[go: up one dir, main page]

JPH05105461A - Mold for glass molded lens - Google Patents

Mold for glass molded lens

Info

Publication number
JPH05105461A
JPH05105461A JP29633491A JP29633491A JPH05105461A JP H05105461 A JPH05105461 A JP H05105461A JP 29633491 A JP29633491 A JP 29633491A JP 29633491 A JP29633491 A JP 29633491A JP H05105461 A JPH05105461 A JP H05105461A
Authority
JP
Japan
Prior art keywords
mold
boron nitride
sintered body
purity
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29633491A
Other languages
Japanese (ja)
Inventor
Hirokage Tanji
宏影 丹治
Masaharu Suzuki
正治 鈴木
Tsumoru Ishida
積 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP29633491A priority Critical patent/JPH05105461A/en
Publication of JPH05105461A publication Critical patent/JPH05105461A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the mold with the smooth surface and mold releasability kept over a long period by using a cubic boron nitride having specified purity and relative density, and produced by the direct conversion method from a pyrolytic boron nitride. CONSTITUTION:Boron trichloride is allowed to react with a raw gas such as ammonia at <=50Torr and >=1800 deg.C to deposit a pyrolytic boron nitride as a solid on a graphite substrate. The relative density is controlled to >=99.9% in this case. The purity can be increased to >=99.5% by paying attention to the purity of the raw gas and the furnace material of a CVD device. When the pyrolytic boron nitride is directly converted to the cubic boron nitride using this raw material, the purity of the sintered body finally obtained is kept at >=99.5%. Accordingly, since the content of the impurity easy to react with the gas is minimized when the cubic boron nitride is used to obtain a mold for a glass molded lens, the mold surface is not roughened even after the mold is repeatedly used for a long period, mold releasability is not deteriorated, and a high-performance mold having a long service life is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に光学レンズの製造
に好適なガラスモールドレンズの成形型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass mold lens mold suitable for manufacturing optical lenses.

【0002】[0002]

【従来の技術】ガラスレンズの成形法として、光学ガラ
スを加熱プレスして所望の形状にする方法が知られてい
る。成形型には、高温のガラスに対する化学的安定性や
耐摩耗性、ガラスとの離型性、さらには成形後のガラス
の後研磨を不要にするための表面平滑性などの特性が要
求される。このような要求を満たす材料が従来より検討
されており、各種の金属やセラミックスが提案されてい
る。
2. Description of the Related Art As a method for molding a glass lens, there is known a method in which an optical glass is heated and pressed into a desired shape. Molds are required to have such properties as chemical stability and wear resistance to high temperature glass, releasability from glass, and surface smoothness that makes post-polishing of glass after molding unnecessary. .. Materials satisfying such requirements have been studied so far, and various metals and ceramics have been proposed.

【0003】その中で、立方晶窒化ほう素(cBN)
は、上記の多くを満足する基本特性を有していることか
ら、特開昭63-270324 号公報ではこれを光学素子成形型
として利用することを提案している。この先行技術で
は、成形型の成形面をcBN含有率50atm %以上、より
好ましくは70atm %以上の焼結体で構成されている。
Among them, cubic boron nitride (cBN)
JP-A-63-270324 proposes to use this as an optical element molding die because it has basic characteristics satisfying many of the above. In this prior art, the molding surface of the molding die is made of a sintered body having a cBN content of 50 atm% or more, more preferably 70 atm% or more.

【0004】[0004]

【発明が解決しようとする課題】しかし、実際にcBN
焼結体を成形型の成形面に用いるには、種々の技術的困
難があり、その実用化は進んでいない。その大きな理由
は、まず第1に、cBNは共有結合性が強い物質であり
単体では焼結が困難であるので、通常はcBNに各種の
セラミックスや金属を焼結助材として混合し、これを超
高圧高温で焼結することによって焼結体が製造されてい
ることによる。特開昭63-270324 号公報においても、実
施例の全ては窒化物や炭化物の焼結助材を使用してい
る。このため、cBN焼結体の粒界にcBN以外の物質
が存在し、焼結体の特性がcBN本来の特性を反映しな
くなる。
[Problems to be Solved by the Invention] However, in practice cBN
There are various technical difficulties in using the sintered body on the molding surface of the molding die, and its practical application has not progressed. The main reason for this is that, first of all, cBN is a substance with a strong covalent bond and is difficult to sinter by itself, so normally, various ceramics and metals are mixed with cBN as a sintering aid, and this is This is because the sintered body is manufactured by sintering at ultrahigh pressure and high temperature. Also in Japanese Patent Laid-Open No. 63-270324, all of the examples use a sintering aid of nitride or carbide. Therefore, a substance other than cBN is present at the grain boundaries of the cBN sintered body, and the characteristics of the sintered body do not reflect the original characteristics of cBN.

