[go: up one dir, main page]

JPH05133921A - Humidity sensor and manufacturing method thereof - Google Patents

Humidity sensor and manufacturing method thereof

Info

Publication number
JPH05133921A
JPH05133921A JP29447691A JP29447691A JPH05133921A JP H05133921 A JPH05133921 A JP H05133921A JP 29447691 A JP29447691 A JP 29447691A JP 29447691 A JP29447691 A JP 29447691A JP H05133921 A JPH05133921 A JP H05133921A
Authority
JP
Japan
Prior art keywords
humidity sensor
humidity
fluorine
moisture
containing polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29447691A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Masahisa Ikejiri
昌久 池尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29447691A priority Critical patent/JPH05133921A/en
Publication of JPH05133921A publication Critical patent/JPH05133921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

(57)【要約】 (修正有) 【構成】 酸化物粒子と無機塩の熱処理生成物を主成分
とする感湿体3を用いた湿度センサにおいて、感湿体表
面に溶剤可溶性含フッ素高分子溶液を塗布することによ
り、感湿体上に含フッ素高分子層4を形成し、感湿特性
を維持したまま水溶液や一般有機溶媒を排除することを
特徴とする湿度センサ。 【効果】 電解液が接触しても特性が変わらず、高精度
で信頼性が高い湿度センサを達成できた。しかも容易な
プロセスで作製することができるため、低コストで高精
度かつ信頼性の高い湿度センサとして、湿度計測、湿度
制御を必要とする分野に広く応用することができる。ま
た、携帯する用途にも用いることができる。
(57) [Summary] (Modified) [Constitution] In a humidity sensor using a humidity sensitive body 3 comprising a heat treatment product of oxide particles and an inorganic salt as a main component, a solvent-soluble fluorine-containing polymer is formed on the surface of the moisture sensitive body. A humidity sensor characterized in that a fluorine-containing polymer layer 4 is formed on a moisture sensitive body by applying a solution, and an aqueous solution or a general organic solvent is eliminated while maintaining the moisture sensitive property. [Effect] The characteristics did not change even when the electrolyte was contacted, and a highly accurate and highly reliable humidity sensor could be achieved. Moreover, since it can be manufactured by an easy process, it can be widely applied as a low-cost, highly accurate and highly reliable humidity sensor to fields requiring humidity measurement and humidity control. It can also be used for portable purposes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿度に対応して素子の
電気的特性が変化することにより湿度を検出する湿度セ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity sensor for detecting humidity by changing electric characteristics of an element in response to humidity.

【0002】[0002]

【従来の技術】近年、湿度計測、湿度制御を必要とする
分野が増加し、湿度センサの重要性が認められるように
なった。
2. Description of the Related Art In recent years, the number of fields requiring humidity measurement and humidity control has increased, and the importance of humidity sensors has come to be recognized.

【0003】湿度に対応して素子の電気的特性が変化す
ることにより湿度を検出する湿度センサには、電解質
系、金属系、高分子系、セラミックス系等があり、それ
ぞれいろいろな系が研究されているが、現在実用化され
ているものは、高分子系およびセラミックス系の湿度セ
ンサである。いずれも、素子に対する水の吸脱着によ
り、素子の抵抗値または静電容量が変化する性質を利用
したものである。
Humidity sensors that detect humidity by varying the electrical characteristics of the element in response to humidity include electrolyte-based, metal-based, polymer-based, and ceramic-based humidity sensors, and various systems have been studied. However, what is currently put into practical use is a polymer-based and ceramic-based humidity sensor. Both of them utilize the property that the resistance value or the capacitance of the element changes due to the adsorption and desorption of water with respect to the element.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の湿度セ
ンサは、感湿体が電解液に接触すると著しい劣化が起こ
り、電解質の付着のため再生は不可能であった。そのた
め海水、汗、飲料水等が関与する条件下では使用するこ
とができなかった。
However, in the conventional humidity sensor, when the humidity sensitive body comes into contact with the electrolytic solution, the humidity sensor is remarkably deteriorated and the electrolyte cannot be regenerated due to the adhesion of the electrolyte. Therefore, it could not be used under conditions involving seawater, sweat, drinking water and the like.

【0005】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは、電解液が接触して
も特性が変わらず、高精度で信頼性が高い湿度センサを
提供するところにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to provide a highly accurate and highly reliable humidity sensor whose characteristics do not change even when the electrolytic solution comes into contact therewith. It is in.

