JPH05129188A - X-ray exposure device - Google Patents
X-ray exposure deviceInfo
- Publication number
- JPH05129188A JPH05129188A JP3311836A JP31183691A JPH05129188A JP H05129188 A JPH05129188 A JP H05129188A JP 3311836 A JP3311836 A JP 3311836A JP 31183691 A JP31183691 A JP 31183691A JP H05129188 A JPH05129188 A JP H05129188A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- mirror
- rays
- intensity
- detectors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/702—Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Particle Accelerators (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
(57)【要約】
【目的】 X線露光中のSR−X線のX線強度の変動を
検出して、基板のX線露光量の変動を防ぐ。
【構成】 SR−X線のシートビーム1の厚さ方向(y
軸方向)に直列に配置された第一および第二のX線ディ
テクター8a,8bを、シリンドリカルミラー2と共に
移動するセンサー保持部材7に保持させる。各X線ディ
テクター8a,8bはシートビーム1の上縁および下縁
を含む所定領域のX線をそれぞれ検出して、制御回路9
によってシートビーム1のy軸方向の変位を算出し、y
駆動装置6によってシリンドリカルミラー2をy軸方向
へ駆動することで、シートビーム1とシリンドリカルミ
ラー2の相対的位置ずれを解消するとともに、演算器1
6によって各X線ディテクター8a,8bの出力の和か
らSR−X線のX線強度を算出し、X線強度の変動に応
じて基板の露光時間を制御する。
(57) [Abstract] [Purpose] Detect fluctuations in X-ray intensity of SR-X-rays during X-ray exposure to prevent fluctuations in the X-ray exposure amount of the substrate. [Configuration] SR-X-ray sheet beam 1 thickness direction (y
The first and second X-ray detectors 8a and 8b arranged in series in the axial direction) are held by the sensor holding member 7 that moves together with the cylindrical mirror 2. The X-ray detectors 8a and 8b respectively detect X-rays in a predetermined area including the upper edge and the lower edge of the sheet beam 1 and control circuit 9
The displacement of the seat beam 1 in the y-axis direction is calculated by
By driving the cylindrical mirror 2 in the y-axis direction by the driving device 6, the relative displacement between the seat beam 1 and the cylindrical mirror 2 is eliminated, and the calculator 1
The X-ray intensity of the SR-X-ray is calculated from the sum of the outputs of the X-ray detectors 8a and 8b by 6, and the exposure time of the substrate is controlled according to the variation of the X-ray intensity.
Description
【0001】[0001]
【産業上の利用分野】本発明は、ウエハ等の基板上にマ
スクパターンを転写、焼付けを行うX線露光装置に関す
るもので、特にX線露光中のSR−X線の強度変化を高
精度で測定することによって均一な露光を容易にしたX
線露光装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray exposure apparatus for transferring and printing a mask pattern on a substrate such as a wafer, and particularly with a high accuracy for a change in SR-X-ray intensity during X-ray exposure. X facilitated uniform exposure by measuring
The present invention relates to a line exposure apparatus.
【0002】[0002]
【従来の技術】シンクロトロン放射X線(SR−X線)
を利用したX線露光装置においては、基板表面のX線露
光量を均一に保つことが要求されるが、SR−X線のX
線強度はSORリングの発光点において時間とともに減
衰する傾向があるため、X線露光中に継続的にX線強度
を測定して、X線強度の変動に応じて基板近傍に設けら
れたシャッターの移動速度を制御する必要がある。2. Description of the Related Art Synchrotron radiation X-rays (SR-X-rays)
In the X-ray exposure apparatus utilizing the X-ray, it is required to keep the X-ray exposure amount on the surface of the substrate uniform.
Since the line intensity tends to decay with time at the light emitting point of the SOR ring, the X-ray intensity is continuously measured during the X-ray exposure, and the shutter provided near the substrate according to the variation of the X-ray intensity. It is necessary to control the moving speed.
