JPH0511917B2 - - Google Patents
Info
- Publication number
- JPH0511917B2 JPH0511917B2 JP62096378A JP9637887A JPH0511917B2 JP H0511917 B2 JPH0511917 B2 JP H0511917B2 JP 62096378 A JP62096378 A JP 62096378A JP 9637887 A JP9637887 A JP 9637887A JP H0511917 B2 JPH0511917 B2 JP H0511917B2
- Authority
- JP
- Japan
- Prior art keywords
- rays
- radiation
- transmitting window
- beryllium
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Measurement Of Radiation (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、X線やγ線を用いて物質の成分分
析や密度計測を行う放射線測定器の放射線透過窓
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation transmitting window of a radiation measuring instrument that performs component analysis and density measurement of substances using X-rays and γ-rays.
第3図は、例えば、三菱電気株式会社の技術資
料“三菱オンライン硫黄分析計ND−5804形オン
ラインサルフアメータ”等に示されるような、配
管に取付けられた従来の放射線透過窓を示す断面
図であり、図において、1はベリリウム製放射線
透過窓、2は鋼製配管であり、両者はロウ付等で
気密に接合されている。
Figure 3 is a cross-sectional view showing a conventional radiation-transmitting window attached to a pipe, as shown in Mitsubishi Electric Corporation's technical document "Mitsubishi Online Sulfur Analyzer ND-5804 Model Online Sulfur Meter". In the figure, 1 is a beryllium radiation transmitting window, 2 is a steel pipe, and the two are hermetically joined by brazing or the like.
配管2内の流体試料に外部から放射線透過窓1
を通してX線又はγ線が照射されると試料内原子
は励起され特性X線を発する。これを図示しない
外部の放射線検出器で検出することにより試料内
の特定の元素の分析ができる。例えば、石油中の
硫黄分を分析するには、光子エネルギが2.5KeV
以上のX線又はγ線が照射され、硫黄から放出さ
れる2.3KeVの特性X線が検出される。放射線透
過窓1はベリリウムでできているので低い光子エ
ネルギーのX線やγ線に対しても吸収係数が小さ
く、この放射線透過窓を通して効率よく励起用の
X線又はγ線を試料に照射することができ、また
効率よく試料の着目元素から放出される特性X線
を放出することができる。 Radiation transmitting window 1 is inserted into the fluid sample in pipe 2 from the outside.
When X-rays or γ-rays are irradiated through the specimen, atoms within the sample are excited and emit characteristic X-rays. By detecting this with an external radiation detector (not shown), a specific element within the sample can be analyzed. For example, to analyze the sulfur content in petroleum, the photon energy is 2.5 KeV.
The above X-rays or γ-rays are irradiated, and characteristic X-rays of 2.3 KeV emitted from sulfur are detected. Since the radiation-transmitting window 1 is made of beryllium, it has a small absorption coefficient even for X-rays and γ-rays with low photon energy, and the sample can be efficiently irradiated with excitation X-rays or γ-rays through this radiation-transmitting window. In addition, characteristic X-rays emitted from the target element of the sample can be efficiently emitted.
以上は特性X線を用いた元素分析の場合につい
て説明したが、X線やγ線の後方散乱を利用した
分析や、放射線透過窓1をさらに配管の反対側に
も取付けて試料を透過してくるX線やγ線の減衰
を利用して成分の分析や密度の計測もできる。こ
れらの場合には試料に応じて光子エネルギーのさ
らに高いX線やγ線を用いることができる。 The above description has been about elemental analysis using characteristic Using the attenuation of X-rays and gamma rays, it is also possible to analyze the components and measure the density. In these cases, X-rays or γ-rays with higher photon energy can be used depending on the sample.
ところが、配管内流体中に砂等の異物が存在す
ると金属ベリリウムの硬さは大きくないので摩耗
を受け、放射線透過窓中の放射線の吸収が変化す
るので分析する上で誤差をもたらし、ついには孔
が生じ流体が流出する事故を起こすという問題点
があつた。
However, if foreign substances such as sand are present in the fluid inside the pipe, the hardness of metal beryllium is not large, so it will be subject to wear, and the absorption of radiation in the radiation-transmitting window will change, leading to errors in analysis and eventually causing holes. There was a problem in that this caused an accident in which the fluid leaked out.