【0005】ガラスモールドレンズの成形型としてこの
ようなcBN焼結体を使った場合、粒界部分に残存する
セラミックスや金属部分が選択的に腐食・摩耗されて成
形型表面が荒れ、離型性が悪くなったり、早い段階で型
として使えなくなるという問題が生ずる。特開平3-8873
2 号公報では、cBNに非常に近い特性を持ったウルツ
型BN(wBN)の焼結体を使うことを提案している
が、この場合も粒界に残存する焼結助材の悪影響の問題
はcBNの場合と変わらない。また、wBNはcBNよ
りも柔らかいため、耐摩耗性がcBNに及ばず、寿命の
面で問題がある。
When such a cBN sintered body is used as a mold for a glass mold lens, ceramics and metal parts remaining at grain boundaries are selectively corroded and abraded to roughen the mold surface, resulting in mold releasability. There is a problem that it becomes worse and cannot be used as a mold at an early stage. JP-A-3-8873
No. 2 gazette proposes to use a wurtz-type BN (wBN) sintered body having characteristics very close to cBN, but also in this case, there is a problem of adverse effects of the sintering aid remaining on the grain boundaries. Is the same as for cBN. Further, since wBN is softer than cBN, its wear resistance does not reach that of cBN, and there is a problem in terms of life.

【0006】このため、薄膜コーティングの形で利用し
たり、粒界の存在しない単結晶を研削・研磨して型にす
ることなどが考えられている。しかし、薄膜コーティン
グでは、薄膜形成技術そのものが未だ完成しておらず、
化学的安定性の高い結晶質のcBN膜を工業的に形成す
る方法は確立していない。また、cBN単結晶は現在ま
だ直径10mm以下のものしか製造できず、成形型とするに
は寸法の点で難点があるほか、へき開しやすい単結晶を
機械的に研削・研磨するので相当のコスト高となってし
まう。
Therefore, it has been considered to use it in the form of a thin film coating, or to grind and polish a single crystal having no grain boundaries to obtain a mold. However, with thin film coating, the thin film forming technology itself has not yet been completed,
A method for industrially forming a crystalline cBN film having high chemical stability has not been established. In addition, cBN single crystals can only be manufactured with a diameter of 10 mm or less at present, and there is a problem in terms of size when used as a molding die. Also, since a single crystal that is easily cleaved is mechanically ground and polished, considerable cost is required. It becomes high.

【0007】もう一つの問題は、特開平3-88732 号公報
にも述べられているように、これまでのcBN焼結体で
は、曲率が小さく深面のガラスレンズ成形に対応できる
ような肉厚の焼結体の作製が非常に難しく、型コストが
上昇してしまうことである。
Another problem is that, as described in Japanese Patent Laid-Open No. 3-88732, the conventional cBN sintered body has a small thickness so that it can be used for molding a deep glass lens. That is, it is very difficult to produce the sintered body of, and the die cost increases.

【0008】本発明の目的は、従来の以上のような問題
点を解決し、曲率が小さく深面の型を容易に成形でき、
しかもこれまでのcBN成形型よりも長期にわたって平
滑な面が保持され離型性も維持される長寿命のガラスモ
ールドレンズの成形型を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art and to easily mold a deep surface mold having a small curvature,
Moreover, it is to provide a mold for a glass mold lens having a long life, in which a smooth surface is maintained for a longer period of time and mold releasability is maintained, as compared with the conventional cBN mold.

【0009】[0009]

【課題を解決すための手段】すなわち、本発明は、熱分
解窒化ほう素(P−BN)を原料とする直接転換法によ
って製造された、純度99.5%以上、相対密度99.9%以上
の立方晶窒化ほう素焼結体からなることを特徴とするガ
ラスモールドレンズの成形型である。
That is, the present invention is a cubic crystal having a purity of 99.5% or more and a relative density of 99.9% or more produced by a direct conversion method using pyrolytic boron nitride (P-BN) as a raw material. A mold for a glass mold lens, which is made of a boron nitride sintered body.

【0010】以下、さらに詳しく本発明について説明す
る。
The present invention will be described in more detail below.