【0003】図3は従来のX線露光装置の一例を示すも
ので、SR−X線のシートビーム101は、シリンドリ
カルミラー102によってSORリングの軌道に対して
垂直方向、すなわちシートビームの厚さ方向(y軸方
向)に拡大されたのち、ベリリウムで作られたBe窓1
03を透過して、減圧ヘリウム雰囲気ガスで満たさた露
光室104内に入射する。FIG. 3 shows an example of a conventional X-ray exposure apparatus. The SR-X-ray sheet beam 101 is perpendicular to the orbit of the SOR ring by the cylindrical mirror 102, that is, the sheet beam thickness direction. Be window 1 made of beryllium after being enlarged in the (y-axis direction)
After passing through 03, the light enters the exposure chamber 104 filled with the reduced pressure helium atmosphere gas.
【0004】露光室104内には、一対の電極板105
a,105bからなるX線センサー105、マスク10
6および基板107が配置され、電極板105a,10
5bにはDC電源108によって数100Vの電圧がか
けられる。Be窓103を経て入射したSR−X線の拡
大ビーム101aのX線強度は、高電圧をかけられた電
極板105a,105bの間のヘリウムガスに発生する
電離電流を、電流計109によって検出することで測定
される。In the exposure chamber 104, a pair of electrode plates 105 are provided.
X-ray sensor 105 including a and 105b, mask 10
6 and the substrate 107 are arranged, the electrode plates 105a, 10
A voltage of several 100V is applied to 5b by the DC power supply 108. The X-ray intensity of the expanded beam 101a of SR-X rays incident through the Be window 103 detects the ionization current generated in the helium gas between the electrode plates 105a and 105b, to which a high voltage is applied, by the ammeter 109. It is measured by
【0005】X線露光中にX線強度の測定値に変動が生
じた場合には、X線センサー105とマスク107の間
に配置されたシャッター(図示せず)の移動速度を、上
記測定値の変動に応じて調整することによって、基板表
面のX線露光量が変動しないように制御する。When the measured value of the X-ray intensity fluctuates during the X-ray exposure, the moving speed of a shutter (not shown) arranged between the X-ray sensor 105 and the mask 107 is set to the above measured value. By adjusting the X-ray exposure amount on the substrate surface so as not to change.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記従
来のX線露光装置においては、以下のような解決すべき
課題がある。However, the above-mentioned conventional X-ray exposure apparatus has the following problems to be solved.
【0007】(1)X線強度測定のために高電圧の電源
を使用するため、設備上の高電圧対策が必要であり、装
置が複雑になる。(1) Since a high voltage power source is used for measuring the X-ray intensity, it is necessary to take measures against the high voltage on the equipment, and the apparatus becomes complicated.
【0008】(2)電極板105a,105b間に発生
する電離電流が微小であるため、シャッター等の駆動部
分から発生するノイズによってX線強度の測定精度が低
下する。(2) Since the ionization current generated between the electrode plates 105a and 105b is very small, the noise generated from the driving portion such as the shutter deteriorates the measurement accuracy of the X-ray intensity.
【0009】(3)SR−X線の拡大ビームがy軸方向
に移動した場合に電流値が変動するため、正確なX線強
度の測定ができない。(3) Since the current value fluctuates when the expanded beam of SR-X-rays moves in the y-axis direction, accurate X-ray intensity cannot be measured.
【0010】(4)露光室内に電極板を設置するための
スペースを必要とする。(4) A space for installing the electrode plate is required in the exposure chamber.