【0006】[0006]

【課題を解決するための手段】本発明の湿度センサは、
酸化物粒子と無機塩の熱処理生成物を主成分とする感湿
体上に、含フッ素高分子層が形成されていることを特徴
とする。
The humidity sensor of the present invention comprises:
It is characterized in that a fluorine-containing polymer layer is formed on a moisture-sensitive material mainly composed of a heat-treated product of oxide particles and an inorganic salt.

【0007】また、本発明の湿度センサの製造方法は、
酸化物粒子と無機塩の熱処理生成物を主成分とする感湿
体を用いた湿度センサにおいて、感湿体表面に溶剤可溶
性含フッ素高分子溶液を塗布することにより、感湿体上
に含フッ素高分子層を形成することを特徴とする。
The method of manufacturing the humidity sensor of the present invention is
In a humidity sensor using a moisture-sensitive material whose main component is a heat-treated product of oxide particles and an inorganic salt, a solvent-soluble fluorine-containing polymer solution is applied to the surface of the moisture-sensitive material so that the moisture-containing material has a fluorine-containing content. It is characterized by forming a polymer layer.

【0008】[0008]

【作用】感湿体の撥水処理は、液体を完全に排除しなけ
ればならないため、水との接触角が少なくとも90度以
上、好ましくは100度以上必要となる。そこで、分極
率が小さいことから、分子間凝集力の著しく小さいフッ
素の導入が不可欠である。
In the water repellent treatment of the moisture sensitive body, since the liquid must be completely removed, the contact angle with water must be at least 90 degrees or more, preferably 100 degrees or more. Therefore, since the polarizability is small, it is indispensable to introduce fluorine having a remarkably small intermolecular cohesive force.

【0009】更に、湿度を検出するためには、非常に薄
い緻密な膜を形成して、水蒸気が短時間に移動できるよ
うにする必要がある。
Further, in order to detect humidity, it is necessary to form a very thin and dense film so that water vapor can move in a short time.

【0010】ポリテトラフルオロエチレンに代表される
含フッ素高分子は、耐熱性、耐薬品性、耐候性等の優れ
た特徴を持つが、溶媒に不溶で、粉体としてのコーティ
ングしかできなかった。また、蒸着法を用いても、粒子
状の粗い膜しか形成できず、条件を満足しなかった。ま
た、密着強度が弱く問題だった。最近、溶剤可溶性高分
子と含フッ素高分子の共重合体や、特殊な含フッ素側鎖
を持つ合成高分子が得られるようになった。従来の含フ
ッ素高分子の特性を維持し、しかも溶媒に可溶なため、
塗布によりピンホールのない平滑な表面を容易に得るこ
とができる。材料によっては、100Å程度の膜厚で充
分な撥水効果を得ることができる。
Fluorine-containing polymers represented by polytetrafluoroethylene have excellent characteristics such as heat resistance, chemical resistance, and weather resistance, but they are insoluble in solvents and can only be coated as powder. Further, even if the vapor deposition method is used, only a grainy film can be formed, which does not satisfy the conditions. Also, the adhesion strength was weak, which was a problem. Recently, a copolymer of a solvent-soluble polymer and a fluorine-containing polymer and a synthetic polymer having a special fluorine-containing side chain have been obtained. Maintains the characteristics of conventional fluoropolymers and is soluble in solvents,
By coating, a smooth surface without pinholes can be easily obtained. Depending on the material, a sufficient water repellency effect can be obtained with a film thickness of about 100Å.

【0011】[0011]

【実施例】【Example】

(実施例1)100g中に粒径0.3μmのシリカ粒子
を30g含むコロイダルシリカ75mlに、エタノール
150ml、塩酸1ml、エチルシリケート25mlを
加え、1時間撹拌した後、塩化リチウム27gを加え、
さらに30分間撹拌した。Auペーストによる櫛形電極
をスクリ−ン印刷により形成したアルミナ基板上に、こ
の溶液をディップコーティングし、500℃で1時間熱
処理した。次に、この基板を、硝酸マンガン水溶液(7
0重量%)に浸漬した後、200℃で1時間熱処理して
感湿膜を得た。
(Example 1) To 75 ml of colloidal silica containing 30 g of silica particles having a particle size of 0.3 μm in 100 g, 150 ml of ethanol, 1 ml of hydrochloric acid and 25 ml of ethyl silicate were added, and after stirring for 1 hour, 27 g of lithium chloride was added,
Stir for a further 30 minutes. This solution was dip-coated on an alumina substrate on which comb-shaped electrodes made of Au paste were formed by screen printing, and heat-treated at 500 ° C. for 1 hour. Next, this substrate was treated with a manganese nitrate aqueous solution (7
(0% by weight) and then heat-treated at 200 ° C. for 1 hour to obtain a moisture-sensitive film.

