[go: up one dir, main page]

JPH05135795A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH05135795A
JPH05135795A JP3320924A JP32092491A JPH05135795A JP H05135795 A JPH05135795 A JP H05135795A JP 3320924 A JP3320924 A JP 3320924A JP 32092491 A JP32092491 A JP 32092491A JP H05135795 A JPH05135795 A JP H05135795A
Authority
JP
Japan
Prior art keywords
gas
fuel
separator
cell
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3320924A
Other languages
Japanese (ja)
Inventor
Isamu Yasuda
勇 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3320924A priority Critical patent/JPH05135795A/en
Publication of JPH05135795A publication Critical patent/JPH05135795A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

(57)【要約】 【目的】 固体電解質型燃料電池の単電池面内のガスと
燃料の反応を均一化し、温度分布・熱応力分布を緩和し
て、耐久性と性能を向上する。 【構成】 燃料ガスと酸化剤ガスを同一方向に流し、各
単電池の末端において排出される燃料ガスと酸化剤ガス
とを外部に放散し、その場において燃焼させる構造にし
た。
(57) [Summary] [Purpose] The reaction of gas and fuel within the cell surface of a solid oxide fuel cell is made uniform, temperature distribution and thermal stress distribution are relaxed, and durability and performance are improved. [Structure] The fuel gas and the oxidant gas were made to flow in the same direction, and the fuel gas and the oxidant gas discharged at the end of each unit cell were diffused to the outside and burned on the spot.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池に
関する。
FIELD OF THE INVENTION The present invention relates to a solid oxide fuel cell.

【0002】[0002]

【従来技術】最近、酸素と水素を燃料として、燃料が本
来持っている化学エネルギーを直接電気にする燃料電池
が、省資源、環境保護などの観点から注目されており、
とくに固体電解質型燃料電池は、動作温度が800〜1
000°Cと高いことから、リン酸型、溶融炭酸塩型の
燃料電池に比べて原理的に発電効率が高く、排熱利用を
有効に行うことができ、構成材料がすべて固体であり取
扱が容易であるなどの多くの利点を有するため、研究開
発が進んできている。
2. Description of the Related Art Recently, fuel cells, which use oxygen and hydrogen as fuels and directly convert the chemical energy originally possessed by the fuels into electricity, have been attracting attention from the viewpoints of resource saving and environmental protection.
Particularly, the solid oxide fuel cell has an operating temperature of 800 to 1
Since it is as high as 000 ° C, compared with phosphoric acid type and molten carbonate type fuel cells, power generation efficiency is higher in principle, waste heat can be effectively utilized, and the constituent materials are all solid Since it has many advantages such as being easy, research and development is progressing.

【0003】図4は従来の固体電解質型燃料電池の基本
構造を示す分解斜視図であり、上層から単電池12、セ
パレータ(インターコネクターとも称する)13、単電
池12、セパレータ13の順に積層され、一体に固定さ
れて固体電解質型燃料電池(以下スタックと略称する)
を構成する。この構成においては、セパレータ13が各
単電池12を互いに気密的に隔離し且つ隣接する単電池
12同士を次々に直列に電気的に接続するようになって
いる。
FIG. 4 is an exploded perspective view showing the basic structure of a conventional solid oxide fuel cell, in which a unit cell 12, a separator (also referred to as an interconnector) 13, a unit cell 12 and a separator 13 are laminated in this order from the upper layer, Solid electrolyte fuel cell fixed together (hereinafter abbreviated as stack)
Make up. In this structure, the separator 13 hermetically isolates the individual cells 12 from each other and electrically connects the adjacent single cells 12 in series one after another.