この発明は、上記のような問題点を解消するた
めになされたものが、放射線の吸収は小さく保つ
たまま、摩耗により生じる問題点を解決した放射
線透過窓を得ることを目的とする。 The present invention was made to solve the above-mentioned problems, but it is an object of the present invention to provide a radiation-transmitting window that solves the problems caused by wear while keeping radiation absorption low.
この発明に係る放射線透過窓は、金属ベリリウ
ムの表面にセラミツク膜あるいはダイヤモンド膜
をコーテイングしたものである。
The radiation transmitting window according to the present invention is made by coating the surface of metallic beryllium with a ceramic film or a diamond film.
この発明における放射線透過窓は、金属ベリリ
ウムの表面がセラミツク膜やダイヤモンド膜でコ
ーテイングされているので、低い光子エネルギの
X線やγ線に対しても吸収は小さく、また流体試
料中に摩耗を引き起こすような物質が存在してい
ても摩耗量を実際上無視できる程度に小さくでき
る。
In the radiation transmitting window of this invention, the surface of the metal beryllium is coated with a ceramic film or a diamond film, so it absorbs small amounts of X-rays and γ-rays with low photon energy, and also causes wear in the fluid sample. Even if such substances are present, the amount of wear can be reduced to a practically negligible level.
以下、この考案の一実施例を図について説明す
る。第1図において、3はベリリウム表面にコー
テイングされたアルミナセラミツク膜であり、そ
の厚さは100μmである。コーテイングはプラズマ
溶射や真空蒸着などによつて好ましく行うことが
でき、緻密で均一な膜が形成される。100μm厚の
アルミナ膜による20KeVのX線の減衰は約10%
でアルミナ層無しの場合の約90%に低下するのみ
であり、実用上十分許容できる。また、アルミナ
の硬度は大きく、これにより放射線透過窓の耐摩
耗性が格段に向上する。上記の如くベリリウム1
にアルミナセラミツク3を100μmの厚さでコーテ
イングした場合の摩耗試験の結果は次の通りであ
り、大きい耐摩耗性を有することがわかる。即ち
摩耗試験条件は、粒径が1mmの砂を5%の体積割
合で油に混合し、1.9m/秒の速さで、アルミナ
セラミツクコーテイングしたベリリウム板に65°
の角度で700時間吹き付けた。その結果、コーテ
イング膜には何らの変化も観察されなかつた。
An embodiment of this invention will be described below with reference to the drawings. In FIG. 1, 3 is an alumina ceramic film coated on the beryllium surface, and its thickness is 100 μm. Coating can be preferably carried out by plasma spraying, vacuum deposition, etc., and a dense and uniform film is formed. Attenuation of 20KeV X-rays by a 100μm thick alumina film is approximately 10%
This is only about 90% of the value without an alumina layer, which is sufficiently acceptable for practical use. In addition, alumina has high hardness, which significantly improves the wear resistance of the radiation-transmitting window. As mentioned above, beryllium 1
The results of the abrasion test when Alumina Ceramic 3 was coated with a thickness of 100 μm are as follows, and it can be seen that it has high abrasion resistance. In other words, the wear test conditions were as follows: sand with a grain size of 1 mm was mixed with oil at a volume ratio of 5%, and the mixture was applied at a speed of 1.9 m/sec to a beryllium plate coated with alumina ceramic at a 65° angle.
Sprayed at an angle of 700 hours. As a result, no change was observed in the coating film.
なお、上記実施例では、金属ベリリウム1の試
料側表面にアルミナセラミツク3を100μmコーテ
イングした場合について説明したが、厚さについ
ては、更に厚くして耐摩耗性の向上をはかこと
も、薄くして放射線の透過を良くすることも可能
である。 In addition, in the above example, the case was explained in which the surface of the sample side of metal beryllium 1 was coated with alumina ceramic 3 to a thickness of 100 μm. It is also possible to improve the transmission of radiation.
また、ベリリウム1にコーテイングする物質は
アルミナに限らず炭化ケイ素、MgO、SiO2等の
軽元素からなるセラミツクや、さらにはダイヤモ
ンド等が用いられる。 Furthermore, the material to be coated on beryllium 1 is not limited to alumina, but ceramics made of light elements such as silicon carbide, MgO, and SiO 2 , and even diamond can be used.
セラミツクとしてジルコニア(ZrO2)等の重
元素からなるものを用いた場合には透過率が低下
するので、やはり軽元素からなるセラミツクを用
いるのが望ましい。なお、ダイヤモンド膜のベリ
リウム表面への形成は、プラズマ化学気相成長
(CVD)法によつて可能である。第2図にはこれ
らのコーテイング膜の20KeVのX線およびγ線
に対する透過率を示した、ダイヤモンド膜の場合
1mmの厚さにしても、X線およびγ線の吸収は実
質的に問題とならず、炭化ケイ素の場合でも
100μm程度までは許容できるのがわかる。 If a ceramic made of a heavy element such as zirconia (ZrO 2 ) is used, the transmittance decreases, so it is desirable to use a ceramic made of a light element. Note that the diamond film can be formed on the beryllium surface by plasma chemical vapor deposition (CVD). Figure 2 shows the transmittance of these coating films to 20 KeV X-rays and γ-rays. In the case of a diamond film, absorption of X-rays and γ-rays is practically no problem even at a thickness of 1 mm. Even in the case of silicon carbide
It can be seen that up to about 100 μm is acceptable.
なお、上記説明においてはこれらコーテイング
膜3による耐摩耗性向上の効果のみを示したが、
セラミツクダイヤモンドは耐腐食性も良好であ
り、この点に関する効果も得られる。 In addition, in the above explanation, only the effect of improving wear resistance by these coating films 3 was shown,
Ceramic diamond also has good corrosion resistance, and effects in this regard can also be obtained.
また、上記実施例では、放射線透過窓が配管の
一面にのみ使われる特性X線型や後方散乱型の計
測器にこの発明を適用した場合を説明したが、透
過型の放射線分析計や密度計にあつても同様であ
り、この場合、放射線透過窓は配管の両側に対向
して2個取付けることも、リング状にした1つを
配管にはさみ込むように取付けることもできる。 In addition, in the above embodiment, the present invention is applied to a characteristic X-ray type or back scattering type measuring instrument in which the radiation transmitting window is used only on one side of the piping, but it can also be applied to a transmission type radiation analyzer or density meter. The same applies in any case, and in this case, two radiation transmitting windows can be installed facing each other on both sides of the pipe, or one ring-shaped window can be installed so as to be inserted between the pipes.
〔発明の効果〕
以上のように、この発明によれば、セラミツク
膜あるいはダイヤモンド膜を金属ベリリウムの表
面にコーテイングしたので、放射線の吸収は小さ
く保つたまま、耐摩耗性に優れた放射線透過窓が
得られる効果がある。[Effects of the Invention] As described above, according to the present invention, since a ceramic film or a diamond film is coated on the surface of metal beryllium, a radiation-transmitting window with excellent wear resistance can be created while keeping radiation absorption small. There are benefits to be gained.
第1図はこの発明の一実施例による放射線透過
窓を示す断面図、第2図は各コーテイング膜にお
けるコーテイング厚さと放射線透過率の関係を示
す特性図、第3図は従来の放射線透過窓を示す断
面図である。
図において、1は金属ベリリウム、2は配管、
3はセラミツク膜である。なお、各図中同一符号
は同一または相当部分を示すものとする。
FIG. 1 is a sectional view showing a radiation transmitting window according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the relationship between coating thickness and radiation transmittance of each coating film, and FIG. 3 is a cross-sectional view showing a radiation transmitting window according to an embodiment of the present invention. FIG. In the figure, 1 is metal beryllium, 2 is piping,
3 is a ceramic membrane. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
リウム表面にコーテイングした放射線透過窓。 2 セラミツク膜はアルミナセラミツクである特
許請求の範囲第1項記載の放射線透過窓。 3 セラミツク膜は炭化ケイ素である特許請求の
範囲第1項記載の放射線透過窓。[Claims] 1. A radiation transmitting window in which a ceramic film or a diamond film is coated on a beryllium surface. 2. The radiation transmitting window according to claim 1, wherein the ceramic film is alumina ceramic. 3. The radiation transmitting window according to claim 1, wherein the ceramic film is silicon carbide.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62096378A JPS63263488A (en) | 1987-04-21 | 1987-04-21 | radiolucent window |
| CA000552640A CA1290866C (en) | 1986-11-25 | 1987-11-24 | Analyzer for fluid within piping |
| EP87310400A EP0269432B2 (en) | 1986-11-25 | 1987-11-25 | Analyzer for fluid within piping |
| DE8787310400T DE3776095D1 (en) | 1986-11-25 | 1987-11-25 | ANALYZING DEVICE FOR A LIQUID WITHIN A PIPELINE. |
| NO874914A NO176630C (en) | 1986-11-25 | 1987-11-25 | Fluid pipeline analyzer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62096378A JPS63263488A (en) | 1987-04-21 | 1987-04-21 | radiolucent window |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS63263488A JPS63263488A (en) | 1988-10-31 |
