JPH05114582A - Vacuum processor - Google Patents
Vacuum processorInfo
- Publication number
- JPH05114582A JPH05114582A JP3302486A JP30248691A JPH05114582A JP H05114582 A JPH05114582 A JP H05114582A JP 3302486 A JP3302486 A JP 3302486A JP 30248691 A JP30248691 A JP 30248691A JP H05114582 A JPH05114582 A JP H05114582A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum chamber
- vacuum
- load lock
- oxide film
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007789 sealing Methods 0.000 claims description 11
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000009489 vacuum treatment Methods 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 abstract description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 29
- 238000011109 contamination Methods 0.000 abstract description 9
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 9
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 description 23
- 239000000463 material Substances 0.000 description 12
- 238000007743 anodising Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 4
- 239000000110 cooling liquid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000003028 elevating effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- -1 but in this case Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば半導体ウエハを
真空処理するための真空処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum processing apparatus for vacuum processing a semiconductor wafer, for example.
【0002】[0002]
【従来の技術】半導体ウエハの処理工程において、粒子
レベルあるいは原子、分子レベルの汚染物質がウエハ内
に混入することを避けることは重要な課題の一つであ
り、このためエッチングなどの真空処理を行う装置にお
いても、搬送系、ガス供給系、または構成部品の材質と
いった種々の面から対策が講じられている。例えばエッ
チング装置では、通常真空室の内壁面にアルマイト処理
が施されていて酸化皮膜(酸化アルミニウム皮膜)が形
成されており、高周波電界を形成するための電極の表面
についてもアルミニウムを用いた場合にはアルマイト処
理が施されている。また真空室の搬入側、搬出側にロー
ドロック室(予備真空室)が設置される場合には、ロー
ドロック室の内壁面についても同様な処理が施されてい
る。2. Description of the Related Art In the process of processing semiconductor wafers, it is one of the important problems to avoid contamination of contaminants at the particle level, atomic level, or molecular level into the wafer. Therefore, vacuum processing such as etching is required. Even in the apparatus to be used, countermeasures are taken from various aspects such as a transport system, a gas supply system, or materials of components. For example, in an etching apparatus, the inner wall surface of a vacuum chamber is usually anodized to form an oxide film (aluminum oxide film). When aluminum is also used for the surface of the electrode for forming a high-frequency electric field, Is anodized. Further, when the load lock chamber (preliminary vacuum chamber) is installed on the carry-in side and the carry-out side of the vacuum chamber, the same processing is performed on the inner wall surface of the load lock chamber.
【0003】このようなアルマイト処理を行う方法とし
ては、真空室やロードロック室の組み立て部材としてア
ルミニウム材を用い、このアルミニウム材に対して陽極
酸化処理を行って表面に酸化皮膜を形成する方法が一般
的に採用されている。陽極酸化処理によれば、メッキ処
理や塗装処理などに比べて酸化皮膜をアルミニウム材表
面に一体的に強固に形成されるため最も有効な方法であ
り、そしてこの酸化皮膜は化学的に不活性な不動態物質
であるため、高真空度の状態下において、またプラズマ
の照射に対してもアルミニウム材の表面からの金属粒子
の飛散が抑えられ、ウエハの重金属汚染防止を図る上で
有効である。As a method for performing such alumite treatment, there is a method in which an aluminum material is used as an assembly member of a vacuum chamber or a load lock chamber, and this aluminum material is anodized to form an oxide film on the surface. Generally adopted. Anodizing is the most effective method because it forms a solid and strong oxide film on the surface of aluminum material compared to plating and painting, and this oxide film is chemically inert. Since it is a passive substance, scattering of metal particles from the surface of the aluminum material can be suppressed even under a high vacuum state and even when plasma is irradiated, and it is effective in preventing heavy metal contamination of the wafer.