【0004】単電池12は図4に示すように平板状固体
電解質層10の表面に空気極11aと裏面に燃料極11
bとが配置されている。これらの極11a,11bのそ
れぞれの表面に酸化剤ガス(空気)14と燃料ガス15
を流通させることにより、両極間に起電力を発生するこ
とができる。ガスと空気極11aまたは燃料極11bと
の反応を均一にして起電力を能率的に発生させるため図
4に示すようにセパレータ13の両面に複数の溝16が
整然と刻まれている。図4に示すものはスタックの外部
にマニホールド(図示せず)を取り付け、このマニホー
ルドからガス(燃料ガスおよび酸化剤ガス)を供給し、
セパレータの溝16を通じて空気極11aおよび燃料極
11bに供給するようになっている。
As shown in FIG. 4, the unit cell 12 has an air electrode 11a on the surface of the flat solid electrolyte layer 10 and a fuel electrode 11 on the back surface.
b and are arranged. An oxidant gas (air) 14 and a fuel gas 15 are formed on the respective surfaces of the electrodes 11a and 11b.
By circulating, the electromotive force can be generated between both electrodes. In order to make the reaction between the gas and the air electrode 11a or the fuel electrode 11b uniform and efficiently generate electromotive force, a plurality of grooves 16 are regularly formed on both surfaces of the separator 13 as shown in FIG. As shown in FIG. 4, a manifold (not shown) is attached to the outside of the stack, and gas (fuel gas and oxidant gas) is supplied from this manifold,
The gas is supplied to the air electrode 11a and the fuel electrode 11b through the groove 16 of the separator.

【0005】一方、マニホールドからガスを供給するの
ではなくて、単電池とセパレータの周縁部に孔を設け、
単電池とセパレータとを積層したときこれらの孔がそろ
ってガス通路を形成するようにした構造の燃料電池も知
られている。例えば、特開平3−225771号に記載
されている。
On the other hand, instead of supplying gas from the manifold, holes are provided in the peripheral portions of the unit cell and the separator,
There is also known a fuel cell having a structure in which when a unit cell and a separator are stacked, these holes are aligned to form a gas passage. For example, it is described in JP-A-3-225771.

【0006】[0006]

【発明が解決しようとする課題】従来、このようにセパ
レータ13の表面にガス通路としての溝16を複数列設
け、ガスを吹き出し孔からセパレータ内に均等に供給し
ても、ガスの入口側である上流と出口側である下流では
その流量や濃度に差を生じ、その結果電池反応が一様に
起こらず、単電池ひいてはスタックの内部の温度分布が
不均一となり、上流で高く下流で低くなる。
Conventionally, even if a plurality of rows of grooves 16 as gas passages are provided on the surface of the separator 13 and the gas is evenly supplied into the separator through the blow-out holes, the gas inlet side is not provided. There is a difference in the flow rate and concentration between the upstream side and the outlet side, which is the outlet side, and as a result, the cell reaction does not occur uniformly, and the temperature distribution inside the cells and even in the stack becomes non-uniform, which is high upstream and low downstream. ..

【0007】図5は図4に示すスタックの作動温度分布
図を示し、(a)はガスと空気(酸化剤ガス)がセパレ
ータの中を直交して流れる直交流式の作動温度分布図を
示し、(b)はガスと空気が平行に流れる並行流式の作
動温度分布図を示す。いづれの図においても入口側が高
温、出口側が低温となっている。この結果スタックの平
面熱応力分布が均一でなくなり、熱歪を生じて耐久性が
劣化し且つ電池の出力が低下する。
FIG. 5 shows an operating temperature distribution diagram of the stack shown in FIG. 4, and FIG. 5 (a) shows a cross-flow type operating temperature distribution diagram in which gas and air (oxidant gas) flow orthogonally in the separator. , (B) show a parallel flow type operating temperature distribution chart in which gas and air flow in parallel. In each figure, the inlet side is hot and the outlet side is cold. As a result, the planar thermal stress distribution of the stack becomes non-uniform, thermal strain occurs, durability deteriorates, and the output of the battery decreases.

【0008】本発明は上述の点に鑑みてなされたもの
で、固体電解質型燃料電池の単電池面内のガスと燃料と
の反応を均一化し、よって温度分布したがって熱応力分
布を緩和し、電池の耐久性を向上し且つ出力を増大する
ことを目的とする。
The present invention has been made in view of the above points, and makes the reaction between the gas and the fuel in the cell surface of the solid oxide fuel cell uniform, thereby relaxing the temperature distribution and thus the thermal stress distribution. It is intended to improve the durability of and improve the output.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、固体電解質層を挟むように燃料極と空気極
を配置してなる平板状単電池と、前記単電池を電気的に
直列に接続し且つ該単電池の燃料極に燃料ガスを分配
し、空気極に酸化剤ガスを分配するセパレータとを交互
に積層して構成された固体電解質型燃料電池において、
前記セパレータの表面と裏面には同一方向のガス通路と
しての溝を形成し、燃料ガスおよび酸化剤ガスとを同一
方向に流し、単電池のガス排出側端部において排気され
る燃料ガスと酸化剤ガスとを外部に放散し、その場にお
いて燃焼させるようにした。
In order to solve the above-mentioned problems, the present invention provides a plate-shaped unit cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer, and the unit cell is electrically connected. In a solid oxide fuel cell, which is connected in series and distributes fuel gas to the fuel electrode of the unit cell, and is alternately laminated with separators that distribute oxidant gas to the air electrode,
A groove as a gas passage in the same direction is formed on the front surface and the back surface of the separator, and the fuel gas and the oxidant gas are caused to flow in the same direction, and the fuel gas and the oxidant exhausted at the gas discharge side end of the unit cell. The gas and the gas were diffused to the outside and burned on the spot.