【0012】溶剤可溶性含フッ素高分子サイトップCT
X(旭硝子社製)をパーフルオロ溶媒に溶解し、ディッ
ピングにより感湿膜表面に塗布した。撥水処理の不要な
部分は、あらかじめテーピングやレジスト等でマスクし
ておき、サイトップCTXを塗布した後除去した。溶液
の濃度や膜厚は適当な値を選択できるが、ここでは濃度
1重量%の溶液に対し10cm毎分の速度で引き上げ、
180℃で乾燥させ、膜厚500Åの含フッ素高分子層
を形成した。顕微鏡観察により形成された薄膜は、非常
に緻密かつ均質であることを確認した。水との接触角
は、110度と高い撥水性が得られた。
Solvent-soluble fluoropolymer Cytop CT
X (manufactured by Asahi Glass Co., Ltd.) was dissolved in a perfluoro solvent and applied on the surface of the moisture-sensitive film by dipping. The portions that do not require water repellent treatment were masked with taping, resist, etc. in advance, and were removed after applying Cytop CTX. An appropriate value can be selected for the concentration and the film thickness of the solution, but here, a solution with a concentration of 1% by weight is pulled up at a rate of 10 cm / min
It was dried at 180 ° C. to form a fluorine-containing polymer layer having a film thickness of 500Å. It was confirmed by microscopic observation that the thin film formed was extremely dense and homogeneous. The contact angle with water was 110 degrees, and high water repellency was obtained.

【0013】このようにして作製した湿度センサの斜視
図を図1に示す。図1において、1は基板、2は電極、
3は感湿膜の一部である。また、模式的な断面図を図2
に示す。図2において、4が含フッ素高分子層である。
本湿度センサの感湿特性を図3に示す。図3より、本発
明の湿度センサは、抵抗値が低く、抵抗値の変化幅が適
当であり、しかも温度によって特性が変化しないので、
使いやすいことがわかる。また、湿度変化に対する応答
も10秒以内と速く、実用に全く問題がなかった。
A perspective view of the humidity sensor thus manufactured is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an electrode,
3 is a part of the moisture sensitive film. In addition, a schematic sectional view is shown in FIG.
Shown in. In FIG. 2, 4 is a fluorine-containing polymer layer.
FIG. 3 shows the humidity sensitivity characteristics of this humidity sensor. From FIG. 3, the humidity sensor of the present invention has a low resistance value, an appropriate change width of the resistance value, and the characteristics do not change with temperature.
It turns out to be easy to use. In addition, the response to changes in humidity was fast within 10 seconds, and there was no problem in practical use.

【0014】本湿度センサを60℃の飽和食塩水に10
0時間浸漬後、特性を測定したところ、図3と測定誤差
の範囲内で同様であった。したがって、本湿度センサ
は、耐久性、信頼性が非常に高いことがわかる。
This humidity sensor was immersed in saturated saline solution at 60 ° C.
After the immersion for 0 hour, the characteristics were measured and found to be the same as in FIG. 3 within the range of measurement error. Therefore, it can be seen that this humidity sensor has extremely high durability and reliability.

【0015】(実施例2)実施例1と同様のコロイダル
シリカ200mlに、酢酸リチウム30gを加え、1時
間撹拌した。Cr、Auをこの順に蒸着し櫛形電極を形
成したガラス基板上に、この溶液をスピンコーティング
し、400℃で1時間熱処理して感湿膜を得た。
Example 2 To 200 ml of the same colloidal silica as in Example 1, 30 g of lithium acetate was added and stirred for 1 hour. This solution was spin-coated on a glass substrate having a comb-shaped electrode formed by depositing Cr and Au in this order and heat-treated at 400 ° C. for 1 hour to obtain a moisture-sensitive film.