【0011】本発明は上記従来の技術の解決すべき課題
に鑑みてなされたものであり、露光室内に電極板を必要
とせず、高電圧電源を使用することなく、加えてシャッ
ター等によるノイズおよびSR−X線の位置の変動に影
響を受けることもなく、極めて高精度でX線強度を測定
することによって、基板表面の均一な露光を容易にした
SR−X線露光装置を提供することを目的とする。The present invention has been made in view of the problems to be solved by the above-mentioned conventional techniques, and does not require an electrode plate in the exposure chamber, does not use a high-voltage power supply, and additionally causes noise and noise due to a shutter or the like. To provide an SR-X-ray exposure apparatus that facilitates uniform exposure of a substrate surface by measuring the X-ray intensity with extremely high accuracy without being affected by fluctuations in SR-X-ray position. To aim.
【0012】[0012]
【課題を解決するための手段】上記の目的を達成するた
めに本発明のX線露光装置は、SR−X線を所望の方向
に拡大するミラーを、該ミラーの反射面に対して垂直方
向に移動させるミラー駆動手段と、前記SR−X線の前
記垂直方向の変位を検出するために前記ミラーとともに
移動する第1のX線ディテクター及び第2のX線ディテ
クターと、前記第1及び第2のX線ディテクターの出力
によって前記ミラー駆動手段を制御する制御手段と、少
くとも前記第1又は第2のX線ディテクターの出力によ
って前記SR−X線のX線強度を算出する演算器とから
なることを特徴とする。In order to achieve the above object, an X-ray exposure apparatus of the present invention comprises a mirror for enlarging SR-X-rays in a desired direction in a direction perpendicular to the reflecting surface of the mirror. Mirror drive means for moving the first and second X-ray detectors that move together with the mirror to detect the vertical displacement of the SR-X-rays, and the first and second X-ray detectors. Control means for controlling the mirror driving means by the output of the X-ray detector, and an arithmetic unit for calculating the X-ray intensity of the SR-X-ray by at least the output of the first or second X-ray detector. It is characterized by
【0013】第1および第2のX線ディテクターは、ミ
ラーの反射面に対して垂直方向に直列に配置されてお
り、制御手段が、前記第1および第2のX線ディテクタ
ーの出力の和および差によって前記ミラーの変位を算出
する演算回路を備えており、SR−X線のX線強度を算
出する演算器が、前記第1および第2のX線ディテクタ
ーの出力の和によってSR−X線のX線強度を算出する
とよい。The first and second X-ray detectors are arranged in series in the direction perpendicular to the reflecting surface of the mirror, and the control means controls the sum of the outputs of the first and second X-ray detectors and An arithmetic circuit for calculating the displacement of the mirror based on the difference is provided, and an arithmetic unit for calculating the X-ray intensity of the SR-X-ray uses an SR-X-ray based on the sum of the outputs of the first and second X-ray detectors. X-ray intensities may be calculated.
【0014】[0014]
【作用】SR−X線とミラーの反射面との相対的位置ず
れを、第1及び第2のX線ディテクターによって検出し
て、ミラー駆動手段によってミラーを移動させて、前記
相対的位置ずれを解消するとともに、ミラーとともに移
動する第1又は第2のX線ディテクターの出力または上
記第1および第2のX線ディテクターの出力の和によっ
て、前記SR−X線のX線強度を算出する。The relative displacement between the SR-X-ray and the reflecting surface of the mirror is detected by the first and second X-ray detectors, and the mirror is moved by the mirror driving means to detect the relative displacement. The X-ray intensity of the SR-X-ray is calculated from the output of the first or second X-ray detector that moves with the mirror or the sum of the outputs of the first and second X-ray detectors, which is eliminated.
【0015】第1および第2のX線ディテクターの出力
の和および差によってSR−X線の変位を検出すること
で、X線強度の変動に影響されることなくSR−X線の
変位を高精度で検出して前記位置ずれを解消することが
できる。By detecting the displacement of the SR-X-rays by the sum and difference of the outputs of the first and second X-ray detectors, the displacement of the SR-X-rays can be increased without being affected by the fluctuation of the X-ray intensity. The positional deviation can be eliminated by detecting with accuracy.
【0016】[0016]
【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.