【0010】[0010]

【作用】上記のように、スタックの単電池の各電極面に
それぞれ燃料ガスまたは酸化剤ガスを同一方向に流し、
単電池の末端において排ガスを放出し、その場において
燃焼させるようにしたので、ガスの下流部分の温度が高
くなり、ガスの上流と下流の温度差が少なくなり、その
結果熱応力分布が緩和される。
As described above, the fuel gas or the oxidant gas is made to flow in the same direction on each electrode surface of the unit cells of the stack,
Since the exhaust gas is released at the end of the unit cell and burned on the spot, the temperature of the downstream portion of the gas becomes high, the temperature difference between the upstream and downstream of the gas becomes small, and as a result, the thermal stress distribution is relaxed. It

【0011】[0011]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0012】本発明による固体電解質型燃料電池のスタ
ックは図1に示した単電池12と図2に示したセパレー
タ9とを、パッキング(図示せず)を介在させて交互に
積層し、一体的に固定したものである。
In the stack of the solid oxide fuel cell according to the present invention, the unit cells 12 shown in FIG. 1 and the separator 9 shown in FIG. 2 are alternately laminated with a packing (not shown) interposed therebetween to form an integral body. It is fixed to.

【0013】さて、図1は単電池12を示し、(a)が
平面図、(b)が正面図である。固体電解質層10とし
てのイットリア安定化ジルコニア(YSZ)焼結体の表
面に空気極11aとして(La,Sr)MnO3 を、裏
面に燃料極11bとしてNi/YSZサーメットを、ス
クリーン印刷などによりコーティングし、空気中で所定
の温度で焼き付けて製造する。固体電解質層10の電極
11a,11bの付着されていない縁部すなわち辺部に
ガス給排気用の孔すなわち空気給気孔1、燃料ガス給気
孔2が単電池12の片方の辺部にまとめて穿孔されてい
る。これらの給気孔1、2は単電池12を積層する過程
で連結し、スタック内部にガス通路を形成する。
FIG. 1 shows the unit cell 12, (a) is a plan view and (b) is a front view. The surface of the yttria-stabilized zirconia (YSZ) sintered body as the solid electrolyte layer 10 is coated with (La, Sr) MnO 3 as the air electrode 11a and Ni / YSZ cermet as the fuel electrode 11b on the back surface by screen printing or the like. It is manufactured by baking in air at a predetermined temperature. Holes for gas supply / exhaust, that is, air supply holes 1 and fuel gas supply holes 2 are collectively formed on one side of the unit cell 12 at edges or sides where the electrodes 11a and 11b of the solid electrolyte layer 10 are not attached. Has been done. These air supply holes 1 and 2 are connected in the process of stacking the unit cells 12 to form a gas passage inside the stack.

【0014】図2と図3はセパレータを示し、それぞれ
(a)は平面図、(b)は(a)のX−X’断面図、
(c)は(a)のY−Y’断面図、(d)は(a)のZ
−Z’断面図、(e)は(a)のW−W’断面図であ
る。図2に示すセパレータ9はスタックの途中に積層さ
れるもの、図3に示すセパレータ9’はスタックの最上
下面に配置されるものを示す。
2 and 3 show a separator, (a) is a plan view, (b) is a sectional view taken along line XX 'of (a),
(C) is a cross-sectional view taken along line YY 'of (a), (d) is Z of (a).
-Z 'sectional view, (e) is a WW' sectional view of (a). The separator 9 shown in FIG. 2 is one that is stacked in the middle of the stack, and the separator 9 ′ shown in FIG. 3 is that that is arranged on the uppermost lower surface of the stack.

【0015】セパレータ9、9’は例えば特開平2−1
11632号に開示されているカルシウムド−プランタ
ンクロマイトを加圧成型した後に空気中で焼成して得ら
れた平板状焼結体であり、その辺部にガス給排気用の孔
すなわち単電池の電極面にガスを供給または排ガスを集
合するために、空気給気孔1、燃料ガス給気孔2、空気
排気孔3、燃料ガス排気孔4、空気噴出孔5、燃料ガス
噴出孔6が穿孔されている。さらに電極面のすみずみに
ガスを均等に分配するため、また単電池どうしを直列に
接続するため、セパレータ9の両面には、図2(b)に
示すように溝16が形成され、セパレータ9’には図3
(b)に示すように片面のみに溝16が形成されてい
る。セパレータ9の表側と裏側の溝16は平行に形成さ
れている。図2(a)において、空気給気孔1と燃料ガ
ス給気孔2はセパレータ9の片方の辺部にまとめて設け
られている。また図2(b)に示すように、空気排気孔
3と燃料ガス排気孔4はセパレータ9の反対側の辺部に
おいて、セパレータ9の表側と裏側にまとめて形成され
ている。
The separators 9 and 9'are, for example, Japanese Patent Laid-Open No. 2-1.
A flat plate-like sintered body obtained by press-molding calcium dope plantan chromite disclosed in No. 11632 and then firing in air, in which holes for gas supply and exhaust, that is, electrodes of a single cell Air supply holes 1, fuel gas supply holes 2, air exhaust holes 3, fuel gas exhaust holes 4, air ejection holes 5, and fuel gas ejection holes 6 are formed in order to supply gas to the surface or collect exhaust gas. .. Further, in order to evenly distribute the gas throughout the electrode surface and to connect the unit cells in series, grooves 16 are formed on both surfaces of the separator 9 as shown in FIG. 'In Figure 3
As shown in (b), the groove 16 is formed only on one surface. The grooves 16 on the front side and the back side of the separator 9 are formed in parallel. In FIG. 2A, the air supply hole 1 and the fuel gas supply hole 2 are collectively provided on one side of the separator 9. Further, as shown in FIG. 2B, the air exhaust hole 3 and the fuel gas exhaust hole 4 are collectively formed on the front side and the back side of the separator 9 on the side opposite to the separator 9.

【0016】上述の構成になる単電池12とセパレータ
9を、パッキングを間に挟んで交互に積層することによ
り本発明にかかる固体電解質型燃料電池を組み立てるこ
とができる。燃料ガスと酸化剤ガスをスタックの最上下
面から給気管により同一方向に流すとセパレータの各噴
出孔5、6に達する。噴出孔5、6から噴出した各ガス
はセパレータ9と単電池12との間に作られた空気室7
または燃料ガス室8に入り、各電極面上を流れて電池反
応に消費される。ガスの上流部分すなわち給気孔に近い
部分は電池反応が強く高温となり、ガスの下流部分すな
わち排気孔の近くは低温となる。セパレータ9、9’の
一方の辺部の各排気口3、4に集合した排ガスはここか
ら外部へ排出される。すなわち図2(b)にX−X’断
面図として示すように、セパレータ9の一方の辺部の表
側に在る空気排気孔3に排空気が集合し、且つ裏側に在
る燃料ガス排気孔4に燃料排ガスが集合する。この両排
気孔3、4は接近している。
A solid oxide fuel cell according to the present invention can be assembled by alternately stacking the unit cells 12 and the separator 9 having the above-described structure with a packing sandwiched therebetween. When the fuel gas and the oxidant gas are made to flow in the same direction from the uppermost lower surface of the stack by the air supply pipe, they reach the ejection holes 5 and 6 of the separator. Each gas ejected from the ejection holes 5 and 6 is an air chamber 7 formed between the separator 9 and the unit cell 12.
Alternatively, the fuel gas enters the fuel gas chamber 8, flows on each electrode surface, and is consumed by the cell reaction. The cell reaction is strong in the upstream portion of the gas, that is, the portion near the air supply hole, and the temperature is high, and the temperature is low in the downstream portion of the gas, that is, near the exhaust hole. The exhaust gas collected in the exhaust ports 3 and 4 on one side of the separators 9 and 9'is discharged from here. That is, as shown in FIG. 2B as a cross-sectional view taken along the line XX ′, exhaust air is collected in the air exhaust holes 3 on the front side of one side of the separator 9, and the fuel gas exhaust holes on the back side are collected. Fuel exhaust gas gathers in 4. The two exhaust holes 3 and 4 are close to each other.

【0017】排気孔4から排出される燃料排ガスには未
反応の燃料が10%以上含まれているので、これが排気
孔4の付近で排気孔3の空気と混合して燃焼する。その
結果単電池の末端部分の温度を上昇させ、給気孔に近い
部分の高温度に接近させ、電池面内の温度分布を緩和す
ることができる。
Since the fuel exhaust gas discharged from the exhaust hole 4 contains 10% or more of unreacted fuel, it is mixed with the air in the exhaust hole 3 and burns in the vicinity of the exhaust hole 4. As a result, the temperature of the terminal portion of the unit cell can be raised to approach the high temperature of the portion close to the air supply hole, and the temperature distribution in the cell surface can be relaxed.

【0018】[0018]

【発明の効果】以上詳細に説明したように、本発明にお
いては、スタック内の単電池に燃料ガスと酸化剤ガス
(空気)を各給気孔から同一方向に流し、単電池の側端
において各排気口から排出される燃料ガスと空気を外部
に放出し、その場において燃焼させるようにしたので、
単電池9の排気孔に近い部分の温度が高くなって給気孔
に近い部分の温度まで近づけるため、単電池およびセパ
レータの温度分布が比較的均一になり、熱応力分布の不
均一による熱歪がなくなり、スタックの耐久性と性能が
向上するという優れた効果が得られる。
As described above in detail, in the present invention, the fuel gas and the oxidant gas (air) are made to flow in the same direction from the air supply holes to the unit cells in the stack, and the fuel gas and the oxidant gas (air) are made to flow in the same direction at the side ends of the unit cells. Since the fuel gas and air discharged from the exhaust port are released to the outside and burned on the spot,
Since the temperature of the portion of the unit cell 9 close to the exhaust hole becomes high and approaches the temperature of the portion close to the air supply port, the temperature distribution of the unit cell and the separator becomes relatively uniform, and thermal strain due to non-uniform thermal stress distribution occurs. It has the excellent effect of improving the stack durability and performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による固体電解質型燃料電池の単電池の
構造を示し、(a)は平面図、(b)は正面図である。
FIG. 1 shows a structure of a unit cell of a solid oxide fuel cell according to the present invention, (a) is a plan view and (b) is a front view.

【図2】本発明による固体電解質型燃料電池のセパレー
タの構造を示し、(a)は平面図であり、(b)は
(a)のX−X’断面図、(c)は(a)のY−Y’断
面図、(d)は(a)のZ−Z’断面図、(e)は
(a)のW−W’断面図である。
FIG. 2 shows a structure of a solid oxide fuel cell separator according to the present invention, (a) is a plan view, (b) is a sectional view taken along line XX ′ of (a), and (c) is (a). Is a sectional view taken along the line YY ', (d) is a sectional view taken along the line ZZ' of (a), and (e) is a sectional view taken along the line WW 'of (a).

【図3】本発明による固体電解質型燃料電池の最上下面
に配置されるセパレータの構造を示し、(a)は平面図
であり、(b)は(a)のX−X’断面図、(c)は
(a)のY−Y’断面図、(d)は(a)のZ−Z’断
面図、(e)は(a)のW−W’断面図である。
FIG. 3 shows a structure of a separator arranged on the upper and lower surfaces of a solid oxide fuel cell according to the present invention, (a) is a plan view, (b) is a sectional view taken along line XX ′ of (a), 3C is a sectional view taken along the line YY ′ of FIG. 7A, FIG. 7D is a sectional view taken along the line ZZ ′ of FIG.

【図4】従来の固体電解質型燃料電池のスタックの分解
斜視図である。
FIG. 4 is an exploded perspective view of a stack of a conventional solid oxide fuel cell stack.

【図5】従来の固体電解質型燃料電池の作動温度分布図
で、(a)は直交流式のものを示し、(b)は並行流式
のものを示す。
FIG. 5 is an operating temperature distribution diagram of a conventional solid oxide fuel cell, in which (a) shows a cross flow type and (b) shows a parallel flow type.

【符号の説明】[Explanation of symbols]

1 空気給気孔 2 燃料ガス給気孔 3 空気排気孔 4 燃料ガス排気孔 5 空気噴出孔 6 燃料ガス噴出孔 7 空気室 8 燃料ガス室 9、9 セパレータ 10 固体電解質層 11a 空気極 11b 燃料極 12 単電池 1 Air Supply Hole 2 Fuel Gas Supply Hole 3 Air Exhaust Hole 4 Fuel Gas Exhaust Hole 5 Air Jet Hole 6 Fuel Gas Jet Hole 7 Air Chamber 8 Fuel Gas Chamber 9, 9 Separator 10 Solid Electrolyte Layer 11a Air Electrode 11b Fuel Electrode 12 Single battery

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質層を挟むように燃料極と空気
極を配置してなる平板状単電池と、前記単電池を電気的
に直列に接続し且つ燃料極に燃料ガスを分配し空気極に
酸化剤ガスを分配するセパレータとを交互に積層して構
成された固体電解質型燃料電池において、前記セパレー
タの表面と裏面には同一方向のガス通路としての溝を形
成し、燃料ガスと酸化剤ガスを単電池の同一方向に流
し、単電池のガス排出側端部において排気される燃料ガ
スと酸化剤ガスを外部に放散し、その場において燃焼さ
せるように構成したことを特徴とする固体電解質型燃料
電池。
1. A flat plate-shaped unit cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer, and the unit cell is electrically connected in series and a fuel gas is distributed to the fuel electrode to form an air electrode. In a solid oxide fuel cell constituted by alternately stacking separators for distributing an oxidant gas, a groove as a gas passage in the same direction is formed on the front surface and the back surface of the separator, and the fuel gas and the oxidizer are formed. A solid electrolyte characterized in that the gas is made to flow in the same direction of the unit cell, the fuel gas and the oxidant gas exhausted at the gas discharge side end of the unit cell are diffused to the outside, and burned on the spot. Type fuel cell.
JP3320924A 1991-11-08 1991-11-08 Solid electrolyte fuel cell Withdrawn JPH05135795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3320924A JPH05135795A (en) 1991-11-08 1991-11-08 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3320924A JPH05135795A (en) 1991-11-08 1991-11-08 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH05135795A true JPH05135795A (en) 1993-06-01

Family

ID=18126803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3320924A Withdrawn JPH05135795A (en) 1991-11-08 1991-11-08 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH05135795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8039169B2 (en) 2005-12-28 2011-10-18 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US9401515B2 (en) 2005-12-28 2016-07-26 Honda Motor Co., Ltd. Fuel cell and fuel cell stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8039169B2 (en) 2005-12-28 2011-10-18 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US9401515B2 (en) 2005-12-28 2016-07-26 Honda Motor Co., Ltd. Fuel cell and fuel cell stack

Similar Documents

Publication Publication Date Title
JP3930045B2 (en) Fuel cell module having a multi-fuel cell stack
US4476197A (en) Integral manifolding structure for fuel cell core having parallel gas flow
US4761349A (en) Solid oxide fuel cell with monolithic core
CA1269699A (en) Serially connected solid oxide fuel cells having monolithic cores
EP2980904B1 (en) Fuel battery
JPH04292865A (en) Solid electrolytic fuel cell
JPH0447951B2 (en)
JPS60100377A (en) Fuel cell
WO2016157880A1 (en) Flat plate type fuel cell
JPH10308227A (en) Solid polymer electrolyte fuel cell
JPH04237962A (en) Flat type solid electrolyte fuel cell
JP6498992B2 (en) Flat fuel cell
JPH05159790A (en) Solid oxide fuel cell
JPH10189017A (en) Gas seal structure of honeycomb structured solid oxide fuel cell
JPH03266365A (en) Solid oxide fuel cell separator
JP2010232181A (en) Current collecting member, fuel cell stack and fuel cell
JPH06349512A (en) Fuel cell
EP1852929B1 (en) Solid oxide fuel cell
JP4745622B2 (en) Current collecting member, fuel cell stack and fuel cell
JPS62200666A (en) Fuel cell
JPH05135795A (en) Solid electrolyte fuel cell
US20190288322A1 (en) Electrochemical cell stack
JP6797153B2 (en) Electrochemical reaction cell stack
JP2005216642A (en) Solid oxide fuel cell
JPH02284362A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204