【0011】本発明で用いるcBN焼結体は、直接転換
法として知られている方法で製造されたものであり、低
圧相である六方晶窒化ほう素(hBN)をcBNに転換
する際に、一般に「触媒」もしくは「溶媒」と呼ばれて
いる物質の作用が無い状態で、超高圧高温処理されて製
造されたものである。直接転換法によるcBN焼結体の
製造においては、原料として表面にほう素を形成させた
粉末状のhBNを用いる方法(特開昭55-167110 号公
報)、hBN粉末の焼結体を用いる方法(特開平3-1599
64号号公報)、CVD法で製造されるP−BNを用いる
方法(特開昭54-33510号公報、特開平1-184033号公報)
などが知られている。
The cBN sintered body used in the present invention is manufactured by a method known as a direct conversion method. When converting low-pressure phase hexagonal boron nitride (hBN) into cBN, Generally, it is produced by ultrahigh pressure and high temperature treatment in the absence of the action of a substance called "catalyst" or "solvent". In the production of a cBN sintered body by the direct conversion method, a method using powdery hBN having boron formed on the surface as a raw material (Japanese Patent Laid-Open No. 55-167110) and a method using a sintered body of hBN powder (Japanese Patent Laid-Open No. 3-1599
No. 64), and a method using P-BN manufactured by the CVD method (JP-A-54-33510 and JP-A-1-184033).
Are known.

【0012】本発明では、これらのなかで後者の方法を
採用する。その理由は、低圧相BNの粉末又は粉末の焼
結体を原料とする方法では、原料自身に多くの空隙が存
在するために、ガラスモールドレンズの成形型に適した
相対密度99.9%以上の気孔の殆ど無い緻密なcBN焼結
体を得るのが容易でなく、圧力7GPa以上、温度2100℃以
上の非常に厳しい超高圧高温処理条件が必要となるので
製造コストの面で問題がある他、超高圧高温処理装置に
充填される段階での原料の相対密度が低いために厚みの
ある焼結体が得られにくく、曲率の小さい深面ガラスレ
ンズの成形型をつくりにくいという問題があるからであ
る。
The present invention adopts the latter method among them. The reason is that in the method of using the powder of the low-pressure phase BN or the sintered body of the powder as the raw material, since many voids exist in the raw material itself, the pores having a relative density of 99.9% or more suitable for the mold of the glass mold lens are formed. It is not easy to obtain a dense cBN sintered body that is almost free of pressure, and very strict ultra-high pressure and high-temperature processing conditions such as a pressure of 7 GPa or more and a temperature of 2100 ° C. or more are required. This is because it is difficult to obtain a thick sintered body due to the low relative density of the raw material at the stage of filling the high-pressure high-temperature processing apparatus, and it is difficult to form a deep glass lens molding die having a small curvature. ..

【0013】これに対して、P−BNを原料とする場合
には、P−BN自身が非常に高密度な低圧相BNの成形
体であり、しかもCVD法で製造されるので高純度であ
るため、超高圧高温処理条件が比較的穏やかであるにも
かかわらず、気孔の殆ど無い、密度99.9%以上の緻密な
焼結体を得ることができる。
On the other hand, when P-BN is used as the raw material, P-BN itself is a compact of the low-pressure phase BN having a very high density, and since it is produced by the CVD method, it is of high purity. Therefore, it is possible to obtain a dense sintered body having almost no pores and a density of 99.9% or more, although the ultra-high pressure and high temperature treatment conditions are relatively mild.

【0014】ガラスモールドレンズは、成形後に研磨し
ないで使用することを目的としており、そのためには成
形された表面粗さはできるだけ滑らかになっていなけれ
ばならず、具体的には、Rmax=0.5 μm 以下が必要であ
る。直接転換法により製造されるcBN焼結体の場合、
相対密度99.9%以上でこのような表面粗さを達成するこ
とができる。
The glass mold lens is intended for use without being polished after molding, and for that purpose, the molded surface roughness must be as smooth as possible. Specifically, Rmax = 0.5 μm. You need the following: In the case of cBN sintered body manufactured by the direct conversion method,
Such surface roughness can be achieved with a relative density of 99.9% or more.