【0017】図1は本発明の実施例を説明する説明図で
あって、SR−X線のシートビーム1は、ミラーである
シリンドリカルミラー2によって、SORリングの軌道
に対して垂直方向(y軸方向)に拡大され、拡大ビーム
3となって露光室(図示せず)に入射する。FIG. 1 is an explanatory view for explaining an embodiment of the present invention, in which an SR-X-ray sheet beam 1 is directed by a cylindrical mirror 2 which is a mirror in a direction perpendicular to the orbit of a SOR ring (y-axis). Direction) and becomes an expanded beam 3 which enters an exposure chamber (not shown).
【0018】シリンドリカルミラー2はミラー保持器4
に保持され、ミラー保持器4は保持器支持板5に着脱自
在に支持される。シリンドリカルミラー2、ミラー保持
器4および保持器支持板5は高真空雰囲気をもつ真空チ
ャンバー(図示せず)内に配置され、保持器支持板5を
支持してこれをy軸方向へ移動させるミラー駆動手段で
ある駆動装置6は真空チャンバーの外に配置される。The cylindrical mirror 2 is a mirror holder 4
The mirror holder 4 is detachably supported by the holder support plate 5. The cylindrical mirror 2, the mirror holder 4, and the holder support plate 5 are arranged in a vacuum chamber (not shown) having a high vacuum atmosphere, and the mirror that supports the holder support plate 5 and moves it in the y-axis direction. The driving device 6, which is a driving means, is arranged outside the vacuum chamber.
【0019】保持器支持板5の一端にはセンサー保持部
材7が固着され、センサー保持部材7は、図2に示すよ
うに、y軸方向に直列に配置された第1および第2のX
線ディテクターであるX線ディテクター8a,8bを保
持しており、各X線ディテクター8a,8bは、SR−
X線のシートビームの上縁1aおよび下縁1bの近傍に
おける所定領域内のX線をそれぞれ感知して、これに比
例する出力電流Ia,Ibを発生する。なお、各X線デ
ィテクター8a,8bには、例えば、Si等の半導体で
作られたPINダイオードが使用される。A sensor holding member 7 is fixed to one end of the retainer support plate 5, and the sensor holding member 7 has first and second Xs arranged in series in the y-axis direction as shown in FIG.
It holds X-ray detectors 8a and 8b which are X-ray detectors, and each X-ray detector 8a and 8b is SR-
The X-rays in a predetermined area near the upper edge 1a and the lower edge 1b of the X-ray sheet beam are sensed, respectively, and output currents Ia and Ib proportional thereto are generated. A PIN diode made of a semiconductor such as Si is used for each of the X-ray detectors 8a and 8b.
【0020】各X線ディテクター8a,8bの各出力電
流Ia,Ibは、演算回路である制御回路9に入力され
る。制御回路9は、各X線ディテクター8a,8bの各
出力電流Ia,Ibをそれぞれ各電圧Va,Vbに変換
するための電流電圧変換器10a,10b、電圧Va,
Vbを加算する加算器11a、該電圧を減算する減算器
11b、減算器11bの出力と加算器11aとの比(V
a−Vb)/(Va+Vb)を算出する割算器12、割
算器12の出力を基準値と比較する比較器13および比
較器13の出力eによってy駆動装置6を制御する制御
手段である制御装置14を備えている。The output currents Ia and Ib of the X-ray detectors 8a and 8b are input to the control circuit 9 which is an arithmetic circuit. The control circuit 9 includes current-voltage converters 10a and 10b for converting the output currents Ia and Ib of the X-ray detectors 8a and 8b into respective voltages Va and Vb, and voltage Va, respectively.
An adder 11a for adding Vb, a subtractor 11b for subtracting the voltage, and a ratio of the output of the subtractor 11b and the adder 11a (V
Control means for controlling the y drive device 6 by a divider 12 for calculating a−Vb) / (Va + Vb), a comparator 13 for comparing the output of the divider 12 with a reference value, and an output e of the comparator 13. The controller 14 is provided.
