JPH05109654A - Film formation treatment system - Google Patents
Film formation treatment systemInfo
- Publication number
- JPH05109654A JPH05109654A JP3296447A JP29644791A JPH05109654A JP H05109654 A JPH05109654 A JP H05109654A JP 3296447 A JP3296447 A JP 3296447A JP 29644791 A JP29644791 A JP 29644791A JP H05109654 A JPH05109654 A JP H05109654A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- temperature
- cooling
- reactive gas
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015572 biosynthetic process Effects 0.000 title abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 abstract description 18
- 239000003507 refrigerant Substances 0.000 abstract description 15
- 239000007795 chemical reaction product Substances 0.000 abstract description 9
- 239000000047 product Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 7
- 239000007789 gas Substances 0.000 description 65
- 239000010408 film Substances 0.000 description 34
- 235000012431 wafers Nutrition 0.000 description 26
- 238000002156 mixing Methods 0.000 description 16
- 239000000498 cooling water Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 12
- 239000010409 thin film Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000002826 coolant Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- -1 that is Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、成膜処理装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming apparatus.
【0002】[0002]
【従来の技術】一般に、半導体ウエハの表面に電極材料
や導電材料の薄膜を堆積する成膜技術として、薄膜を構
成する元素からなる1種またはそれ以上の化合物気体
(反応性ガス)をウエハ表面に供給し、ウエハ表面上で
化学反応させて所望の薄膜を形成する成膜処理装置(C
VD)が知られている。この成膜処理装置としては、主
としてSiO2 等の絶縁薄膜を形成するために多数のウ
エハを縦方向或いは横方向に狭い間隔でもって並べて成
膜処理するバッチ式の装置や、このバッチ式によっては
均一な成膜を得ることができないことから主として金属
膜を形成するため用いられる枚葉式の装置が知られてい
る。2. Description of the Related Art Generally, as a film forming technique for depositing a thin film of an electrode material or a conductive material on the surface of a semiconductor wafer, one or more compound gas (reactive gas) consisting of elements forming the thin film is applied to the wafer surface. And a chemical reaction on the surface of the wafer to form a desired thin film.
VD) is known. Examples of the film forming apparatus include a batch type apparatus for forming a large number of wafers in a vertical or horizontal direction at narrow intervals to form an insulating thin film such as SiO 2, and a batch type apparatus. A single-wafer type apparatus mainly used for forming a metal film is known because a uniform film formation cannot be obtained.
【0003】上記枚葉式の成膜処理装置は、例えば真空
雰囲気の容器内にウエハを搬入し、これを所定の温度
(約360℃〜700℃)まで加熱保持した状態で、ウ
エハの保持部と対向する部位から六フッ化タングステン
(WF6 )とシラン(SiH4)或いはジクロルシラン
(SiH2 CL2 )等の反応性ガスを所定の割合に混合
して真空容器内のウエハ表面に供給し、ウエハ表面での
化学反応によって所望の薄膜、例えばWSixを形成す
るものである。この場合、ウエハは各カセット内に収容
された複数枚(例えば25枚)を1単位として1枚ごと
に連続的に薄膜処理されている。In the above-mentioned single-wafer type film forming apparatus, for example, a wafer is carried into a container in a vacuum atmosphere and heated and held at a predetermined temperature (about 360.degree. C. to 700.degree. C.). Tungsten hexafluoride (WF 6 ) and a reactive gas such as silane (SiH 4 ) or dichlorosilane (SiH 2 CL 2 ) are mixed at a predetermined ratio from a portion facing to, and supplied to the wafer surface in the vacuum container. A desired thin film, for example, WSix is formed by a chemical reaction on the wafer surface. In this case, a plurality of wafers (for example, 25 wafers) housed in each cassette are set as one unit and the wafers are continuously subjected to thin film processing.
【0004】[0004]
【発明が解決しようとする課題】ところで、この種の従
来装置にあっては、ウエハの保持部の加熱源からの輻射
熱が反応性ガスの流通部に伝達されるために、この流通
部はシランと六フッ化タングステンの反応開始温度以上
の温度、すなわち50〜100℃程度に加熱されてしま
い、この結果、ガス流通部を構成する部材の表面に反応
性ガスの生成物(WSix)等が付着する場合があっ
た。更に、この生成物は、触媒作用があるので反応が促
進され、上記した温度よりも低い温度でも化学反応が生
ずるようになり、また、同じ温度ならば高いレートで成
膜が進むことになり、この結果、反応性ガスのウエハへ
の供給が不均一となって各ウエハの面内及び面間の膜厚
が不均一になるという改善点があった。By the way, in the conventional apparatus of this type, the radiant heat from the heating source of the holding portion of the wafer is transferred to the flow section of the reactive gas. Are heated to a temperature higher than the reaction initiation temperature of tungsten hexafluoride, that is, about 50 to 100 ° C., and as a result, products of reactive gas (WSix) and the like adhere to the surface of the member forming the gas flow portion. There was a case to do. Further, this product has a catalytic action, so that the reaction is promoted, a chemical reaction occurs even at a temperature lower than the above temperature, and at the same temperature, film formation proceeds at a high rate, As a result, there is an improvement in that the reactive gas is non-uniformly supplied to the wafer and the in-plane and inter-plane film thickness of each wafer is non-uniform.