【0015】P−BNは、「FCレポート」vol.4 No2
7〜15頁(1986)にも記載されているように、三塩化ほう
素とアンモニアなどの原料ガスを、50Torr以下の圧力、
1800℃以上の高温で反応させ、黒鉛基材上に固体として
析出させることによって製造することができる。このよ
うにして得られたP−BN成形体には、電子顕微鏡で観
察されるような気孔はほとんど認められず、非常に緻密
なものであるので、これを直接転換法によってcBNに
転換した場合も、ガラス成形型とした場合に問題となる
ような気孔の無いcBN焼結体にすることができ、その
相対密度も99.9%以上の非常に緻密なものとなる。
P-BN is "FC Report" vol.4 No2
As described in pages 7 to 15 (1986), a raw material gas such as boron trichloride and ammonia, a pressure of 50 Torr or less,
It can be produced by reacting at a high temperature of 1800 ° C. or higher and precipitating it as a solid on a graphite substrate. The P-BN compact thus obtained has almost no pores as observed with an electron microscope and is extremely dense. Therefore, when this is converted to cBN by a direct conversion method. Also, a cBN sintered body having no pores, which would be a problem in the case of using a glass molding die, can be obtained, and the relative density thereof is extremely high, 99.9% or more.

【0016】さらに、P−BNはCVD法で製造される
ので、原料ガスとCVD装置の炉材の純度に注意すれ
ば、高純度にすることが容易であり、たとえば半導体の
製造に使われるような4〜6NのP−BN純度を維持す
ることができる。本発明では、P−BN純度が99.5%以
上あれば、目的とする高性能のガラスモールドレンズの
成形型を得ることができる。
Further, since P-BN is produced by the CVD method, it is easy to make it highly pure if attention is paid to the purity of the raw material gas and the furnace material of the CVD apparatus, and it is used in the production of semiconductors, for example. It is possible to maintain a P-BN purity of 4 to 6 N. In the present invention, if the P-BN purity is 99.5% or more, the objective mold for high-performance glass molded lens can be obtained.

【0017】直接転換法で上記P−BN原料をcBNに
転換した場合、直接転換法自身もcBN中への不純物混
入が非常に少ない方法であるので、最終的に得られるc
BN焼結体も非常に高い純度99.5%以上を維持すること
ができる。従って、これをガラスモールドレンズの成形
型とした場合、ガラスと反応しやすい不純物成分がきわ
めて少ないので、長期の繰り返し使用によっても型表面
の荒れや離型不良が起きず、高性能かつ長寿命の型を得
ることができる。しかし、cBN純度が99.5%よりも悪
いと、ガラスレンズの成形において型表面が比較的早い
段階から荒れ始める場合があり好ましくない。なお、特
開平1-184033号公報に示されているような結晶性の高い
P−BN原料を用いる場合には、6GPa台の圧力、2000℃
以下の温度でも緻密なcBN焼結体が得られるので、製
造コストの点で有利になる。
When the above-mentioned P-BN raw material is converted to cBN by the direct conversion method, the direct conversion method itself is a method in which the contamination of impurities into cBN is very small, and thus the finally obtained c is obtained.
The BN sintered body can also maintain a very high purity of 99.5% or more. Therefore, when this is used as a mold for a glass mold lens, the impurity component that easily reacts with glass is extremely small, so even if it is repeatedly used for a long time, the surface of the mold does not become rough and the mold is not defectively released. You can get the mold. However, if the cBN purity is lower than 99.5%, the mold surface may start to get rough at a relatively early stage in molding a glass lens, which is not preferable. When using a P-BN raw material having high crystallinity as disclosed in JP-A 1-184033, a pressure on the order of 6 GPa and 2000 ° C.
Since a dense cBN sintered body can be obtained even at the following temperature, it is advantageous in terms of manufacturing cost.

【0018】P−BNの密度が高いという特徴は、これ
を原料として超高圧高温処理装置に充填する際に、限ら
れた超高圧発生空間を低圧相BNで効率よく満たすこと
ができるので、曲率の小さい深面成形型に対応できる肉
厚の焼結体をつくる上でも有利に作用する。
The characteristic feature of the high density of P-BN is that, when the P-BN is charged as a raw material into an ultra-high pressure high-temperature processing apparatus, the limited ultra-high pressure generation space can be efficiently filled with the low-pressure phase BN, It also has an advantageous effect in producing a thick sintered body that can be applied to a deep surface forming die having a small size.