【0021】すなわち、比較器13の出力eは、SR−
X線のシートビーム1とシリンドリカルミラー2の反射
面との間の相対的位置ずれに高精度で比例するものであ
り、制御装置14は比較器13の出力eに応じてy駆動
装置bを制御することによって、上記の相対的位置ずれ
を自動的に解消する。That is, the output e of the comparator 13 is SR-
This is highly proportional to the relative displacement between the X-ray sheet beam 1 and the reflection surface of the cylindrical mirror 2, and the control device 14 controls the y drive device b according to the output e of the comparator 13. By doing so, the above relative positional deviation is automatically eliminated.
【0022】他方、制御回路9の加算器11aの出力
は、出力端子15を経て演算器16に入力され、X線の
強度を表す信号として露光室のシャッターのシャッター
制御手段であるシャッター制御装置17を制御する。On the other hand, the output of the adder 11a of the control circuit 9 is input to the calculator 16 via the output terminal 15 and is a shutter control device 17 which is a shutter control means of the shutter of the exposure chamber as a signal indicating the intensity of the X-ray. To control.
【0023】前述のようにシートビーム1とシリンドリ
カルミラー2との相対的位置は自動的に制御されて不変
であるため、シートビーム1がy軸方向に変位しても、
シリンドリカルミラー2と一体的に保持された各X線デ
ィテクター8a,8bのX線受光面は変動することな
く、従って各X線ディテクター8a,8bの出力電流
は、シートビームのy軸方向の変位に影響されることな
く、常にSR−X線のX線強度に比例する。As described above, since the relative position between the seat beam 1 and the cylindrical mirror 2 is automatically controlled and does not change, even if the seat beam 1 is displaced in the y-axis direction,
The X-ray receiving surfaces of the X-ray detectors 8a and 8b held integrally with the cylindrical mirror 2 do not change, and therefore, the output currents of the X-ray detectors 8a and 8b are changed by the displacement of the sheet beam in the y-axis direction. It is not affected and is always proportional to the X-ray intensity of SR-X-rays.
【0024】すなわち、演算器16に入力する信号は高
精度でSR−X線のX線強度に比例するため、演算器1
6の出力によってシャッター制御装置17を制御するこ
とで、露光室内の基板の露光量の変動を防ぐことができ
る。That is, since the signal input to the arithmetic unit 16 is highly accurate and proportional to the X-ray intensity of the SR-X-ray, the arithmetic unit 1
By controlling the shutter control device 17 by the output of 6, it is possible to prevent the exposure amount of the substrate in the exposure chamber from fluctuating.
【0025】なお、加算器11aの出力信号をX線強度
を表わす信号として演算器16に入力する替わりに、電
流電圧変換器10aまたは10bのいずれか一方のみの
出力を利用してシャッター制御装置を制御することが可
能であることはいうまでもない。Instead of inputting the output signal of the adder 11a into the calculator 16 as a signal representing the X-ray intensity, the shutter controller is operated by using the output of only one of the current-voltage converter 10a or 10b. It goes without saying that it is possible to control.
【0026】[0026]
【発明の効果】本発明は上述のとおり構成されているの
で、以下に記載するような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0027】ノイズおよびX線のy軸方向の移動に影響
を受けることなく、高精度でX線強度を測定することが
できるため、X線強度変化に応じたシャッターの制御を
高精度で行うことが可能であり、基板上の均一な露光を
実現することが容易である。Since the X-ray intensity can be measured with high accuracy without being affected by noise and movement of the X-ray in the y-axis direction, the shutter can be controlled with high accuracy according to changes in the X-ray intensity. It is possible to realize uniform exposure on the substrate.