【0005】また、ガス流通部に付着した膜が熱により
剥離して微細粒子、すなわちパーティクルとなって被処
理体に付着することもあり、製品歩留まりの低下をきた
すばかりか成膜処理の信頼性に欠けるという改善点もあ
った。本発明は、以上のような問題点に着目し、これを
有効に解決すべく創案されたものである。本発明の目的
は、ガス流通部を冷却することにより、この部分に反応
生成物が付着することを阻止することができる成膜処理
装置を提供することにある。Further, the film adhered to the gas flow portion may be peeled off by heat to become fine particles, that is, particles, and adhere to the object to be processed, which not only lowers the product yield but also increases the reliability of the film forming process. There was also an improvement point that it lacked. The present invention has been made to pay attention to the above problems and to solve them effectively. An object of the present invention is to provide a film forming apparatus capable of preventing a reaction product from adhering to this portion by cooling the gas circulation portion.
【0006】[0006]
【課題を解決するための手段】本発明は、上記問題点を
解決するために、真空容器内において被処理体を所定の
温度に加熱した状態で保持する被処理体保持手段と、前
記真空容器内に反応性ガスを供給するガス供給ノズルと
を有し、前記被処理体の表面に金属膜を形成する成膜処
理装置において、前記被処理体保持手段と前記ガス供給
ノズルとの間に前記反応性ガスの流れを制御するガス流
制御部を設け、前記ガス流制御部にこのガス流制御部を
前記反応性ガスの反応温度以下に冷却するための冷却手
段を設けるように構成したものである。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an object holding means for holding an object to be processed in a vacuum container while heating it to a predetermined temperature, and the vacuum container. A gas supply nozzle for supplying a reactive gas therein, and a film forming apparatus for forming a metal film on a surface of the object to be processed, wherein the object holding means and the gas supply nozzle are A gas flow control unit for controlling the flow of the reactive gas is provided, and the gas flow control unit is provided with a cooling means for cooling the gas flow control unit to a temperature not higher than the reaction temperature of the reactive gas. is there.
【0007】[0007]
【作用】本発明は、以上のように構成したので、ガス供
給ノズルから供給された反応性ガスは真空容器内を上昇
し、被処理体保持手段により保持された被処理体の表面
に反応生成物である金属膜を堆積させる。また、上記反
応性ガスの流れを制御するガス流制御部は、被処理体を
加熱する加熱源からの輻射熱により加熱される傾向にあ
るが、これには冷却手段を設けてあることから反応性ガ
スの反応温度以下に冷却される。従って、このガス流制
御部の表面に反応性ガスの生成物等により金属膜が付着
することを防止することができるので、被処理体に対し
て反応性ガスを適正な濃度及び混合割合で供給すること
ができ、従って、膜厚の均一な成膜処理を行うことがで
きる。Since the present invention is configured as described above, the reactive gas supplied from the gas supply nozzle rises in the vacuum container and is reactively generated on the surface of the object to be processed held by the object holding means. An object metal film is deposited. Further, the gas flow control unit that controls the flow of the reactive gas tends to be heated by the radiant heat from the heating source that heats the object to be processed. It is cooled below the reaction temperature of the gas. Therefore, it is possible to prevent the metal film from adhering to the surface of the gas flow control unit due to the products of the reactive gas, so that the reactive gas is supplied to the object to be processed at an appropriate concentration and mixing ratio. Therefore, it is possible to perform a film forming process with a uniform film thickness.
【0008】[0008]
【実施例】以下に、本発明に係る成膜処理装置の一実施
例を添付図面に基づいて詳述する。図1は本発明に係る
成膜処理装置を示す概略断面図、図2は図1に示す装置
のガス流制御部を示す概略断面斜視図である。図示する
ように、本実施例においては成膜処理装置により低圧下
でWSixよりなる金属膜を半導体ウエハ表面に成膜処
理する場合について説明する。この成膜処理装置2は、
被処理体である半導体ウエハ4を図示しないフィンガー
により保持するための被処理体保持手段である、グラフ
ァイト製のチャックプレート6を天井部に配置する円筒
体状の真空容器8と、この真空容器8の下部に連通する
反応性ガスの混合容器10とを有しており、これら各容
器は例えばアルミニウムにより構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the film forming apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic sectional view showing a film forming processing apparatus according to the present invention, and FIG. 2 is a schematic sectional perspective view showing a gas flow control unit of the apparatus shown in FIG. As shown in the figure, in this embodiment, a case where a metal film of WSix is formed on the surface of a semiconductor wafer by a film forming apparatus under a low pressure will be described. This film formation processing apparatus 2 is
A cylindrical vacuum container 8 in which a chuck plate 6 made of graphite, which is an object-to-be-processed holding means for holding a semiconductor wafer 4 as an object to be processed by fingers (not shown), is arranged in a ceiling portion, and the vacuum container 8 And a reaction gas mixing container 10 communicating with the lower part of the container. Each of these containers is made of, for example, aluminum.