【0019】P−BNを原料とすることのもう一つの利
点は、P−BNはセラミックスでありながら柔軟性に富
み、しかもある程度の温度と圧力を加えることによって
容易に塑性変形を起こすので、最終的な成形面に近い寸
法形状のcBN焼結体を得る方法をも採用することがで
きるということである。すなわち、成形面とほぼ同じ形
状に加工された型の間にP−BNの板を位置させ、600
℃以上の温度をかけながらこれをプレスすることによっ
て、金属のプレス成形と同様に型の形状にあわせて塑性
加工されたP−BNを得ることができる。あまり鋭利な
角に成形することは難しいが、ガラスレンズの成形に必
要な程度の曲率であれば、問題なく成形することができ
る。
Another advantage of using P-BN as a raw material is that although P-BN is a ceramic, it is highly flexible, and it easily undergoes plastic deformation by applying a certain temperature and pressure. This means that a method of obtaining a cBN sintered body having a size and shape close to a conventional molding surface can also be adopted. In other words, the P-BN plate is placed between the molds that have been processed into almost the same shape as the molding surface, and 600
By pressing this while applying a temperature of not less than 0 ° C., it is possible to obtain P-BN which is plastically processed according to the shape of the mold as in the case of metal press molding. Although it is difficult to form a glass with a very sharp corner, the glass lens can be formed without any problem as long as it has a curvature required to form a glass lens.

【0020】以上のようにして、あらかじめ成形された
P−BNを同じ所望の形状の型の間にはさんで超高圧高
温処理装置にセットし、超高圧高温処理を行なうことに
より、最終的な成形面に非常に近い、いわゆるニアネッ
トシェイプのcBN焼結体を得ることができ、その後の
研削加工がほとんど必要でなくなるので、コスト面で非
常に有利となる。
As described above, the preformed P-BN is sandwiched between the molds having the same desired shape and set in the ultrahigh pressure and high temperature treatment apparatus, and the ultrahigh pressure and high temperature treatment is carried out to obtain the final product. It is possible to obtain a so-called near net shape cBN sintered body that is very close to the molding surface, and the subsequent grinding process is almost unnecessary, which is very advantageous in terms of cost.

【0021】また、P−BNの塑性加工とそのcBNへ
の転換は、超高圧高温処理装置で連続して行なうことも
可能である。このようなことが可能になるのは、P−B
Nが非常に高い配向性を持った材料で、特にCVDの際
の析出面と平行な方向にhBN結晶のc面が配向した構
造をしており、しかもBNがc面方向に非常に滑りやす
いという特性を持っているからであって、粒子がランダ
ムに配向した通常のhBN焼結体ではこのような挙動は
全く期待できない。なお、この方法を採用する場合に
は、原料のP−BNは配向度の高いものが変形が容易で
好ましく、具体的にはc軸の選択配向度が100 以下のも
のが特によい。選択配向度の値がこれよりも大きいと、
原料の塑性加工をした後に元の形状に戻りやすくなっ
て、超高圧高温処理装置への充填が容易でなくなる。な
お、c軸の選択配向度とその測定方法については、米国
特許第3578403 号明細書、Physica 139 & 140B (1986)
256-258等に示されている。
Further, the plastic working of P-BN and its conversion into cBN can be continuously carried out in an ultrahigh pressure and high temperature processing apparatus. This is possible because P-B
N is a material with a very high orientation, and the structure is such that the c-plane of the hBN crystal is oriented in a direction parallel to the deposition surface during CVD, and the BN is very slippery in the c-plane direction. This behavior cannot be expected at all in a normal hBN sintered body in which particles are randomly oriented. When this method is adopted, it is preferable that P-BN as a raw material has a high degree of orientation because it can be easily deformed. Specifically, it is particularly preferable that the degree of selective orientation of the c-axis is 100 or less. If the value of the degree of selective orientation is larger than this,
After the plastic working of the raw material, it tends to return to its original shape, making it difficult to fill the ultra-high pressure and high temperature processing apparatus. The degree of selective orientation of the c-axis and its measuring method are described in US Pat. No. 3,578,403, Physica 139 & 140B (1986).
256-258 etc.

【0022】[0022]

【実施例】次に、実施例と比較例をあげてさらに具体的
に本発明を説明する。
EXAMPLES Next, the present invention will be described more specifically by way of Examples and Comparative Examples.