【0016】フルオロエチレン−ビニルエーテル共重合
体をトルエンに溶解し、スピンコートにより感湿膜表面
に塗布した。溶液の濃度や膜厚は適当な値を選択できる
が、ここでは濃度2重量%の溶液を3000回転毎分で
1分間塗布し、120℃で乾燥させ、膜厚0.1μmの
フルオロエチレン−ビニルエーテル共重合体高分子層を
形成した。不要な部分は、トルエンで拭き取り除去し
た。顕微鏡観察により形成された薄膜は、非常に緻密か
つ均質であることが確認された。水との接触角は、10
5度と高い撥水性が得られた。
The fluoroethylene-vinyl ether copolymer was dissolved in toluene and applied on the surface of the moisture-sensitive film by spin coating. An appropriate value can be selected for the concentration and the film thickness of the solution, but here, a solution having a concentration of 2% by weight is applied at 3000 rpm for 1 minute and dried at 120 ° C. to form a fluoroethylene-vinyl ether film having a thickness of 0.1 μm. A copolymer polymer layer was formed. Unnecessary parts were wiped off with toluene. It was confirmed by microscopic observation that the thin film formed was very dense and homogeneous. Contact angle with water is 10
Water repellency as high as 5 degrees was obtained.

【0017】このように作製した湿度センサの特性は、
抵抗値が低く、抵抗値の変化幅が適当であり、しかも温
度によって特性が変化しなかった。また、湿度変化に対
する応答も10秒以内と速く、実用に全く問題がなかっ
た。
The characteristics of the humidity sensor thus manufactured are as follows.
The resistance value was low, the change width of the resistance value was appropriate, and the characteristics did not change with temperature. In addition, the response to changes in humidity was quick within 10 seconds, and there was no problem in practical use.

【0018】本湿度センサを60℃の飽和食塩水に10
0時間浸漬後、特性を再度測定したところ、初期と比べ
測定誤差の範囲内で同様であった。したがって、本湿度
センサは、耐久性、信頼性が非常に高いことがわかる。
含フッ素高分子層を形成しないと、室温で飽和食塩水に
1分間浸しただけで抵抗値が数桁低下し、水洗しても特
性はもどらなかった。
This humidity sensor was immersed in saturated saline solution at 60 ° C.
After the immersion for 0 hour, the characteristics were measured again, and it was the same within the range of the measurement error as compared with the initial value. Therefore, it can be seen that this humidity sensor has extremely high durability and reliability.
If the fluorine-containing polymer layer was not formed, the resistance value decreased by several orders of magnitude by immersion in saturated saline for 1 minute at room temperature, and the characteristics did not return even after washing with water.

【0019】(実施例3)Pt−Pd櫛形電極をスクリ
−ン印刷により形成した石英ガラス基板上に、100g
のエチルセロソルブ中に粒径0.1μmのアルミナ粒子
を10g含むコロイドをロールコーティングし、100
0℃で1時間熱処理した。次に、この基板を、塩化リチ
ウム水溶液(40重量%)に浸漬した後、500℃で1
時間熱処理した。さらに、この基板を、硝酸ニッケル水
溶液(50重量%)に浸漬した後、200℃で1時間熱
処理して感湿膜を得た。
Example 3 100 g of a Pt-Pd comb-shaped electrode was formed on a quartz glass substrate formed by screen printing.
Roll-coat a colloid containing 10 g of alumina particles having a particle size of 0.1 μm into 100 ml of ethyl cellosolve.
It heat-processed at 0 degreeC for 1 hour. Next, this substrate was immersed in a lithium chloride aqueous solution (40% by weight), and then at 1
Heat treated for hours. Further, this substrate was immersed in an aqueous solution of nickel nitrate (50% by weight) and then heat-treated at 200 ° C. for 1 hour to obtain a moisture sensitive film.

【0020】ポリジパーフルオロアルキルフマレートを
フッ素系溶媒に溶解し、スピンコートにより感湿膜表面
に塗布した。溶液の濃度や膜厚は適当な値を選択できる
が、ここでは濃度0.3重量%の溶液を3000回転毎
分で1分間塗布し、80℃で乾燥させ、膜厚300Åの
ポリジパーフルオロアルキルフマレート層を形成した。
顕微鏡観察により形成された薄膜は、非常に緻密かつ均
質であることが確認された。水との接触角は、115度
と高い撥水性がえられた。
Polydiperfluoroalkyl fumarate was dissolved in a fluorine-based solvent and applied on the surface of the moisture-sensitive film by spin coating. The concentration and film thickness of the solution can be selected as appropriate, but here, a solution with a concentration of 0.3% by weight is applied at 3000 rpm for 1 minute, dried at 80 ° C, and a polydiperfluoroalkyl film with a film thickness of 300Å is applied. A fumarate layer was formed.
It was confirmed by microscopic observation that the thin film formed was very dense and homogeneous. The contact angle with water was 115 degrees, and high water repellency was obtained.

