いて、ミラーアパーチヤの背景放射
の抑制効果を確認した結果である。
7……凹面鏡実験値、8……凹面鏡補正値、点
線、金蒸着平面鏡でデユワの窓を塞いだときの応
答。
〔第4図放射温度計への応用例〕
放射温度計を構成するデユワ、ミラーアパーチ
ヤ、及び光学系の横断面図である。
1……検出素子、2……コールドシールド、4
……ミラーアパーチヤ、5……リレーレンズ、9
……対物レンズ。
[FIG. 1 Mirror Aperture] FIG. 1 is a sectional view of the vicinity of the detection element of the deyuwa, the mirror aperture, and the relay lens. 1...Detection element, 2...Cold shield, 4
...Mirror aperture, 5...Relay lens, dotted line, designed FOV, dash-dotted line, field of view seen by the edge of the detection element. [FIG. 2 Buzzle] FIG. 2 is a vertical cross-sectional view of the vicinity of the detection element when a Buzzle is provided. The left side of the detection element is the outer wall of the deyuwa where the cryogen is placed. 1...Detection element, 6...Batsuful. [Figure 3: Solid angle integral of the angular distribution of the detector response from 90° to θ°] This is the result of confirming the background radiation suppression effect of the mirror aperture using a concave mirror. 7...Concave mirror experimental value, 8...Concave mirror correction value, dotted line, response when the Deyuwa window is covered with a gold-deposited plane mirror. [FIG. 4 Application Example to Radiation Thermometer] FIG. 4 is a cross-sectional view of a dewar, a mirror aperture, and an optical system that constitute the radiation thermometer. 1...Detection element, 2...Cold shield, 4
...Mirror aperture, 5...Relay lens, 9
...Objective lens.
Claims (1)
を開けた凹面鏡を、球面の中心が検出素子付近に
来るようにして置き、信号光を凹面鏡の穴を通じ
て検出器に入射させることを特徴とする赤外放射
計。1 A concave mirror with a hole in the center is placed in front of the cooled infrared detector so that the center of the spherical surface is near the detection element, and the signal light is made to enter the detector through the hole in the concave mirror. Infrared radiometer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61252598A JPS63106531A (en) | 1986-10-23 | 1986-10-23 | Infrared radiometer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61252598A JPS63106531A (en) | 1986-10-23 | 1986-10-23 | Infrared radiometer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS63106531A JPS63106531A (en) | 1988-05-11 |
| JPH0467896B2 true JPH0467896B2 (en) | 1992-10-29 |
Family
ID=17239595
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61252598A Granted JPS63106531A (en) | 1986-10-23 | 1986-10-23 | Infrared radiometer |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS63106531A (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009204423A (en) * | 2008-02-27 | 2009-09-10 | Fujitsu Ltd | Infrared imaging device |
| CN110554496B (en) * | 2018-05-31 | 2021-01-15 | 上海微电子装备(集团)股份有限公司 | Light extinction device, optical element mounting base, optical element and modeling method |
-
1986
- 1986-10-23 JP JP61252598A patent/JPS63106531A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS63106531A (en) | 1988-05-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12385828B2 (en) | Gas imaging system | |
| US6515285B1 (en) | Method and apparatus for compensating a radiation sensor for ambient temperature variations | |
| US8466964B2 (en) | Multispectral uncooled thermal infrared camera system | |
| US20110181730A1 (en) | Room-temperature filtering for passive infrared imaging | |
| KR20130101055A (en) | Dewar assembly for ir detection systems | |
| JPH023150B2 (en) | ||
| US8119987B2 (en) | Process and apparatus for the measurement of thermal radiation using regular glass optics and short-wave infrared detectors | |
| JPH0467896B2 (en) | ||
| JP2756648B2 (en) | Infrared temperature distribution measuring device and its measuring method | |
| US3272013A (en) | Combined radiometer and emissometer | |
| JPH0510825A (en) | Disaster prevention detection device having thermal image detection means | |
| US3348058A (en) | Radiation detection system having wide field of view | |
| US3163760A (en) | Refractive optics infrared scanning system | |
| JPS6176970A (en) | infrared detection device | |
| Kostrzewa et al. | Overview of the UL3 Omega (tm) uncooled camera and its applications | |
| JPH02245621A (en) | Correction of output voltage of infrared detector | |
| JP2775017B2 (en) | Infrared temperature distribution measuring device | |
| JPH0629778B2 (en) | Infrared optics | |
| JPH01155220A (en) | Infrared optical system | |
| JPH0718753B2 (en) | Infrared optics | |
| JPH1038696A (en) | Infrared detector | |
| JPH0626821Y2 (en) | Infrared camera | |
| Katkovsky et al. | Metrological characteristics of thermal video fire detection systems | |
| JPH11344779A (en) | Infrared camera | |
| JPS6257112B2 (en) |