【0004】[0004]
【発明が解決しようとする課題】ところで陽極酸化処理
によって形成された酸化皮膜は多孔性であり、このため
孔のあいている部分では、酸化皮膜の膜厚が薄くなって
いるので、真空室の内壁面などが高真空状態やプラズマ
にさらされたときに下地のアルミニウム材からアルミニ
ウムや合金成分が飛散してウエハ内に混入するおそれが
ある。この場合アルミニウム材の表面に一応アルマイト
処理がされているため、アルミニウムや合金成分が飛散
したとしてもその飛散量は僅かであると考えられるが、
今後半導体デバイスの集積度が増々高められていく傾向
にあることから、重金属汚染量の許容範囲も狭められ、
従って従来の真空処理装置では、真空室内壁面などから
の重金属の飛散にもとずいて歩留まりの低下が起こるお
それがある。By the way, since the oxide film formed by the anodizing treatment is porous, the film thickness of the oxide film is thin at the portion where the holes are formed. When the inner wall surface or the like is exposed to a high vacuum state or plasma, aluminum or alloy components may scatter from the underlying aluminum material and mix into the wafer. In this case, since the surface of the aluminum material has been anodized for a while, even if aluminum or alloy components are scattered, the amount of scattering is thought to be small,
As the degree of integration of semiconductor devices tends to increase in the future, the allowable range of heavy metal contamination will be narrowed,
Therefore, in the conventional vacuum processing apparatus, the yield may decrease due to the scattering of heavy metals from the inner wall surface of the vacuum chamber.
【0005】本発明はこのような事情のもとになされた
ものであり、その目的は、真空室やロードロック室の内
壁面からの金属粒子の飛散にもとずくウエハの重金属汚
染を防止することにある。The present invention has been made under such circumstances, and an object thereof is to prevent heavy metal contamination of a wafer due to scattering of metal particles from the inner wall surface of a vacuum chamber or a load lock chamber. Especially.
【0006】[0006]
【課題を解決するための手段】請求項1の発明は、アル
ミニウムの酸化皮膜が内壁面に形成された真空室を備
え、この真空室内にて被処理体に対して真空処理を行う
装置において、前記真空室の内壁面は、高温の水分に接
触することにより封孔処理されていることを特徴とす
る。According to a first aspect of the present invention, there is provided an apparatus including a vacuum chamber in which an aluminum oxide film is formed on an inner wall surface, and a vacuum processing is performed on an object to be processed in the vacuum chamber. It is characterized in that the inner wall surface of the vacuum chamber is subjected to a sealing treatment by coming into contact with high temperature water.
【0007】請求項2の発明は、被処理体に対して真空
処理を行うための真空室と、この真空室に接続されたロ
−ドロック室とを備えた真空処理装置において、前記ロ
ードロック室の内壁面は、アルミニウムの酸化皮膜が形
成された後、高温の水分に接触することにより封孔処理
されていることを特徴とする。According to a second aspect of the present invention, there is provided a vacuum processing apparatus including a vacuum chamber for performing vacuum processing on an object to be processed, and a load lock chamber connected to the vacuum chamber. The inner wall surface of (1) is characterized in that after the aluminum oxide film is formed, it is subjected to a sealing treatment by contacting with high temperature water.
【0008】[0008]
【作用】真空室及びロードロック室の壁部材をなすアル
ミニウム板に対して例えば陽極酸化処理を行うと、アル
ミニウム板の表面に多孔性のアルミニウムの酸化皮膜が
形成される。次いでこのアルミニウム板の表面に例えば
加圧された高温の水蒸気を接触させると酸化皮膜が水和
反応によりベーマイト化されて、酸化皮膜の表面の微小
な孔が封孔される。このため下地の例えばアルミニウム
板が酸化皮膜によって完全に保護され、真空室やロード
ロック室の内壁面の腐食が抑えられるので、高真空状態
におかれても金属粒子の飛散を防止できる。When the aluminum plate forming the wall member of the vacuum chamber and the load lock chamber is anodized, for example, a porous aluminum oxide film is formed on the surface of the aluminum plate. Then, when the surface of the aluminum plate is brought into contact with, for example, pressurized high-temperature steam, the oxide film is boehmite-ized by a hydration reaction, and the micropores on the surface of the oxide film are sealed. For this reason, the underlying aluminum plate, for example, is completely protected by the oxide film and corrosion of the inner wall surfaces of the vacuum chamber and the load lock chamber is suppressed, so that scattering of metal particles can be prevented even in a high vacuum state.
【0009】[0009]
【実施例】図1は本発明をエッチング装置に適用した実
施例を示す断面図であり、同図のエッチング装置は、ウ
エハにエッチングを行うための真空室2と、この真空室
2内に外部からウエハを搬入するための搬入側ロードロ
ック室(予備真空室)3と、前記真空室2内にてエッチ
ング処理されたウエハを外部に搬出するための搬出側ロ
ードロック室4とを備えている。1 is a cross-sectional view showing an embodiment in which the present invention is applied to an etching apparatus. The etching apparatus shown in FIG. 1 is a vacuum chamber 2 for etching a wafer, and the inside of the vacuum chamber 2 is an external chamber. A load-side load-lock chamber (preliminary vacuum chamber) 3 for loading the wafer from above and a unload-side load-lock chamber 4 for unloading the wafer processed by etching in the vacuum chamber 2 are provided. ..
【0010】前記真空室2内には、高周波電源Eに接続
された上部電極5及び接地された下部電極6が上下に対
向して配設されており、上部電極5は、下面に多数の孔
を備えた偏平円筒状に形成されると共に、中空部内より
り前記多数の孔を介して真空室2内に処理ガスを供給す
るように、ガス供給管50が連結され、かつ昇降機構5
1により昇降自在に構成されている。前記上部電極5の
上面には、冷却液供給管52よりの冷却液により上部電
極5を冷却するための冷却ブロック53が設けられ、上
部電極5の外周には、プラズマを下部電極6上に載置さ
れたウエハに対応する大きさとするために絶縁性シール
ドリング54が設けられている。In the vacuum chamber 2, an upper electrode 5 connected to a high frequency power source E and a grounded lower electrode 6 are vertically opposed to each other, and the upper electrode 5 has a large number of holes on its lower surface. Is formed into a flat cylindrical shape, and is connected to a gas supply pipe 50 so as to supply the processing gas into the vacuum chamber 2 from the inside of the hollow portion through the large number of holes, and the elevating mechanism 5
1 is configured to be able to move up and down. A cooling block 53 for cooling the upper electrode 5 with a cooling liquid from a cooling liquid supply pipe 52 is provided on the upper surface of the upper electrode 5, and plasma is mounted on the lower electrode 6 on the outer periphery of the upper electrode 5. An insulating shield ring 54 is provided to have a size corresponding to the placed wafer.
【0011】また前記下部電極6の上面側には、ウエハ
Wの周縁部を押えて当該下部電極6上に保持するための
クランプ手段61が昇降機構62により昇降自在に配置
されると共に、下部電極6の下面側には冷却液供給管6
3よりの冷却液により当該電極6を冷却するように冷却
ブロック64が設けられている。更に前記下部電極6の
側部には、排気孔65を有する排気リング66が真空室
2の底面と間隙を介して嵌合して設けられており、真空
室2内のガスは、前記排気孔65を介して排気リング6
6の下方側に排出し、さらに図示しない排気管により外
部に排気されることとなる。On the upper surface side of the lower electrode 6, a clamp means 61 for pressing the peripheral portion of the wafer W and holding it on the lower electrode 6 is arranged by an elevating mechanism 62 so as to be able to move up and down. Cooling liquid supply pipe 6 on the lower surface side of 6
A cooling block 64 is provided so as to cool the electrode 6 with the cooling liquid from No. 3. Further, an exhaust ring 66 having an exhaust hole 65 is provided on a side portion of the lower electrode 6 so as to be fitted into the bottom surface of the vacuum chamber 2 with a gap therebetween. Exhaust ring 6 through 65
It is discharged to the lower side of 6, and further discharged to the outside by an exhaust pipe (not shown).
【0012】前記ロードロック室3、4は、外部(大気
雰囲気)との間及び真空室2との間に気密を保持するた
めにゲートバルブG1(G4)、G2(G3)を備えて
おり、各ロードロック室3、4内には、例えば伸縮、上
下動、回転の自由度をもったウエハ搬送アーム31、4
1が設置されている。また各ロードロック室3、4には
図示しない排気管が接続されている。The load lock chambers 3 and 4 are provided with gate valves G1 (G4) and G2 (G3) for maintaining airtightness with the outside (atmosphere) and the vacuum chamber 2, In each of the load lock chambers 3 and 4, for example, wafer transfer arms 31 and 4 having flexibility of expansion, contraction, vertical movement, and rotation.
1 is installed. An exhaust pipe (not shown) is connected to each of the load lock chambers 3 and 4.
【0013】そして前記真空室2及びロードロック室
3、4の上下、側面を構成する壁部材としては、例えば
JIS規格A5052、厚さ18mmのアルミニウム板
が用いられており、このアルミニウム板は、図2に示す
工程により表面処理される。先ずアルミニウム板を例え
ば液温50〜60℃のアルカリ溶液中に1〜3分間浸漬
して表面の脱脂処理を行い、水洗後例えば液温65〜7
0℃の水酸化ナトリウム溶液中に30〜60秒間浸漬し
てエッチングを行う。次いで水洗後例えば液温50〜6
0℃の酢酸中に1分間浸漬して酸洗いを行い、水洗後陽
極酸化処理を行ってアルミニウム板の表面にアルミニウ
ムの酸化皮膜を形成する。この場合例えばシュウ酸系溶
液による陽極酸化処理と硫酸系溶液による陽極酸化処理
との2段階処理が行われる。As the wall members constituting the upper and lower sides and the side surfaces of the vacuum chamber 2 and the load lock chambers 3 and 4, for example, an aluminum plate having JIS standard A5052 and a thickness of 18 mm is used. Surface treatment is performed by the process shown in FIG. First, the aluminum plate is immersed in an alkaline solution having a liquid temperature of 50 to 60 ° C. for 1 to 3 minutes to degrease the surface, and after washing with water, for example, a liquid temperature of 65 to 7
Etching is performed by immersing in a sodium hydroxide solution at 0 ° C. for 30 to 60 seconds. Then, after washing with water, for example, the liquid temperature is 50 to 6
The aluminum oxide film is formed on the surface of the aluminum plate by immersing in acetic acid at 0 ° C. for 1 minute for pickling, followed by washing with water and anodizing. In this case, for example, a two-step treatment including anodic oxidation treatment with an oxalic acid-based solution and anodic oxidation treatment with a sulfuric acid-based solution is performed.
【0014】しかる後このアルミニウムの表面に例えば
2Kg/cm2に加圧された温度130〜140℃の水
蒸気を60分間接触させて蒸気封孔処理を行い、その後
乾燥する。ここで図3は陽極酸化処理を行った後のアル
ミニウム板の表面を模式的に示す図であり、陽極酸化処
理によって生成されたアルミニウム板A上の酸化皮膜1
1の表面には多数の孔10が形成されているが、上述の
ように高温の水蒸気を酸化皮膜11の表面に接触させる
と、水和反応が進行しベーマイト化して点線のように孔
10が封じられる。またこの実施例では、真空室2内の
上部電極5、下部電極6、冷却ブロック53、クランプ
手段6、排気リング66についてもアルミニウム材が用
いられ、同様に図2に示す処理が施されている。Thereafter, the surface of the aluminum is contacted with steam at a temperature of 130 to 140 ° C., which is pressurized at 2 Kg / cm 2 , for 60 minutes to carry out a steam sealing treatment, and then dried. Here, FIG. 3 is a diagram schematically showing the surface of the aluminum plate after the anodizing treatment, and the oxide film 1 on the aluminum plate A produced by the anodizing treatment.
A large number of holes 10 are formed on the surface of No. 1, but when the high temperature steam is brought into contact with the surface of the oxide film 11 as described above, the hydration reaction proceeds and boehmite is formed to form the holes 10 as indicated by the dotted line. To be sealed. Further, in this embodiment, an aluminum material is also used for the upper electrode 5, the lower electrode 6, the cooling block 53, the clamp means 6, and the exhaust ring 66 in the vacuum chamber 2, and similarly the treatment shown in FIG. 2 is performed. ..
【0015】次に上述実施例の作用について述べる。先
ずゲートバルブG2、G3を閉じておいて、真空室2内
を図示しない真空ポンプにより例えば50mTorrの
真空度まで真空排気すると共に、搬送アーム31により
外部からウエハを搬入側のロードロック室3内に取り込
み、ゲートバルブG1を閉じた後ロードロック室3内を
図示しない真空ポンプにより数十mTorrまで真空排
気し、しかる後ゲートバルブG2を開いて搬送アーム3
1上のウエハを真空室2内の下部電極6に受け渡す。こ
の受け渡しは、下部電極6の上面より図示しないリフタ
ピンを突出させ、このリフタピン上に搬送アーム31よ
りのウエハを搬送し、リフタピンを下降させることによ
って行われる。次いでゲートバルブG2を閉じた後上部
電極5を下部電極6との間が数mm程度となるように昇
降機構51により下降させ、ハロゲンガスなどの処理ガ
スをガス供給管50より上部電極5の孔を介して真空室
2内に導入し、高周波電源Eにより電極5、6間に高周
波電圧を印加してプラズマを発生させ、下部電極6上の
ウエハWに対してエッチングを行う。プラズマは主に上
部電極5と下部電極6の間に集中して発生するが、真空
室2内の圧力が例えば100Torr以下になると、プ
ラズマの拡散現象により真空室2の内壁面をプラズマ中
のイオンがスパッタする。そして搬出側のロードロック
室4内を予め数十mTorrまで真空排気しておき、真
空室1内のウエハWを上述の搬入のプロセスと逆のプロ
セスでロードロック室4内に搬出し、ロードロック室4
内を大気圧に戻した後搬送アーム41上のウエハを外部
に搬出する。Next, the operation of the above embodiment will be described. First, the gate valves G2 and G3 are closed, the vacuum chamber 2 is evacuated to a vacuum degree of, for example, 50 mTorr by a vacuum pump (not shown), and the transfer arm 31 externally transfers the wafer into the load lock chamber 3 on the loading side. After loading and closing the gate valve G1, the load lock chamber 3 is evacuated to several tens of mTorr by a vacuum pump (not shown), and then the gate valve G2 is opened and the transfer arm 3 is opened.
The wafer on 1 is transferred to the lower electrode 6 in the vacuum chamber 2. This transfer is performed by projecting a lifter pin (not shown) from the upper surface of the lower electrode 6, transporting the wafer from the transport arm 31 onto the lifter pin, and lowering the lifter pin. Then, after closing the gate valve G2, the upper electrode 5 is lowered by the elevating mechanism 51 so that the distance between the upper electrode 5 and the lower electrode 6 is about several mm, and a processing gas such as a halogen gas is supplied from the gas supply pipe 50 to the hole of the upper electrode 5. Is introduced into the vacuum chamber 2 via a high frequency power source E, a high frequency voltage is applied between the electrodes 5 and 6 to generate plasma, and the wafer W on the lower electrode 6 is etched. The plasma is generated mainly in a concentration between the upper electrode 5 and the lower electrode 6, but when the pressure in the vacuum chamber 2 becomes, for example, 100 Torr or less, the plasma diffusion phenomenon causes the inner wall surface of the vacuum chamber 2 to fall into the ions in the plasma. Sputters. Then, the inside of the load lock chamber 4 on the unloading side is evacuated to several tens of mTorr in advance, and the wafer W in the vacuum chamber 1 is unloaded into the load lock chamber 4 by a process reverse to the above loading process. Room 4
After the inside is returned to atmospheric pressure, the wafer on the transfer arm 41 is carried out to the outside.
【0016】このような実施例によれば、真空室2及び
ロードロック室3、4の壁部や電極5、6などを構成す
るアルミニウム材の表面に陽極酸化処理により酸化皮膜
が一体的に形成され、しかも酸化皮膜の表面が高温の水
蒸気により封孔処理されているため、下地のアルミニウ
ム材は酸化皮膜によって完全に保護される。従って真空
室2やロードロック室3、4の内壁などが空気あるいは
ハロゲンガスなどにさらされても腐食が実質上完全に抑
えられるので、高真空状態におかれてもアルミニウムあ
るいは他の合金成分の飛散を防止することができ、ウエ
ハに対する重金属汚染を防止できると共に前記内壁面な
どが平坦化されるのでガスの残留を抑えることができ
る。そして酸化皮膜の封孔処理は、アルミニウム材を酢
酸ニッケル溶液中に浸漬することによっても良好に行う
ことができるが、この場合にはニッケルが酸化皮膜中に
取り込まれて汚染源の要因になるおそれがあり、従って
ウエハの真空処理装置への適用については、水蒸気封孔
処理よりも劣る。According to such an embodiment, an oxide film is integrally formed on the surface of the aluminum material forming the walls of the vacuum chamber 2 and the load lock chambers 3, 4 and the electrodes 5, 6 by anodizing. In addition, since the surface of the oxide film is sealed with high-temperature steam, the underlying aluminum material is completely protected by the oxide film. Therefore, even if the inner walls of the vacuum chamber 2 and the load lock chambers 3 and 4 are exposed to air or halogen gas, the corrosion can be substantially completely suppressed. It is possible to prevent scattering, prevent heavy metal contamination on the wafer, and flatten the inner wall surface and the like, so that gas residue can be suppressed. And the sealing treatment of the oxide film can be favorably performed by immersing the aluminum material in the nickel acetate solution, but in this case, nickel may be taken into the oxide film and become a source of contamination. Therefore, the application of the wafer to the vacuum processing apparatus is inferior to the steam sealing processing.
【0017】またロードロック室は大気側に頻繁に開放
されてその度に大気中の水分がロードロック室内に入り
込むが、内壁面の平坦化により水分の吸着量が抑えられ
るので、真空引きに要する時間を短縮でき、スループッ
トの向上に寄与する。Further, the load lock chamber is frequently opened to the atmosphere side, and moisture in the atmosphere enters into the load lock chamber each time, but since the adsorption amount of moisture is suppressed by flattening the inner wall surface, vacuuming is required. The time can be shortened and the throughput can be improved.
【0018】以上において本発明は、ロードロック室が
付設されていない装置に対しても適用することができ、
またロ−ドロック室を備えている場合は、このロ−ドロ
ック室についてのみ内壁面にアルミニウムの酸化皮膜が
形成されていてもよく、更にまた電極や排気リングなど
についてはアルミニウム以外の材質をそのまま用いても
よい。In the above, the present invention can be applied to an apparatus not provided with a load lock chamber,
When a load lock chamber is provided, an aluminum oxide film may be formed on the inner wall surface only for this load lock chamber, and materials other than aluminum may be used as is for the electrodes and exhaust ring. May be.
【0019】そしてまた本発明では陽極酸化処理により
生成されたアルミニウムの酸化皮膜の表面が多孔性であ
るため、水蒸気封孔処理を施すことは有効であるが、陽
極酸化処理以外の方法により酸化皮膜の表面の一部ある
いは全部に微小な孔が形成される場合においても水蒸気
封孔処理を行ってもよい。Further, in the present invention, since the surface of the aluminum oxide film formed by the anodizing treatment is porous, it is effective to perform the water vapor sealing treatment, but the oxide film is formed by a method other than the anodizing treatment. Water vapor sealing may be performed even when minute holes are formed on a part or all of the surface of.
【0020】なお本発明は、エッチングを行う装置に限
らずイオン注入やアッシングなどの他の真空処理を行う
場合に適用してもよいし、更にはウエハ以外のガラス基
板などに対して真空処理を行う場合にも適用することが
できる。The present invention is not limited to the apparatus for performing etching, but may be applied to the case of performing other vacuum processing such as ion implantation and ashing. Furthermore, the vacuum processing is applied to a glass substrate other than the wafer. It can also be applied when doing.
【0021】[0021]
【発明の効果】請求項1の発明によれば真空室の内壁面
にアルミニウムの酸化皮膜を形成し、この酸化皮膜に対
して高温の水分を接触させて封孔処理を行っているた
め、高真空状態におかれても下地の金属部分あるいは封
孔部からの金属の飛散を確実に抑えることができ、この
結果ウエハに対する重金属汚染を防止することができる
と共に、酸化皮膜が平坦化されるためガスの残留を防止
することができ、ガスの置換性が向上する。According to the first aspect of the present invention, an aluminum oxide film is formed on the inner wall surface of the vacuum chamber, and high temperature moisture is brought into contact with the oxide film to perform the sealing treatment. Even under a vacuum condition, the scattering of metal from the underlying metal part or the sealing part can be reliably suppressed, and as a result, the heavy metal contamination on the wafer can be prevented and the oxide film is flattened. It is possible to prevent the gas from remaining and improve the gas replaceability.
【0022】また請求項2の発明によれば、ロードロッ
ク室の内壁面に対して封孔処理を行っているため、装置
自体からの重金属の発生にもとずくウエハの重金属汚染
をより一層防止することができる。しかもロードロック
室は大気側に頻繁に開放されてその度に大気中の水分が
ロードロック室内に入り込むため、内壁面の平坦化によ
り水分の吸着量が抑えられるので、真空引きに要する時
間を短縮でき、スループットの向上に寄与する。According to the second aspect of the present invention, since the inner wall surface of the load lock chamber is sealed, the heavy metal contamination of the wafer is further prevented due to the generation of heavy metal from the apparatus itself. can do. In addition, the load lock chamber is frequently opened to the atmosphere side, and moisture in the atmosphere enters the load lock chamber each time, so the amount of moisture adsorbed is suppressed by flattening the inner wall surface, reducing the time required for vacuuming. This contributes to the improvement of throughput.
【図1】本発明の実施例の装置構成を示す断面図であ
る。FIG. 1 is a cross-sectional view showing a device configuration of an embodiment of the present invention.
【図2】本発明の実施例におけるアルミニウム板の表面
処理を示すフロー図である。FIG. 2 is a flow chart showing a surface treatment of an aluminum plate in the example of the present invention.
【図3】アルミニウム板の表面における封孔処理の様子
を示す説明図である。FIG. 3 is an explanatory diagram showing a state of a sealing treatment on a surface of an aluminum plate.
2 真空装置 3、4, ロ−ドロック室 5、6 電極 31、41 搬送ア−ム 50 ガス供給管 66 排気リング 2 vacuum device 3, 4, load lock chamber 5, 6 electrode 31, 41 transfer arm 50 gas supply pipe 66 exhaust ring
Claims (2)
された真空室を備え、この真空室内にて被処理体に対し
て真空処理を行う装置において、 前記真空室の内壁面は、高温の水分に接触することによ
り封孔処理されていることを特徴とする真空処理装置。1. An apparatus comprising a vacuum chamber in which an aluminum oxide film is formed on an inner wall surface, wherein vacuum treatment is performed on an object to be processed in the vacuum chamber, wherein the inner wall surface of the vacuum chamber is high temperature moisture. A vacuum processing apparatus, which is subjected to a sealing treatment by contacting with a vacuum.
真空室と、この真空室に接続されたロ−ドロック室とを
備えた真空処理装置において、前記ロードロック室の内
壁面は、アルミニウムの酸化皮膜が形成された後、高温
の水分に接触することにより封孔処理されていることを
特徴とする真空処理装置。2. A vacuum processing apparatus comprising a vacuum chamber for performing vacuum processing on an object to be processed, and a load lock chamber connected to the vacuum chamber, wherein an inner wall surface of the load lock chamber is: A vacuum processing apparatus, characterized in that after an aluminum oxide film is formed, it is sealed by contacting with high temperature water.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3302486A JPH05114582A (en) | 1991-10-22 | 1991-10-22 | Vacuum processor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3302486A JPH05114582A (en) | 1991-10-22 | 1991-10-22 | Vacuum processor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05114582A true JPH05114582A (en) | 1993-05-07 |
Family
ID=17909540
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3302486A Pending JPH05114582A (en) | 1991-10-22 | 1991-10-22 | Vacuum processor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05114582A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6027629A (en) * | 1994-11-16 | 2000-02-22 | Kabushiki Kaisha Kobe Seiko Sho | Vacuum chamber made of aluminum or its alloys, and surface treatment and material for the vacuum chamber |
| US6066392A (en) * | 1997-11-14 | 2000-05-23 | Kabushiki Kaisha Kobe Seiko Sho | Al material excellent in thermal crack resistance and corrosion resistance |
| US6686053B2 (en) | 2001-07-25 | 2004-02-03 | Kabushiki Kaisha Kobe Seiko Sho | AL alloy member having excellent corrosion resistance |
| JP2007173337A (en) * | 2005-12-20 | 2007-07-05 | Ulvac Japan Ltd | Vacuum processing tank, vacuum processing apparatus and vacuum processing method |
| JP2009526399A (en) * | 2006-02-10 | 2009-07-16 | アプライド マテリアルズ インコーポレイテッド | Water vapor passivation of plasma facing walls |
| KR101044426B1 (en) * | 2008-12-26 | 2011-06-27 | 가부시키가이샤 히다치 하이테크놀로지즈 | Vacuum processing equipment |
| US8124240B2 (en) | 2005-06-17 | 2012-02-28 | Tohoku University | Protective film structure of metal member, metal component employing protective film structure, and equipment for producing semiconductor or flat-plate display employing protective film structure |
| US8206833B2 (en) | 2005-06-17 | 2012-06-26 | Tohoku University | Metal oxide film, laminate, metal member and process for producing the same |
| US8282807B2 (en) | 2006-12-28 | 2012-10-09 | National University Corporation Tohoku University | Metal member having a metal oxide film and method of manufacturing the same |
| US8642187B2 (en) | 2006-12-28 | 2014-02-04 | National University Corporation Tohoku University | Structural member to be used in apparatus for manufacturing semiconductor or flat display, and method for producing the same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63134693A (en) * | 1986-11-25 | 1988-06-07 | Matsushita Refrig Co | Production of aluminum fin material for heat exchanger |
| JPH01189126A (en) * | 1988-01-25 | 1989-07-28 | Tokyo Electron Ltd | Etching apparatus |
| JPH02198139A (en) * | 1989-01-27 | 1990-08-06 | Fujitsu Ltd | Prevention of inner wall contamination of vacuum treatment apparatus |
| JPH0525694A (en) * | 1991-07-15 | 1993-02-02 | Mitsubishi Alum Co Ltd | Production of aluminum or aluminum alloy for vacuum equipment |
-
1991