【0021】このように作製した湿度センサの特性は、
抵抗値が低く、抵抗値の変化幅が適当であり、しかも温
度によって特性が変化しなかった。また、湿度変化に対
する応答も10秒以内と速く、実用に全く問題がなかっ
た。
The characteristics of the humidity sensor thus manufactured are as follows.
The resistance value was low, the change width of the resistance value was appropriate, and the characteristics did not change with temperature. In addition, the response to changes in humidity was quick within 10 seconds, and there was no problem in practical use.

【0022】本湿度センサを60℃の飽和食塩水に10
0時間浸漬後、特性を再度測定したところ、初期と比べ
測定誤差の範囲内で同様であった。したがって、本湿度
センサは、耐久性、信頼性が非常に高いことがわかる。
This humidity sensor is immersed in saturated saline solution at 60 ° C.
After the immersion for 0 hour, the characteristics were measured again, and it was the same within the range of the measurement error as compared with the initial value. Therefore, it can be seen that this humidity sensor has extremely high durability and reliability.

【0023】(実施例4)シリカ10gと二酸化マンガ
ン20gと硝酸カリウム20gを混合し、プレス成形し
た後、600℃で1時間熱処理した。得られた熱処理生
成物から一辺が5mmの立方体を切り出し、電極を付
け、図4に示すような湿度センサを作成した。図4にお
いて、3は感湿体、2は電極、5はリード線である。
Example 4 10 g of silica, 20 g of manganese dioxide and 20 g of potassium nitrate were mixed, press-molded and then heat-treated at 600 ° C. for 1 hour. A cube having a side of 5 mm was cut out from the obtained heat-treated product, and an electrode was attached to the cube to prepare a humidity sensor as shown in FIG. In FIG. 4, 3 is a moisture sensitive material, 2 is an electrode, and 5 is a lead wire.

【0024】「テフロンAF」(デュポン社製)をフッ
素系溶媒に溶解し、濃度0.5重量%の溶液を用意し
た。そこに、前述の湿度センサを完全に浸し、10cm
毎分の速度で引き上げ、180℃で乾燥させ、膜厚15
0Åの含フッ素高分子層を形成した。顕微鏡観察により
形成された薄膜は、非常に緻密かつ均質であることを確
認した。水との接触角は、110度と高い撥水性が得ら
れた。
"Teflon AF" (manufactured by DuPont) was dissolved in a fluorine-based solvent to prepare a solution having a concentration of 0.5% by weight. Completely immerse the above-mentioned humidity sensor there, 10 cm
It is pulled up at a speed of every minute, dried at 180 ° C.
A 0Å fluorine-containing polymer layer was formed. It was confirmed by microscopic observation that the thin film formed was extremely dense and homogeneous. The contact angle with water was 110 degrees, and high water repellency was obtained.

【0025】このように作製した湿度センサの特性は、
抵抗値が低く、抵抗値の変化幅が適当であり、しかも温
度によって特性が変化しなかった。また、湿度変化に対
する応答も10秒以内と速く、実用に全く問題がなかっ
た。
The characteristics of the humidity sensor thus manufactured are as follows.
The resistance value was low, the change width of the resistance value was appropriate, and the characteristics did not change with temperature. In addition, the response to changes in humidity was quick within 10 seconds, and there was no problem in practical use.

【0026】本湿度センサを60℃の飽和食塩水に10
0時間浸漬後、特性を再度測定したところ、初期と比べ
測定誤差の範囲内で同様であった。したがって、本湿度
センサは、耐久性、信頼性が非常に高いことがわかる。
This humidity sensor was immersed in saturated saline solution at 60 ° C.
After the immersion for 0 hour, the characteristics were measured again, and it was the same within the range of the measurement error as compared with the initial value. Therefore, it can be seen that this humidity sensor has extremely high durability and reliability.

【0027】[0027]

【発明の効果】以上述べたように本発明の湿度センサ
は、電解液が接触しても特性が変わらず、高精度で信頼
性が高い湿度センサを達成できた。しかも容易なプロセ
スで作製することができるため、低コストで高精度かつ
信頼性の高い湿度センサとして、湿度計測、湿度制御を
必要とする分野に広く応用することができる。また、携
帯する用途にも用いることができる。
As described above, the humidity sensor of the present invention does not change its characteristics even when the electrolytic solution comes into contact with it, and it is possible to achieve a highly accurate and highly reliable humidity sensor. Moreover, since it can be manufactured by an easy process, it can be widely applied as a low-cost, highly accurate and highly reliable humidity sensor to fields requiring humidity measurement and humidity control. It can also be used for portable purposes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の湿度センサの、感湿膜の一部を除去
した斜視図である。
FIG. 1 is a perspective view of a humidity sensor of the present invention with a part of a moisture sensitive film removed.