【0009】この混合容器10内には、反応性ガス、例
えばWF6 、SiH4 を供給する環状のガス供給ノズル
12が配設され、また、上記真空容器8の天井部には同
心円周上の4箇所に排気口14が設けられている。これ
ら排気口14は図示しない吸引手段に接続されて、真空
容器8内及び混合容器10内が真空雰囲気に維持される
ようになっている。尚、真空容器8の側壁にはウエハ4
の搬入、搬出用の窓16が開設されており、この窓16
には閉塞時に真空容器8及び混合容器10内を真空雰囲
気に保持するゲートバルブ18が開閉可能に取付けられ
ている。また、この窓16には、ウエハの搬入、搬出時
に容器8、10内を真空状態に保持するための図示しな
いロードロック室がゲートバルブ18を介して接続され
ている。また、上記チャックプレート6の背面側すなわ
ち上方側には、大気と真空容器8とを遮断する石英ガラ
ス20がOリング22を介して取付けられており、この
石英ガラス20の上部に加熱用ランプ24が配設され
て、チャックプレート6が約360〜700℃に加熱さ
れるようになっている。尚、加熱用ランプ24に変えて
チャックプレート6内に加熱用ヒーターを埋設すること
も可能である。そして、上記石英ガラス20とチャック
プレート6との間の空間は、真空状態になされている。An annular gas supply nozzle 12 for supplying a reactive gas such as WF 6 or SiH 4 is arranged in the mixing container 10, and a concentric circle is provided on the ceiling of the vacuum container 8. Exhaust ports 14 are provided at four locations. These exhaust ports 14 are connected to a suction means (not shown) so that the vacuum container 8 and the mixing container 10 are maintained in a vacuum atmosphere. The wafer 4 is attached to the side wall of the vacuum container 8.
There is a window 16 for loading and unloading
A gate valve 18 that holds the vacuum container 8 and the mixing container 10 in a vacuum atmosphere when the valve is closed is openably and closably attached. In addition, a load lock chamber (not shown) for keeping the inside of the containers 8 and 10 in a vacuum state at the time of loading and unloading the wafer is connected to the window 16 via a gate valve 18. Further, on the back side, that is, on the upper side of the chuck plate 6, a quartz glass 20 that shuts off the atmosphere and the vacuum vessel 8 is attached via an O-ring 22, and a heating lamp 24 is placed on the quartz glass 20. Is arranged so that the chuck plate 6 is heated to about 360 to 700 ° C. It is also possible to embed a heating heater in the chuck plate 6 instead of the heating lamp 24. The space between the quartz glass 20 and the chuck plate 6 is in a vacuum state.
【0010】一方、真空容器8と混合容器10との間の
ガス流通部には、反応性ガスの流れを制御するガス流制
御部26が形成されている。このガス流制御部26は、
連通口28の上部に立設する環状の整流筒体30と、こ
の整流筒体30の下部側から整流筒体30の内方側に向
って突出する突壁32と、整流筒体30内に隙間L1を
おいて上下方向へ移動可能に配設されると共に突壁32
との隙間L2を可変にして反応性ガスの流れを制御する
整流体34とで構成されている。この場合、整流筒体3
0及び整流体34は熱伝導性の良好な材質、例えばアル
ミニウム合金にて形成されている。On the other hand, a gas flow control section 26 for controlling the flow of the reactive gas is formed in the gas flow section between the vacuum container 8 and the mixing container 10. The gas flow control unit 26 is
Inside the rectifying cylinder 30, an annular rectifying cylinder 30 standing upright on the communication port 28, a projecting wall 32 protruding from the lower side of the rectifying cylinder 30 toward the inner side of the rectifying cylinder 30, and the inside of the rectifying cylinder 30. The protrusion wall 32 is disposed so as to be movable in the vertical direction with a gap L1.
And a rectifying body 34 that controls the flow of the reactive gas by varying the gap L2 between In this case, the straightening cylinder 3
0 and the rectifying body 34 are formed of a material having good thermal conductivity, for example, an aluminum alloy.
【0011】そして、整流筒体30には、上端面及び内
側面に近接した位置に本発明の特長とする冷却手段とし
ての環状の冷媒供給室36が形成されており、この冷媒
供給室36には、例えば蛇腹状のステンレス管よりなる
フレキシブルな冷媒供給管38が接続されると共に、こ
の供給管38の端部には、真空容器壁を貫通させて設け
られている。この供給管38は、更に途中に開閉弁40
を介した冷媒通路42に接続されると共にこの冷媒通路
42には冷媒供給源であるポンプ44及び冷媒収容タン
ク46が接続されている。本実施例においては、上記整
流筒体30を−5℃以下に冷却することから、冷媒とし
て例えばエチレングリコールを用いる。また、上記冷媒
供給室36には冷媒供給管38に並設させて冷媒排出管
39が接続されており、冷媒であるエチレングリコール
を循環使用し得るようになっている。また、上記整流体
34の頭部には、整流体頭部の上端面及び外側面に近接
させて水冷室50が形成されている。この水冷室50
は、冷却水供給管52及び開閉弁54を介して冷却水供
給源であるポンプ56及び冷却水収容タンク58と接続
されている。また、上記水冷室50には排水管60が接
続されて、冷却水が循環供給されるようになっている。
尚、上記整流体34のプランジャ部36aと混合容器1
0との間にはOリング62が介在されて気密性が維持さ
れている。An annular refrigerant supply chamber 36 as a cooling means, which is a feature of the present invention, is formed in the rectifying cylinder 30 at a position close to the upper end surface and the inner side surface. Is connected to a flexible coolant supply pipe 38 made of, for example, a bellows-shaped stainless pipe, and the end of the supply pipe 38 is provided so as to penetrate the vacuum container wall. This supply pipe 38 is provided with an on-off valve 40 on the way.