【0023】実施例1 比較例1〜2 厚み3mm の市販のP−BN板(電気化学工業社製商品名
「デンカP−BN」)から直径15mmの円板を切り出し、
これを圧力6.5GPa、温度1980℃で30分間処理して、厚み
約1.8mm 、直径15.5mmのcBN焼結体を作製した。IC
P法で純度分析を行なったところ、原料のP−BNは9
9.995%以上、同じ方法で製造したcBN焼結体は99.95
%以上であった。また、この焼結体の密度はcBNの
理論密度3.45g/cm3 に等しく、ほぼ100 %緻密化してい
た。
Example 1 Comparative Examples 1 and 2 A disc having a diameter of 15 mm was cut out from a commercially available P-BN plate having a thickness of 3 mm (trade name "Denka P-BN" manufactured by Denki Kagaku Kogyo KK).
This was treated at a pressure of 6.5 GPa and a temperature of 1980 ° C. for 30 minutes to prepare a cBN sintered body having a thickness of about 1.8 mm and a diameter of 15.5 mm. IC
Purity analysis by P method showed that the raw material P-BN was 9
More than 9.995%, cBN sintered body manufactured by the same method is 99.95%
% Or more. The density of this sintered body was equal to the theoretical density of cBN of 3.45 g / cm 3 , and was almost 100% densified.

【0024】この焼結体をダイヤモンド砥石によって研
削加工して成形面の形状にほぼ仕上げた後、超硬合金製
の台座にTiを含む高温ロウ材によってロウ付けした。こ
の状態でさらに成形面をダイヤモンド砥粒によって研磨
し、表面粗さRmax=0.03μmにまで仕上げてガラスレン
ズの成形型を作製した(実施例1)。
This sintered body was ground by a diamond grindstone to almost finish the shape of the molding surface, and was then brazed to a pedestal made of cemented carbide with a high-temperature brazing material containing Ti. In this state, the molding surface was further polished with diamond abrasive grains to finish the surface roughness to Rmax = 0.03 μm to prepare a glass lens molding die (Example 1).

【0025】比較のため、特開昭63-270324 号公報に開
示された方法に従い、cBN85atm%、TiN11atm%、TiC
2atm %及び残分Niからなる混合粉末を用いてcBN焼
結体を作製し、実施例1と同じ方法により成形型を作製
した(比較例1)。その際、実施例1と同じ方法で成形
面の仕上げ研磨を行なったところ、その表面粗さはRmax
=0.05μmmとやや大きい値であった。
For comparison, according to the method disclosed in JP-A-63-270324, cBN85atm%, TiN11atm%, TiC
A cBN sintered body was produced using a mixed powder of 2 atm% and the balance Ni, and a molding die was produced by the same method as in Example 1 (Comparative Example 1). At that time, when the finish polishing of the molding surface was performed by the same method as in Example 1, the surface roughness was Rmax.
= 0.05 μmm, which is a relatively large value.

【0026】以上の2つの成形型を用いてSF系ガラス
(SiO2-PbO系)のレンズを成形したところ、実施例1で
は75000 ショットの成形後もガラスの品質に変化はな
く、引続き使用が可能であった。これに対して、比較例
1では50000 ショットを繰り返した時点から徐々にガラ
スの変色が目立ち始め、55000 ショットを越えた時点か
らは型へのガラスの焼き付きが顕著になって使用できな
くなった。
SF type glass (SiO 2 -PbO type) lenses were molded using the above two molding dies, and in Example 1, there was no change in the quality of the glass even after molding 75,000 shots, and the glass could not be used continuously. It was possible. On the other hand, in Comparative Example 1, the discoloration of the glass gradually became conspicuous after the time of repeating 50000 shots, and after the time of exceeding 55,000 shots, the image sticking of the glass became remarkable and the glass became unusable.

【0027】同じ試験をwBNの焼結体から作製した型
(比較例2)について行なったところ、20000 ショット
で変色と焼き付きが著しくなり寿命に達した。
When the same test was performed on a mold made from a sintered body of wBN (Comparative Example 2), discoloration and seizure became remarkable after 20,000 shots, and the life was reached.

【0028】比較例3〜4 市販のhBN粉末(電気化学工業社製商品名「グレード
GP」)を10-3Torrの真空中、2000C で10分間熱処理し
て、表面に遊離ほう素を形成させたもの(比較例3)、
および市販のhBN焼結体(電気化学工業社製商品名
「グレードN-1 」)を10-3Torrの真空中、1600℃で2 時
間、さらに窒素雰囲気中、2100℃で2 時間、加熱して酸
素含有量を0.06%以下にしたもの(比較例4)を準備し
た。
Comparative Examples 3 to 4 Commercially available hBN powder (trade name "grade" manufactured by Denki Kagaku Kogyo Co., Ltd.)
GP ") was heat-treated at 2000 C for 10 minutes in a vacuum of 10 -3 Torr to form free boron on the surface (Comparative Example 3),
And a commercially available hBN sintered body (trade name "Grade N-1" manufactured by Denki Kagaku Kogyo Co., Ltd.) are heated in a vacuum of 10 -3 Torr at 1600 ° C for 2 hours, and in a nitrogen atmosphere at 2100 ° C for 2 hours. To prepare an oxygen content of 0.06% or less (Comparative Example 4).

【0029】それらを実施例1と同じ条件でcBN焼結
体への転換を試み生成物を粉末X線回折法により分析し
たところ、いずれも完全にはcBNに転換せず原料のh
BNが一部残存していた。そこで、圧力を7GPa、温度を
2150℃に高め、30分処理することにより、X線回折法で
hBNの残留が認められないcBN焼結体が作製するこ
とができた。しかし、cBN焼結体の相対密度は、比較
例3が99.6%、比較例4が99.8%であり、実施例1より
も小さかった。
Attempts were made to convert them into cBN sintered compacts under the same conditions as in Example 1, and the products were analyzed by powder X-ray diffraction method.
Some BN remained. Therefore, the pressure is 7 GPa and the temperature is
By increasing the temperature to 2150 ° C. and treating for 30 minutes, a cBN sintered body in which no residual hBN was observed by the X-ray diffraction method could be produced. However, the relative densities of the cBN sintered bodies were 99.6% in Comparative Example 3 and 99.8% in Comparative Example 4, which were smaller than those in Example 1.

【0030】得られた焼結体を実施例1と同様の方法で
研削・研磨加工したが、表面粗さはRmax=0.05μmm以下
にはならず、平滑さにおいて実施例1の水準には達しな
かった。実施例1と同じSF系ガラスの成形を行なった
ところ、比較例3は35000 ショット、比較例4は23000
ショットを越えた付近から、成形面の荒れが目立ち始
め、引き続いての使用が困難になった。この転換条件で
は、cBNへの転換はほぼ完全に起こるものの、緻密
化、粒子間結合の発達の面で本発明の水準には達してい
ないと思われる。
The obtained sintered body was ground and polished in the same manner as in Example 1, but the surface roughness did not fall below Rmax = 0.05 μmm and the smoothness reached the level of Example 1. There wasn't. When the same SF type glass as in Example 1 was molded, 35000 shots were made in Comparative Example 3 and 23000 shots in Comparative Example 4.
Roughness of the molding surface began to be noticeable from around the point where the shot was crossed, making subsequent use difficult. Under this conversion condition, conversion to cBN occurs almost completely, but it seems that the level of the present invention is not reached in terms of densification and development of interparticle bond.

【0031】実施例2 c軸の選択配向度が10のP−BN板を、 c軸が選択的に
配向した方向に2mm の厚さに加工し、 この板から直径15
mm、 厚さ2mm のP−BN円板を切り出した。黒鉛により
目的とするガラスレンズの曲率に合わせた型を作製し、
この型の間にP−BN円板をはさんで温度1200℃、 圧力
30MPa で30分間熱間加工して、ガラスレンズ成形型の成
形面にほぼ一致する曲率を持ったP−BN板を得た。
Example 2 A P-BN plate having a degree of selective orientation of the c-axis of 10 was machined to a thickness of 2 mm in the direction in which the c-axis was selectively oriented.
A P-BN disc having a thickness of 2 mm and a thickness of 2 mm was cut out. With graphite, make a mold that matches the curvature of the desired glass lens,
A P-BN disc is sandwiched between the molds, and the temperature is 1200 ° C, and the pressure is
Hot working was carried out at 30 MPa for 30 minutes to obtain a P-BN plate having a curvature substantially matching the molding surface of the glass lens mold.

【0032】ついで、このP−BN板を同じ黒鉛型の間
にはさみ、全体を超高圧高温処理装置にセットして、圧
力6.5GPa、温度1980℃で30分間処理した。冷却、除圧し
て試料を回収したところ、成形型の成形面にほぼ一致す
る曲率を持ったcBN焼結体が得られた。cBN焼結体
の純度は99.9%、相対密度は理論密度3.45g/cm3 に等し
く、ほぼ100 %緻密化していた。
Next, this P-BN plate was sandwiched between the same graphite molds, and the whole was set in an ultrahigh-pressure high-temperature treatment apparatus and treated at a pressure of 6.5 GPa and a temperature of 1980 ° C. for 30 minutes. When the sample was cooled and depressurized to recover the sample, a cBN sintered body having a curvature substantially matching the molding surface of the molding die was obtained. The purity of the cBN sintered body was 99.9%, the relative density was equal to the theoretical density of 3.45 g / cm 3, and the density was almost 100%.