| JPH0511917B2 true JPH0511917B2 (en) | 1993-02-16 |
Family
ID=14163302
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62096378A Granted JPS63263488A (en) | 1986-11-25 | 1987-04-21 | radiolucent window |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS63263488A (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0786560B2 (en) * | 1989-11-29 | 1995-09-20 | 日本電気株式会社 | Method for manufacturing X-ray transmission window |
| JPH10244144A (en) * | 1997-03-04 | 1998-09-14 | Sumitomo Electric Ind Ltd | Pressure bulkhead |
| US7265367B2 (en) | 2001-03-21 | 2007-09-04 | Advanced Electron Beams, Inc. | Electron beam emitter |
| US20020135290A1 (en) * | 2001-03-21 | 2002-09-26 | Advanced Electron Beams, Inc. | Electron beam emitter |
| JP2010185665A (en) * | 2009-02-10 | 2010-08-26 | Kobe Steel Ltd | Material for x-ray transmission window, and x-ray transmission window with the material |
| JP6283303B2 (en) * | 2014-11-21 | 2018-02-21 | 嘉五郎 小倉 | Non-peelable metal coated diamond window |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5524459A (en) * | 1978-08-11 | 1980-02-21 | Hitachi Ltd | Selective formation of silicon |
-
1987
- 1987-04-21 JP JP62096378A patent/JPS63263488A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS63263488A (en) | 1988-10-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Cumpson | The Thickogram: a method for easy film thickness measurement in XPS | |
| AU5959090A (en) | Sand detector | |
| US5113421A (en) | Method and apparatus for measuring the thickness of a coating on a substrate | |
| Mantler | X-ray fluorescence analysis of multiple-layer films | |
| Newbury | X-ray microanalysis in the variable pressure (environmental) scanning electron microscope | |
| US7402796B2 (en) | Method and apparatus for monitoring deposition of solids in pipelines using a plurality of radiation sources pointing to a unique detector | |
| EP0269432B1 (en) | Analyzer for fluid within piping | |
| JPH0511917B2 (en) | ||
| JP2022091880A (en) | Apparatus for simultaneously determining weight of composite sheet | |
| US3678273A (en) | Method of measuring the abrasiveness of an abrasive fluid | |
| Mori et al. | Measurement of the radioactivity distribution of material surfaces with an imaging plate | |
| JPH11287643A (en) | Method and device for measuring thickness by use of transmitted x-ray and method for measuring percentage of specific component by use of transmitted x-ray | |
| Afshari et al. | Quantitative measurement of lead in paint by XRF analysis without manual substrate correction | |
| JPH0619268B2 (en) | Method for measuring thickness of coating film on metal | |
| Szalóki et al. | Efficiency calibration of energy‐dispersive detectors for application in quantitative x‐and γ‐ray spectrometry | |
| Cesareo et al. | Elemental analysis by means of X-ray attenuation measurements | |
| Galloway et al. | Scattering correction in beta dosimetry by beta particle counting | |
| Bonizzoni et al. | Direct evaluation of self‐absorption effects in dark matrices by Compton scattering measurements | |
| Hulett et al. | Quantitative analysis by X-ray fluorescence using first principles for matrix correction | |
| Palmer | Nucleonic instrumentation applied to the measurement of physical parameters by means of ionising radiation | |
| Salmi et al. | Coating thickness measurement by means of the radioisotope X-ray fluorescence technique | |
| Arai et al. | Determination of boron oxide in glass by X-ray fluorescence analysis | |
| Kuusi et al. | Heavy Element Analysis by Isotope-Excited X-Ray Fluoresence | |
| Johansson et al. | Applicability of the Tougaard ratio D in the analysis of nanometric TiO2 overlayers | |
| Singh et al. | THICKNESS MEASUREMENTS OF MULTI-LAYER SAMPLES USING PHOTON-ATOM INTERACTIONS IN X-RAY ENERGY REGION |