A coolant supply source such as a pump 44 and a coolant storage tank 46 are connected to the coolant passage 42 through the. In the present embodiment, since the rectifying cylinder 30 is cooled to −5 ° C. or lower, ethylene glycol is used as the refrigerant. In addition, a refrigerant discharge pipe 39 is connected to the refrigerant supply chamber 36 in parallel with the refrigerant supply pipe 38 so that ethylene glycol, which is a refrigerant, can be circulated and used. Further, a water cooling chamber 50 is formed on the head of the rectifying body 34 so as to be close to the upper end surface and the outer side surface of the rectifying body head. This water cooling room 50
Is connected via a cooling water supply pipe 52 and an on-off valve 54 to a pump 56, which is a cooling water supply source, and a cooling water storage tank 58. A drain pipe 60 is connected to the water cooling chamber 50 so that cooling water is circulated and supplied.
The plunger portion 36a of the rectifying body 34 and the mixing container 1
An O-ring 62 is interposed between 0 and 0 to maintain airtightness.
【0012】また、ガス供給ノズル12は、例えばステ
ンレス鋼製の環状基体64の同心円上に設けられた2つ
の環状室64a、64bの上面45°の位置にそれぞれ
複数の噴口(図示せず)を適宜間隔をおいて穿設した構
造となっており、また、両環状室64a、64bの間に
は環状の水冷室68が形成されている。この水冷室68
に接続される冷却水供給管70に開閉弁72を介してポ
ンプ56及び冷却水収容タンク58が接続されており、
タンク58内の冷却水がポンプ56の駆動によって冷却
水供給管70から水冷室68内に循環供給され、ガス供
給ノズル12が加熱用ランプ24からの輻射熱によって
過剰に加熱されるのを防止し得るようになっている。
尚、各環状室64a、64bにはそれぞれ管路74、7
6が接続されており、この管路74、76にそれぞれ図
示しないWF6 ガスボンベ又はふSiH4 ガスボンベが
接続されて、WF6ガスとSiH4 ガスとが所定の割合
で混合室4内に供給され、混合容器10内で混合された
後、真空容器8内に供給されるようになっている。尚、
真空容器8および混合容器10はそれぞれ耐蝕性及び伝
熱性の良好な材質例えばアルミニウム合金等にて形成さ
れており、その任意の箇所には環状の水冷室80が形成
されて、薄膜処理時に真空容器8及び混合容器10が高
温になるのを防止している。Further, the gas supply nozzle 12 has a plurality of injection ports (not shown) at the upper surface 45 ° positions of the two annular chambers 64a and 64b provided concentrically on the annular base body 64 made of, for example, stainless steel. It has a structure in which holes are provided at appropriate intervals, and an annular water cooling chamber 68 is formed between both annular chambers 64a and 64b. This water cooling room 68
The pump 56 and the cooling water storage tank 58 are connected to the cooling water supply pipe 70 connected to the
The cooling water in the tank 58 is circulated and supplied from the cooling water supply pipe 70 into the water cooling chamber 68 by driving the pump 56, and it is possible to prevent the gas supply nozzle 12 from being excessively heated by the radiant heat from the heating lamp 24. It is like this.
In addition, in the annular chambers 64a and 64b, the conduits 74 and 7 are respectively provided.
6 is connected, and a WF 6 gas cylinder or a SiH 4 gas cylinder (not shown) is connected to the pipes 74 and 76, respectively, and WF 6 gas and SiH 4 gas are supplied into the mixing chamber 4 at a predetermined ratio. After being mixed in the mixing container 10, it is supplied into the vacuum container 8. still,
Each of the vacuum container 8 and the mixing container 10 is formed of a material having good corrosion resistance and heat conductivity, such as an aluminum alloy, and an annular water cooling chamber 80 is formed at an arbitrary position of the vacuum container 8 and the vacuum container during thin film processing. 8 and the mixing container 10 are prevented from reaching a high temperature.
【0013】次に、以上のように構成された本実施例の
動作について説明する。まず、真空容器8および混合容
器10内の真空引きを行い、真空雰囲気が確認された
後、真空容器8内にWF6 ガス及びSiH4 ガスを供給
(以下に空デポという)して、チャックプレート6の表
面に薄膜処理によって生じる生成物の膜を付着させる。
そして、始動スイッチをONにして、ウエハ4が搬入さ
れていない状態で真空容器8内にWF6 ガス及びSiH
4 ガスを空デポする。この処理前空デポにより真空容器
8内が薄膜処理雰囲気と同等の状態となる。この状態の
時ウエハ4は窓16を介してロードロック室から真空容
器8に搬入され、そして、ウエハ4はチャックプレート
6で保持されて、加熱用ランプ24からの加熱によって
所定温度に加熱される。Next, the operation of this embodiment configured as described above will be described. First, after vacuuming the inside of the vacuum container 8 and the mixing container 10 and confirming the vacuum atmosphere, WF 6 gas and SiH 4 gas are supplied into the vacuum container 8 (hereinafter referred to as an empty depot), and the chuck plate A film of the product produced by the thin film treatment is attached to the surface of 6.
Then, the start switch is turned on, and WF 6 gas and SiH are put into the vacuum container 8 in a state where the wafer 4 is not loaded.
4 Empty the gas. Due to this pre-treatment empty deposition, the inside of the vacuum container 8 is brought into a state equivalent to the thin film processing atmosphere. In this state, the wafer 4 is loaded into the vacuum container 8 from the load lock chamber through the window 16, and the wafer 4 is held by the chuck plate 6 and heated to a predetermined temperature by heating from the heating lamp 24. ..
【0014】この状態でWF6 ガス及びSiH4 ガスが
混合容器10内に供給されて混合された後、ガス流制御
部26を通って真空容器8内に流入されるとウエハ4の
表面で化学反応が生じ、この化学反応によってウエハ表
面に所望の薄膜、すなわちWSixの金属膜が形成され
るのである。この時、反応条件としては、グラファイト
よりなるチャックプレート6を約360℃に加熱するこ
とによりウエハ温度を約310℃に維持し、真空容器8
内の圧力を約200mTorrに維持する。また、Si
H4 の流量を約300SCCMに設定すると共に、WF
6 の流量を2SCCMに設定し、所定時間、例えば約2
50秒間、成膜処理を行う。成膜時において、混合容器
10で混合された反応性ガスが真空容器8内に流入して
ウエハ4に接触する際、このガス流はガス流制御部26
の整流筒体30に案内されて上昇するので均一にウエハ
4に接触することになる。そして、この成膜処理時に
は、冷却水収容タンク58内の冷却水を冷却水供給管5
2、70等を介して整流体34及びガス供給ノズル12
等の水冷室50、68、80に循環させてこれらを所定
の温度、例えば15〜20℃の範囲の温度に冷却してお
り、これらの部材に反応生成物が付着することを阻止し
ている。In this state, the WF 6 gas and the SiH 4 gas are supplied into the mixing container 10 and mixed, and then flown into the vacuum container 8 through the gas flow controller 26. A reaction occurs, and a desired thin film, that is, a metal film of WSix is formed on the wafer surface by this chemical reaction. At this time, as a reaction condition, the chuck plate 6 made of graphite is heated to about 360 ° C. to maintain the wafer temperature at about 310 ° C.
The pressure inside is maintained at about 200 mTorr. Also, Si
The flow rate of H 4 is set to about 300 SCCM and WF
Set the flow rate of 6 to 2 SCCM and set it for a predetermined time, for example about 2
A film forming process is performed for 50 seconds. During film formation, when the reactive gas mixed in the mixing container 10 flows into the vacuum container 8 and contacts the wafer 4, this gas flow is generated by the gas flow control unit 26.
Since it is guided by the straightening cylinder body 30 and rises, it uniformly contacts the wafer 4. Then, during this film forming process, the cooling water in the cooling water storage tank 58 is cooled by the cooling water supply pipe 5.
Rectifier 34 and gas supply nozzle 12 via 2, 70, etc.
And the like are circulated in water cooling chambers 50, 68, 80 to cool them to a predetermined temperature, for example, a temperature in the range of 15 to 20 ° C., to prevent reaction products from adhering to these members. ..
【0015】また同時に、チャックプレート6との間の
距離が30〜40mmと非常に小さくて最も加熱される
傾向にあるガス流制御部26の整流筒体30の冷媒供給
室36には、冷却水ではなく別個に設けた冷媒収容タン
ク46から冷媒供給管38を介して冷却水よりも強力な
冷媒であるエチレングリコールを供給し、この整流筒体
30を−5℃以下、好ましくは後述するごとく−20℃
以下に冷却する。このため、この部分に反応性ガスが接
触しても、これらのガスの反応開始温度、例えば50℃
よりも低い温度に整流筒体30が冷却されているので局
部的に反応が抑制され、この整流筒体30にSiH4 と
WF6 との反応生成物が付着することが阻止される。こ
の場合、整流筒体30のみならず整流体34にもエチレ
ングリコールを流してこれを−20℃程の低温に冷却す
れば、全体としての反応生成物の付着が一層抑制され
る。At the same time, the distance between the chuck plate 6 and the chuck plate 6 is as small as 30 to 40 mm, and the coolant supply chamber 36 of the rectifying cylinder 30 of the gas flow control unit 26, which tends to be heated most, contains cooling water. Instead of separately supplying the ethylene glycol, which is a stronger refrigerant than the cooling water, from the separately-provided refrigerant storage tank 46 through the refrigerant supply pipe 38, the rectifying cylinder 30 is -5 ° C or less, preferably as described later- 20 ° C
Cool to: Therefore, even if the reactive gas comes into contact with this portion, the reaction initiation temperature of these gases, for example, 50 ° C.
Since the rectifying cylinder 30 is cooled to a lower temperature, the reaction is locally suppressed, and the reaction product of SiH 4 and WF 6 is prevented from adhering to the rectifying cylinder 30. In this case, if ethylene glycol is caused to flow not only in the rectifying cylinder 30 but also in the rectifying body 34 and cooled to a low temperature of about -20 ° C, the adhesion of reaction products as a whole is further suppressed.
【0016】また、反応生成物の付着が抑制されること
から、付着した生成物の剥離に伴うパーティクルの発生
も抑制される結果となる。下記表1は上記した反応条件
のもとに整流筒体30の冷却温度を適宜変更してそれぞ
れ50枚のウエハを成膜処理した結果得られたパーティ
クル数、面内、面間均一性を示す。Further, since the adhesion of the reaction product is suppressed, the generation of particles accompanying the peeling of the adhered product is also suppressed. Table 1 below shows the number of particles, in-plane and inter-plane uniformity obtained as a result of film-forming processing of 50 wafers by appropriately changing the cooling temperature of the rectifying cylinder 30 under the above reaction conditions. ..
【0017】[0017]
【表1】 [Table 1]
【0018】この表1から明らかなように、整流筒体3
0の温度を+20℃から−20℃まで順次下げるに従っ
て、パーティクル数、膜厚の面内均一性、面間均一性が
向上して行くことが判明する。特に、冷却温度を−5℃
に設定するとパーティクル数は格段に減少し、冷却温度
−20℃においては標準的規定であるパーティクル数5
0を大きく下回ってパーティクル数10となり、最良の
結果を示している。このように、本実施例においてはガ
ス流制御部26の整流筒体30を反応ガスの反応温度以
下に冷却するようにしたので、この部分に反応生成物が
付着することがなく、従って、反応生成物の剥離に伴う
パーティクルの発生も抑制することができる。As is clear from Table 1, the straightening cylinder 3
It is found that the in-plane uniformity of the number of particles, the film thickness, and the in-plane uniformity are improved as the temperature of 0 is sequentially decreased from + 20 ° C to -20 ° C. Especially, the cooling temperature is -5 ℃
When set to, the number of particles is significantly reduced, and the standard number of particles is 5 at a cooling temperature of -20 ° C.
The number of particles is 10 which is far below 0, showing the best result. As described above, in the present embodiment, the rectifying cylinder 30 of the gas flow control unit 26 is cooled to the reaction temperature of the reaction gas or less, so that the reaction product does not adhere to this portion, and therefore the reaction Generation of particles due to peeling of the product can also be suppressed.
【0019】また、真空容器8や混合容器10の外壁等
は、通常の冷却水により冷却して過度に冷却しないよう
にしているので、この外壁等に結露が生ずることがな
く、従って、この下方に位置する図示しない電子機器等
に結露が滴下することがなく、電子機器のショート等の
問題が生ずることがない。また、上記実施例において
は、整流筒体30を冷却する冷媒としてエチレングリコ
ールを用いたが、これに限定されず、他の冷媒を用いて
もよい。また、上記実施例において、冷媒供給室36
は、この冷却効果を高めるために整流筒 体30の上端
面及び内側面に近接する部位に環状に形成するのが良
く、また、整流体34に冷媒供給室を形成する場合に
は、整流体34の上端面及び外側面に近接する部位にこ
れを設けるのが良い。Further, since the outer walls of the vacuum container 8 and the mixing container 10 are cooled by ordinary cooling water to prevent excessive cooling, dew condensation does not occur on the outer walls and the like. Condensation does not drip on an electronic device or the like (not shown) located in the position, and a problem such as a short circuit of the electronic device does not occur. Further, in the above embodiment, ethylene glycol was used as the cooling medium for cooling the rectifying cylinder 30, but the invention is not limited to this, and other cooling medium may be used. Further, in the above embodiment, the refrigerant supply chamber 36
In order to enhance this cooling effect, it is preferable to form an annular shape at a portion close to the upper end surface and the inner side surface of the rectifying cylinder 30, and when forming a refrigerant supply chamber in the rectifying body 34, It is preferable to provide this at a portion close to the upper end surface and the outer side surface of 34.
【0020】更に、上記実施例では突壁32を整流筒体
30の下部に設けた場合について説明したが、これに限
定されず、例えば整流筒体30の内周面に突壁を突設し
てもよく、或いは整流体34の外周面に突壁を設けるよ
うにしても良い。また更に、本実施例においては整流筒
体30を断面矩形状に整形したが、これに限定されず、
この整流筒体30に例えば図3に示すように上方に向け
てその横幅が順次小さくなるように断面三角形状にテー
パを形成してもよい。この場合、この整流筒体30の断
面形状に対応させて冷媒供給室36の断面形状も三角形
状に設定するように構成することにより、この整流筒体
30の上方に位置する加熱源であるチャックプレート6
に対する整流筒体の投影面積は同じでもプレートに対す
る筒体テーパ面の距離が遠くなるのでこの部分の加熱温
度が先の実施例の場合よりも低くなり、その結果、整流
筒体30の冷却効率を高めることができる。Further, in the above embodiment, the case where the projecting wall 32 is provided at the lower portion of the flow straightening cylinder 30 has been described, but the present invention is not limited to this, and the projecting wall is projected on the inner peripheral surface of the flow straightening cylinder 30, for example. Alternatively, a projecting wall may be provided on the outer peripheral surface of the rectifying body 34. Furthermore, in the present embodiment, the rectifying cylinder 30 is shaped to have a rectangular cross section, but is not limited to this.
For example, as shown in FIG. 3, the rectifying cylinder 30 may be tapered to have a triangular cross section so that its lateral width is gradually reduced upward. In this case, by setting the cross-sectional shape of the refrigerant supply chamber 36 to have a triangular shape corresponding to the cross-sectional shape of the flow straightening cylinder 30, a chuck serving as a heating source located above the flow straightening cylinder 30 is configured. Plate 6
Even though the projected area of the straightening cylinder is the same, the distance of the tapered surface of the cylinder to the plate becomes longer, so the heating temperature of this portion becomes lower than that in the previous embodiment, and as a result, the cooling efficiency of the straightening cylinder 30 is improved. Can be increased.
【0021】また、上記実施例にあっては反応性ガスと
してSiH4 とWF6 を用いた場合について説明した
が、これに限定されず、他の反応性ガスを用いて金属膜
を堆積する場合にも適用することができるのは勿論であ
り、その場合には、反応性ガスに対応させて整流筒体の
冷却温度を適宜選択する。Further, although the case where SiH 4 and WF 6 are used as the reactive gas has been described in the above embodiment, the present invention is not limited to this, and the case where a metal film is deposited using another reactive gas. Needless to say, the present invention can also be applied to such a case, and in that case, the cooling temperature of the flow straightening cylinder is appropriately selected according to the reactive gas.
【0022】[0022]
【発明の効果】以上説明したように、本発明によれば次
のような優れた作用効果を発揮することができる。ガス
流制御部が反応性ガスの反応温度以上に加熱されるのを
防止することができるので、この部分に反応生成物であ
る金属膜が付着することを防止できる。従って、反応生
成物の剥離に伴うパーティクルの発生も抑制でき、製品
の歩留まりを向上させることができる。また、上記した
理由で反応性ガスが上昇途中にて消費されるのを防止す
ることができるので、反応性ガスを被処理体の面内に均
一に供給することができ、成膜の面間及び面内均一性を
向上させることができる。As described above, according to the present invention, the following excellent operational effects can be exhibited. Since it is possible to prevent the gas flow control unit from being heated above the reaction temperature of the reactive gas, it is possible to prevent the metal film as a reaction product from adhering to this portion. Therefore, it is possible to suppress the generation of particles due to peeling of the reaction product, and it is possible to improve the yield of products. Further, for the reason described above, it is possible to prevent the reactive gas from being consumed while rising, so that the reactive gas can be uniformly supplied within the surface of the object to be processed, and the surface of the film formation can be reduced. And the in-plane uniformity can be improved.
【図1】本発明に係る成膜処理装置を示す概略断面図で
る。FIG. 1 is a schematic cross-sectional view showing a film forming processing apparatus according to the present invention.
【図2】図1に示す成膜処理のガス流制御部を示す。FIG. 2 shows a gas flow controller of the film forming process shown in FIG.
【図3】本発明の他の実施例のガス流制御部を示す断面
図である。FIG. 3 is a sectional view showing a gas flow controller according to another embodiment of the present invention.
2 成膜処理装置 4 半導体ウエハ(被処理体) 6 チャックプレート(被処理体保持手段) 8 真空容器 10 混合容器 12 ガス供給ノズル 24 加熱用ランプ 26 ガス流制御部 30 整流筒体 34 整流体 36 冷媒供給室(冷却手段) 46 冷媒収容タンク 50、68、80 水令室 58 冷却水収容タンク 2 Film Forming Processing Device 4 Semiconductor Wafer (Processing Object) 6 Chuck Plate (Processing Object Holding Means) 8 Vacuum Container 10 Mixing Container 12 Gas Supply Nozzle 24 Heating Lamp 26 Gas Flow Control Section 30 Rectifying Cylindrical Body 34 Rectifying Body 36 Refrigerant supply chamber (cooling means) 46 Refrigerant storage tank 50, 68, 80 Water storage chamber 58 Cooling water storage tank
Claims (2)
度に加熱した状態で保持する被処理体保持手段と、前記
真空容器内に反応性ガスを供給するガス供給ノズルとを
有し、前記被処理体の表面に金属膜を形成する成膜処理
装置において、前記被処理体保持手段と前記ガス供給ノ
ズルとの間に前記反応性ガスの流れを制御するガス流制
御部を設け、前記ガス流制御部にこのガス流制御部を前
記反応性ガスの反応温度以下に冷却するための冷却手段
を設けるように構成したことを特徴とする成膜処理装
置。1. An object-to-be-processed holding means for holding an object to be processed in a vacuum container in a state of being heated to a predetermined temperature, and a gas supply nozzle for supplying a reactive gas into the vacuum container, In a film forming apparatus for forming a metal film on a surface of an object to be processed, a gas flow control unit for controlling a flow of the reactive gas is provided between the object-to-be-processed holding means and the gas supply nozzle. A film forming apparatus characterized in that the flow control unit is provided with a cooling means for cooling the gas flow control unit to a temperature not higher than the reaction temperature of the reactive gas.
SiH4 とWF6 を用いてWSixの金属膜を形成する
場合には、前記ガス流制御部を−5℃以下に冷却するよ
うに構成したことを特徴とする請求項1記載の成膜処理
装置。2. The cooling means is configured to cool the gas flow control unit to −5 ° C. or lower when a metal film of WSix is formed using SiH 4 and WF 6 as the reactive gas. The film forming apparatus according to claim 1, wherein
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3296447A JPH05109654A (en) | 1991-10-16 | 1991-10-16 | Film formation treatment system |
| KR1019920019084A KR100263202B1 (en) | 1991-10-16 | 1992-10-16 | Method and apparatus for forming films processing |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3296447A JPH05109654A (en) | 1991-10-16 | 1991-10-16 | Film formation treatment system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05109654A true JPH05109654A (en) | 1993-04-30 |
Family
ID=17833665
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3296447A Pending JPH05109654A (en) | 1991-10-16 | 1991-10-16 | Film formation treatment system |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JPH05109654A (en) |
| KR (1) | KR100263202B1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999044220A1 (en) * | 1998-02-25 | 1999-09-02 | Applied Materials, Inc. | Cooling system with antifreeze for cooling magnetron for process chamber of processing system |
| US6448181B2 (en) | 2000-01-13 | 2002-09-10 | Tokyo Electron Limited | Method for forming film |
| JP2008543037A (en) * | 2005-05-25 | 2008-11-27 | エルピーイー ソシエタ ペル アチオニ | Device for introducing a reaction gas into a reaction chamber, and epitaxial reactor using the device |
| JP2011148659A (en) * | 2010-01-22 | 2011-08-04 | Hitachi Zosen Corp | Cvd apparatus for forming carbon nanotube |
| JP2011148658A (en) * | 2010-01-22 | 2011-08-04 | Hitachi Zosen Corp | Thermal cvd apparatus |
| JP2013032248A (en) * | 2011-08-03 | 2013-02-14 | Hitachi Zosen Corp | Cvd apparatus for carbon nanotube formation |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6016757U (en) * | 1983-07-12 | 1985-02-04 | 日本電気株式会社 | Chemical vapor deposition equipment |
| JPH0582450A (en) * | 1991-09-20 | 1993-04-02 | Fujitsu Ltd | Vapor phase reaction equipment for manufacturing semiconductor device |
-
1991
- 1991-10-16 JP JP3296447A patent/JPH05109654A/en active Pending
-
1992
- 1992-10-16 KR KR1019920019084A patent/KR100263202B1/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6016757U (en) * | 1983-07-12 | 1985-02-04 | 日本電気株式会社 | Chemical vapor deposition equipment |
| JPH0582450A (en) * | 1991-09-20 | 1993-04-02 | Fujitsu Ltd | Vapor phase reaction equipment for manufacturing semiconductor device |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999044220A1 (en) * | 1998-02-25 | 1999-09-02 | Applied Materials, Inc. | Cooling system with antifreeze for cooling magnetron for process chamber of processing system |
| US6448181B2 (en) | 2000-01-13 | 2002-09-10 | Tokyo Electron Limited | Method for forming film |
| JP2008543037A (en) * | 2005-05-25 | 2008-11-27 | エルピーイー ソシエタ ペル アチオニ | Device for introducing a reaction gas into a reaction chamber, and epitaxial reactor using the device |
| JP2011148659A (en) * | 2010-01-22 | 2011-08-04 | Hitachi Zosen Corp | Cvd apparatus for forming carbon nanotube |
| JP2011148658A (en) * | 2010-01-22 | 2011-08-04 | Hitachi Zosen Corp | Thermal cvd apparatus |
| JP2013032248A (en) * | 2011-08-03 | 2013-02-14 | Hitachi Zosen Corp | Cvd apparatus for carbon nanotube formation |
Also Published As
| Publication number | Publication date |
|---|---|
| KR100263202B1 (en) | 2000-09-01 |
| KR930008956A (en) | 1993-05-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100319494B1 (en) | Apparatus for Deposition of thin films on wafers through atomic layer epitaxial process | |
| KR100915252B1 (en) | Shower head structure and cleaning method thereof | |
| US5348587A (en) | Apparatus for elimination of low temperature ammonia salts in TiCl4 NH3 CVD reaction | |
| US4709655A (en) | Chemical vapor deposition apparatus | |
| US6143128A (en) | Apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof | |
| KR100715054B1 (en) | Vacuum processing apparatus | |
| US9518322B2 (en) | Film formation apparatus and film formation method | |
| JP2006229085A (en) | Plasma treatment equipment, thermal treatment equipment, treatment system, pretreatment equipment and storage medium | |
| KR20070087196A (en) | In-situ chamber cleaning method to remove byproduct deposition from chemical vapor etching chamber | |
| US6365495B2 (en) | Method for performing metallo-organic chemical vapor deposition of titanium nitride at reduced temperature | |
| JP2002155364A (en) | Shower head structure, device and method for film formation, and method for cleaning | |
| JP3258885B2 (en) | Film processing equipment | |
| JP2008525999A (en) | In-situ chamber cleaning process to remove byproduct deposits from chemical vapor deposition etch chambers | |
| JP4038599B2 (en) | Cleaning method | |
| JPH05109654A (en) | Film formation treatment system | |
| JPH1041251A (en) | Device and method for cvd | |
| JPH10223538A (en) | Vertical heat-treating apparatus | |
| JP3738494B2 (en) | Single wafer heat treatment equipment | |
| JP4157718B2 (en) | Silicon nitride film manufacturing method and silicon nitride film manufacturing apparatus | |
| JPH09143691A (en) | Film forming and heat treating device | |
| JP4329171B2 (en) | Film forming method and film forming apparatus | |
| JPH04350170A (en) | Film forming device | |
| JPH10223620A (en) | Semiconductor manufacturing equipment | |
| JPH04349196A (en) | Apparatus for film forming treatment | |
| JPH04350169A (en) | Film forming device |