【図2】 本発明の湿度センサの模式的な断面図であ
る。
FIG. 2 is a schematic cross-sectional view of the humidity sensor of the present invention.

【図3】 本発明の湿度センサの感湿特性図である。FIG. 3 is a humidity sensitive characteristic diagram of the humidity sensor of the present invention.

【図4】 本発明の湿度センサの斜視図である。FIG. 4 is a perspective view of the humidity sensor of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 電極 3 感湿体または感湿膜 4 含フッ素高分子層 5 リード線 1 Substrate 2 Electrode 3 Moisture Sensitive Body or Moisture Sensitive Film 4 Fluorine-Containing Polymer Layer 5 Lead Wire

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物粒子と無機塩の熱処理生成物を主
成分とする感湿体上に、含フッ素高分子層が形成されて
いることを特徴とする湿度センサ。
1. A humidity sensor characterized in that a fluorine-containing polymer layer is formed on a moisture sensitive body containing, as a main component, a heat-treated product of oxide particles and an inorganic salt.
【請求項2】 酸化物粒子と無機塩の熱処理生成物を主
成分とする感湿体を用いた湿度センサにおいて、感湿体
表面に溶剤可溶性含フッ素高分子溶液を塗布することに
より、感湿体上に含フッ素高分子層を形成することを特
徴とする湿度センサの製造方法。
2. A humidity sensor using a humidity sensitive material containing a heat-treated product of oxide particles and an inorganic salt as main components, wherein a moisture-sensitive fluorine-containing polymer solution is applied to the surface of the moisture sensitive material to obtain moisture sensitivity. A method for manufacturing a humidity sensor, which comprises forming a fluorine-containing polymer layer on a body.
JP29447691A 1991-11-11 1991-11-11 Humidity sensor and manufacturing method thereof Pending JPH05133921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29447691A JPH05133921A (en) 1991-11-11 1991-11-11 Humidity sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29447691A JPH05133921A (en) 1991-11-11 1991-11-11 Humidity sensor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH05133921A true JPH05133921A (en) 1993-05-28

Family

ID=17808271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29447691A Pending JPH05133921A (en) 1991-11-11 1991-11-11 Humidity sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH05133921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301353A (en) * 2000-04-26 2001-10-31 Ricoh Microelectronics Co Ltd Printing mask and manufacturing method thereof
JP2008261634A (en) * 2007-04-10 2008-10-30 Mikuni Corp Hydrogen sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301353A (en) * 2000-04-26 2001-10-31 Ricoh Microelectronics Co Ltd Printing mask and manufacturing method thereof
JP2008261634A (en) * 2007-04-10 2008-10-30 Mikuni Corp Hydrogen sensor

Similar Documents

Publication Publication Date Title
CN101164122A (en) Conductive material, conductive film, and method for producing same
CN109975370A (en) A kind of high-sensitivity flexible humidity sensor and preparation method thereof
WO1993016377A1 (en) Humidity sensor and its manufacture
JPS59202052A (en) moisture sensing element
JPS60168044A (en) Moisture sensitive material
JPH05133921A (en) Humidity sensor and manufacturing method thereof
US4245506A (en) Porous membrane humidity sensor
US4902571A (en) Moisture sensitive resistive element
JP3726447B2 (en) Gas sensor
Arida et al. A novel solid-state copper (II) thin-film micro-sensor based on organic membrane and titanium dioxide nano-composites
JPH0215820B2 (en)
JPH06148122A (en) Humidity detecting element
Vaivars et al. Sol-gel produced humidity sensor
JPH0658900A (en) Moisture sensor
CN201340405Y (en) Macromolecule resistive-type humidity sensitive element with hyperbranched structure
JP3724143B2 (en) Gas sensor
RU207275U1 (en) Flexible humidity sensor
RU2764380C1 (en) Method for manufacturing a flexible humidity sensor
JP2969547B2 (en) Humidity sensor and manufacturing method thereof
JPH0611474A (en) Humidity sensor
JPS6210380B2 (en)
Zajt et al. Electrical properties of polymer humidity sensor based on polyethyleneimine
JPS61185509A (en) Production of moisture-sensitive element
JPH0484749A (en) Humidity sensor
JPH03202798A (en) Thin film moisture sensitive element