【0028】また、露光室内にX線強度測定のための電
極板を必要とせず、高電圧電源回路を使用することもな
いため、露光室の小形化に役立ち、安全性も高い。Further, since the electrode plate for measuring the X-ray intensity is not required in the exposure chamber and the high voltage power supply circuit is not used, the exposure chamber can be downsized and the safety is high.
【図1】本実施例を説明する説明図である。FIG. 1 is an explanatory diagram illustrating a present embodiment.
【図2】シリンドリカルミラーの模式正面立面図であ
る。FIG. 2 is a schematic front elevational view of a cylindrical mirror.
【図3】従来例を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional example.
1 シートビーム 2 シリンドリカルミラー 3 拡大ビーム 6 y駆動装置 8a,8b X線ディテクター 9 制御装置 11a 加算器 11b 減算器 14 制御装置 16 演算器 17 シャッター制御装置 DESCRIPTION OF SYMBOLS 1 sheet beam 2 cylindrical mirror 3 expansion beam 6 y drive device 8a, 8b X-ray detector 9 controller 11a adder 11b subtractor 14 controller 16 calculator 17 shutter controller
Claims (3)
ーを、該ミラーの反射面に対して垂直方向に移動させる
ミラー駆動手段と、前記SR−X線の前記垂直方向の変
位を検出するために前記ミラーとともに移動する第1の
X線ディテクター及び第2のX線ディテクターと、第1
及び第2のX線ディテクターの出力によって前記ミラー
駆動手段を制御する制御手段と、少くとも前記第1又は
第2のX線ディテクターの出力によって前記SR−X線
のX線強度を算出する演算器とからなるX線露光装置。1. Mirror driving means for moving a mirror for enlarging SR-X-rays in a desired direction in a direction perpendicular to a reflection surface of the mirror, and detecting displacement of the SR-X-rays in the vertical direction. A first X-ray detector and a second X-ray detector that move with the mirror to
And control means for controlling the mirror driving means by the output of the second X-ray detector, and an arithmetic unit for calculating the X-ray intensity of the SR-X-ray by at least the output of the first or second X-ray detector. An X-ray exposure apparatus consisting of
ミラーの反射面に対して垂直方向に直列に配置されてお
り、制御手段が、前記第1および第2のX線ディテクタ
ーの出力の和および差によって前記ミラーの変位を算出
する演算回路を備えており、SR−X線のX線強度を算
出する演算器が、前記第1および第2のX線ディテクタ
ーの出力の和又はどちらか一方の出力によってSR−X
線のX線強度を算出することを特徴とする請求項1記載
のX線露光装置。2. The first and second X-ray detectors,
The control means is arranged in series in the vertical direction with respect to the reflection surface of the mirror, and the control means includes an arithmetic circuit for calculating the displacement of the mirror by the sum and difference of the outputs of the first and second X-ray detectors. And an arithmetic unit that calculates the X-ray intensity of the SR-X-rays uses the sum of the outputs of the first and second X-ray detectors or one of the outputs of the SR-X-rays.
The X-ray exposure apparatus according to claim 1, wherein the X-ray intensity of the rays is calculated.
ッターの露光時間を制御するシャッター制御手段が設け
られていることを特徴とする請求項1または2記載のX
線露光装置。3. The X according to claim 1 or 2, further comprising shutter control means for controlling an exposure time of the shutter according to a variation in the calculated X-ray intensity.
Line exposure device.