- 1991-10-22 JP JP3302486A patent/JPH05114582A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63134693A (en) * | 1986-11-25 | 1988-06-07 | Matsushita Refrig Co | Production of aluminum fin material for heat exchanger |
| JPH01189126A (en) * | 1988-01-25 | 1989-07-28 | Tokyo Electron Ltd | Etching apparatus |
| JPH02198139A (en) * | 1989-01-27 | 1990-08-06 | Fujitsu Ltd | Prevention of inner wall contamination of vacuum treatment apparatus |
| JPH0525694A (en) * | 1991-07-15 | 1993-02-02 | Mitsubishi Alum Co Ltd | Production of aluminum or aluminum alloy for vacuum equipment |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6027629A (en) * | 1994-11-16 | 2000-02-22 | Kabushiki Kaisha Kobe Seiko Sho | Vacuum chamber made of aluminum or its alloys, and surface treatment and material for the vacuum chamber |
| US6066392A (en) * | 1997-11-14 | 2000-05-23 | Kabushiki Kaisha Kobe Seiko Sho | Al material excellent in thermal crack resistance and corrosion resistance |
| US6686053B2 (en) | 2001-07-25 | 2004-02-03 | Kabushiki Kaisha Kobe Seiko Sho | AL alloy member having excellent corrosion resistance |
| US8124240B2 (en) | 2005-06-17 | 2012-02-28 | Tohoku University | Protective film structure of metal member, metal component employing protective film structure, and equipment for producing semiconductor or flat-plate display employing protective film structure |
| US8206833B2 (en) | 2005-06-17 | 2012-06-26 | Tohoku University | Metal oxide film, laminate, metal member and process for producing the same |
| US9476137B2 (en) | 2005-06-17 | 2016-10-25 | Tohoku University | Metal oxide film, laminate, metal member and process for producing the same |
| JP2007173337A (en) * | 2005-12-20 | 2007-07-05 | Ulvac Japan Ltd | Vacuum processing tank, vacuum processing apparatus and vacuum processing method |
| JP2009526399A (en) * | 2006-02-10 | 2009-07-16 | アプライド マテリアルズ インコーポレイテッド | Water vapor passivation of plasma facing walls |
| KR101364440B1 (en) * | 2006-02-10 | 2014-02-17 | 어플라이드 머티어리얼스, 인코포레이티드 | Water vapor passivation of a wall facing a plasma |
| US8282807B2 (en) | 2006-12-28 | 2012-10-09 | National University Corporation Tohoku University | Metal member having a metal oxide film and method of manufacturing the same |
| US8642187B2 (en) | 2006-12-28 | 2014-02-04 | National University Corporation Tohoku University | Structural member to be used in apparatus for manufacturing semiconductor or flat display, and method for producing the same |
| KR101044426B1 (en) * | 2008-12-26 | 2011-06-27 | 가부시키가이샤 히다치 하이테크놀로지즈 | Vacuum processing equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR0139793B1 (en) | Film Formation Method | |
| KR0151769B1 (en) | Plasma etching equipment | |
| JPH09326385A (en) | Substrate cooling method | |
| JPH07216589A (en) | Surface treating method and plasma treating device | |
| JP3121524B2 (en) | Etching equipment | |
| JP3535309B2 (en) | Decompression processing equipment | |
| JP3165322B2 (en) | Decompression container | |
| TWI756475B (en) | Particle generation preventing method and vacuum apparatus | |
| US20120186985A1 (en) | Component for substrate processing apparatus and method of forming film on the component | |
| JP4916140B2 (en) | Vacuum processing system | |
| US20190027371A1 (en) | Method of Removing Silicon Oxide Film | |
| JPH05114582A (en) | Vacuum processor | |
| JP4038599B2 (en) | Cleaning method | |
| JP5001862B2 (en) | Microwave plasma processing equipment | |
| JP4558431B2 (en) | Cleaning method for semiconductor manufacturing equipment | |
| JP2012057253A (en) | Gas introducing device and substrate processing apparatus | |
| WO2020100400A1 (en) | Vacuum processing apparatus | |
| JPH09129611A (en) | Etching | |
| JP3171762B2 (en) | Plasma processing equipment | |
| JP2004292887A (en) | Method for manufacturing member in plasma treatment vessel and member in plasma treatment vessel manufactured by the same | |
| JP2006054282A (en) | Vacuum processing apparatus and wafer temperature recovery method | |
| JPH07122540A (en) | Etching system | |
| JPH07183280A (en) | Plasma treatment device | |
| JPH06112168A (en) | Plasma apparatus | |
| JP2626782B2 (en) | Vacuum processing equipment |