【0033】これを超硬合金製の土台にロウ付けし、実
施例1と同様にして、ダイヤモンド砥粒によって研磨加
工して表面粗さRmax=0.03μm に仕上げた。実施例1と
は異なり、この場合にはダイヤモンド砥石による研削が
ほとんど必要でなく、研磨加工のみで型の面に仕上げる
ことができたので製造コストが低減できた。実施例1と
同様にして、SF系ガラスの成形を行なったところ、75
000 ショット以上の繰り返しにも問題なく使用できた。
This was brazed to a base made of cemented carbide and polished in the same manner as in Example 1 with diamond abrasive grains to obtain a surface roughness Rmax = 0.03 μm. Unlike Example 1, grinding with a diamond grindstone was hardly necessary in this case, and the surface of the mold could be finished only by polishing, so the manufacturing cost could be reduced. When SF glass was molded in the same manner as in Example 1, it was 75
It was able to be used without problems even after repeating more than 000 shots.

【0034】[0034]

【発明の効果】本発明のガラスモールドレンズの成形型
は、従来のcBN焼結体からなる成形型よりもガラス付
着が少なくしかも長寿命であり、ガラスレンズの成形コ
ストを低減することができる。
The glass mold lens molding die of the present invention has less glass adhesion and a longer life than the conventional molding die made of cBN sintered body, and can reduce the glass lens molding cost.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱分解窒化ほう素を原料とする直接転換
法によって製造された、純度99.5%以上、相対密度99.9
%以上の立方晶窒化ほう素焼結体からなることを特徴と
するガラスモールドレンズの成形型。
1. A purity of 99.5% or more and a relative density of 99.9 produced by a direct conversion method using pyrolytic boron nitride as a raw material.
% Of a cubic boron nitride sintered body, a glass mold lens forming die.
JP29633491A 1991-10-16 1991-10-16 Mold for glass molded lens Pending JPH05105461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29633491A JPH05105461A (en) 1991-10-16 1991-10-16 Mold for glass molded lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29633491A JPH05105461A (en) 1991-10-16 1991-10-16 Mold for glass molded lens

Publications (1)

Publication Number Publication Date
JPH05105461A true JPH05105461A (en) 1993-04-27

Family

ID=17832199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29633491A Pending JPH05105461A (en) 1991-10-16 1991-10-16 Mold for glass molded lens

Country Status (1)

Country Link
JP (1) JPH05105461A (en)

Similar Documents

Publication Publication Date Title
US5152940A (en) Method of producing a light-transmitting spinel sintered body
US5718736A (en) Porous ultrafine grinder
WO2003055826A1 (en) Method for producing ceramic optical parts
JPS62274034A (en) Manufacturing method of polycrystalline diamond sintered body by reaction sintering
WO1991004231A1 (en) Ceramic mold for molding glass member
JPH05105461A (en) Mold for glass molded lens
JP2004026513A (en) Aluminum oxide wear resistant member and its production process
US20230119293A1 (en) Cubic Boron Nitride Particle Population with Highly-Etched Particle Surface and High Toughness Index
JP4061374B2 (en) Method for producing ultrafine particle cBN sintered body
JPS6213311B2 (en)
JPH09227140A (en) Mold for optical element molding
JPS63236757A (en) Polycrystal ceramic product and manufacture
JP2555810B2 (en) Mold for press-molding optical glass element and method for manufacturing the same
JPH01184033A (en) Production of cubic boron nitride
JPH0214881A (en) Surface deposited carbonaceous material
JP2672681B2 (en) Method for producing cubic boron nitride
JPH0524922A (en) Diamond-containing combined sintered compact with high hardness and high density and production of the same
JP2628668B2 (en) Cubic boron nitride sintered body
JP3696807B2 (en) Sliding member and manufacturing method thereof
JPH11255523A (en) Mold for forming glass mold and its production
JP2002201070A (en) Silicon carbide based sintered body and method for producing the same
JPH02164774A (en) Cubic boron nitride sintered body and production thereof
JPH0388730A (en) glass press mold
JP2000072453A (en) Forming mold for glass mold and its production
JPH05148021A (en) Composite sintered material containing coated diamond having high hardness and density and its production