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP03311836A JP3143505B2 (en) | 1991-10-30 | 1991-10-30 | X-ray exposure equipment |
| SG1996009700A SG50723A1 (en) | 1991-09-30 | 1992-09-30 | X-ray exposure apparatus |
| CA002079562A CA2079562C (en) | 1991-09-30 | 1992-09-30 | X-ray exposure apparatus |
| DE69225378T DE69225378T2 (en) | 1991-09-30 | 1992-09-30 | X-ray exposure device and method |
| EP92308909A EP0540178B1 (en) | 1991-09-30 | 1992-09-30 | X-ray exposure apparatus and method for using it |
| US08/275,661 US5448612A (en) | 1991-09-30 | 1994-07-15 | X-ray exposure apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP03311836A JP3143505B2 (en) | 1991-10-30 | 1991-10-30 | X-ray exposure equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH05129188A true JPH05129188A (en) | 1993-05-25 |
| JP3143505B2 JP3143505B2 (en) | 2001-03-07 |
Family
ID=18021988
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP03311836A Expired - Fee Related JP3143505B2 (en) | 1991-09-30 | 1991-10-30 | X-ray exposure equipment |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3143505B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5606586A (en) * | 1992-09-14 | 1997-02-25 | Canon Kabushiki Kaisha | X-ray exposure method and apparatus and device manufacturing method |
| US7061580B2 (en) | 2003-04-15 | 2006-06-13 | Canon Kabushiki Kaisha | Exposure apparatus and device fabrication method |
-
1991
- 1991-10-30 JP JP03311836A patent/JP3143505B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5606586A (en) * | 1992-09-14 | 1997-02-25 | Canon Kabushiki Kaisha | X-ray exposure method and apparatus and device manufacturing method |
| US7061580B2 (en) | 2003-04-15 | 2006-06-13 | Canon Kabushiki Kaisha | Exposure apparatus and device fabrication method |
| US7253878B2 (en) | 2003-04-15 | 2007-08-07 | Canon Kabushiki Kaisha | Exposure apparatus and device fabrication method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3143505B2 (en) | 2001-03-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0077878B1 (en) | Exposure process for transferring a mask pattern to a wafer | |
| US7123997B2 (en) | Gap adjustment apparatus and gap adjustment method for adjusting gap between two objects | |
| US6724463B2 (en) | Projection exposure apparatus and method | |
| EP0357425B1 (en) | An exposure apparatus | |
| US7205741B2 (en) | Planar motor initialization method, planar motor, lithographic apparatus and device manufacturing method | |
| EP0083413B1 (en) | Autofocus arrangement for electron-beam lithographic systems | |
| JP3143505B2 (en) | X-ray exposure equipment | |
| TW201712438A (en) | Lithographic apparatus and method | |
| JP5009381B2 (en) | Gas contamination sensor, lithographic apparatus, method for determining contaminant gas level and device manufacturing method | |
| US7800079B2 (en) | Assembly for detection of radiation flux and contamination of an optical component, lithographic apparatus including such an assembly and device manufacturing method | |
| Furst et al. | Synchrotron ultraviolet radiation facility (SURF II) radiometric instrumentation calibration facility | |
| US6847696B2 (en) | Synchrotron radiation measurement apparatus, X-ray exposure apparatus, and device manufacturing method | |
| JPH088167A (en) | Stage origin position determining method and device and stage position detector origin determining method and device | |
| JPH09203739A (en) | Probe position controller and scanning near-field microscope | |
| Taniguchi et al. | X-ray exposure system with plasma source for microlithography | |
| EP4318132A1 (en) | Contamination measurement | |
| FR2837931B1 (en) | DEVICE FOR MEASURING THE X-RAY EMISSION PRODUCED BY AN OBJECT SUBJECT TO AN ELECTRON BEAM | |
| US20050219500A1 (en) | Driving control apparatus and method, and exposure apparatus | |
| JPS6064238A (en) | X-ray analyzing apparatus using electron beam | |
| JPH0221553A (en) | Electron ray length-measuring device | |
| CA1203905A (en) | Scanning electron microscope calibration apparatus and method for making precise quantitative measurements on a scanned object | |
| JPH10289866A (en) | Synchrotron radiation light intensity measuring device and X-ray exposure apparatus equipped with the intensity measuring device | |
| JPH0652699B2 (en) | Exposure equipment | |
| JP3284574B2 (en) | Surface position setting apparatus, exposure apparatus and method | |
| JP2700416B2 (en) | Exposure equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |