[go: up one dir, main page]

JPH05140735A - Heating cell - Google Patents

Heating cell

Info

Publication number
JPH05140735A
JPH05140735A JP30065291A JP30065291A JPH05140735A JP H05140735 A JPH05140735 A JP H05140735A JP 30065291 A JP30065291 A JP 30065291A JP 30065291 A JP30065291 A JP 30065291A JP H05140735 A JPH05140735 A JP H05140735A
Authority
JP
Japan
Prior art keywords
heater
tungsten
carbon
heating cell
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30065291A
Other languages
Japanese (ja)
Inventor
Sadaji Oka
貞治 岡
Akira Miura
明 三浦
Takeshi Yagihara
剛 八木原
Akira Uchida
暁 内田
Atsushi Nonoyama
淳 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP30065291A priority Critical patent/JPH05140735A/en
Publication of JPH05140735A publication Critical patent/JPH05140735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the controllability of temp. regulation by using carbon as the material of a vessel contg. a high m.p. material and heating this material with a tungsten heater. CONSTITUTION:A carbon crucible 1 of 15mm diameter, 1mm thickness and 10mm depth is used. A heater 2 is made of a tungsten sheet of 0.2mm thickness cut to 0.2-0.5mm wire width and the temp. of a high m.p. material 3 is controlled by regulating electric current from a power source 5. A heating cell having satisfactory operability can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエピタキシャル成長装置
や蒸着装置の高融点材料の蒸発装置に用いて好適な加熱
セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating cell suitable for use in an evaporation apparatus for refractory materials in an epitaxial growth apparatus and an evaporation apparatus.

【0002】[0002]

【従来の技術】近年,Si系ヘテロバイポーラデバイス
が実現されているが,一般に高融点材料であるSiのエ
ピタキシャル成長にはSi22をガスソースとしたMB
EやEB(Electlon Beem)式蒸発源を用
いた固体ソースMBEが用いられている。また,蒸着装
置において,Pt等の高融点金属を蒸発させる手段とし
ては蒸発源にEBを照射することにより加熱して蒸発さ
せている。
2. Description of the Related Art In recent years, Si-based heterobipolar devices have been realized. Generally, for epitaxial growth of Si, which is a high melting point material, MB using Si 2 H 2 as a gas source is used.
A solid source MBE using an E or EB (Electron Beem) type evaporation source is used. Further, in the vapor deposition apparatus, as a means for evaporating a refractory metal such as Pt, the evaporation source is irradiated with EB to heat and evaporate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,EBを
用いた蒸着ではEB装置が大型になることに加えてフィ
ラメント電流,エミッション電流,および電源電圧を調
整しながら高融点材料のショットにEBを照射する必要
があり,制御性が悪いという問題があった。本発明は上
記従来技術の問題を解決するためになされたもので,蒸
発の制御性のよい加熱セルを提供することを目的とす
る。
However, in the vapor deposition using the EB, the EB apparatus becomes large in size, and the shot of the high melting point material is irradiated with the EB while adjusting the filament current, the emission current, and the power supply voltage. It was necessary and there was a problem of poor controllability. The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a heating cell with good evaporation controllability.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明の加熱セルは、容器に収納された元素を真空中
で加熱して蒸発させ,前記元素を基板の表面に付着させ
る装置において,前記容器の材質をカーボンとし,前記
容器をタングステンヒータにより加熱することを特徴と
するものである。
In order to solve the above-mentioned problems, a heating cell of the present invention is an apparatus for heating an element contained in a container in a vacuum to evaporate the element and deposit the element on the surface of a substrate. The container is made of carbon, and the container is heated by a tungsten heater.

【0005】[0005]

【作用】カーボンの融点は3500℃以上,タングステ
ンの融点は3387℃なのでカーボン容器はヒータ熱に
より柔軟化したり,反応する等の影響を受けることがな
い。また,タングステンヒータは電流を調整することに
より容易に温度調整が可能である。
Since the melting point of carbon is 3500 ° C. or higher and the melting point of tungsten is 3387 ° C., the carbon container is not affected by the heat of the heater, such as softening or reaction. In addition, the temperature of the tungsten heater can be easily adjusted by adjusting the current.

【0006】[0006]

【実施例】以下図面を用いて本発明を説明する。図1は
本発明の一実施例を示す構成図である。図において1は
カーボン製ルツボであり,例えば直径15mm,深さ1
0mm,肉厚1mm程度に形成されている。2はタング
ステンからなるヒータ,3は高融点材料であり,図に示
すようにタングステンワイヤを容器に接触しないよう
に,かつ,ワイヤ同士が途中で接触しないように巻き回
す。その場合ワイヤの直径は容器の直径(15mm)よ
りもわずかに大きな程度なので,ワイヤにストレスが生
じた状態となる。そしてこの状態でワイヤに大電流を流
すとワイヤにホットスポットが発生して断線などが起こ
る可能性がある。
The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is a carbon crucible, for example, a diameter of 15 mm and a depth of 1
It is formed to have a thickness of 0 mm and a thickness of about 1 mm. 2 is a heater made of tungsten, 3 is a high melting point material, and the tungsten wire is wound so that it does not come into contact with the container and the wires do not come into contact with each other as shown in the figure. In that case, since the diameter of the wire is slightly larger than the diameter of the container (15 mm), the wire is in a stressed state. Then, if a large current is applied to the wire in this state, a hot spot may occur in the wire, and the wire may be broken.

【0007】従って望ましくは図2に示すように,例え
ば0.2mm程度の厚さのタングステン板からストレス
を与えない状態でワイヤソー等を用いて線幅が0.2〜
0.5mm程度になるように切り出して作製する。図3
は上記カーボン製ルツボとタングステンヒータを真空中
に配置した状態を示すもので3は反射板であり,ルツボ
とヒータは可能な限り接近させて配置し,ヒータからの
輻射熱がルツボに効率よく伝わるように配置する。
Therefore, as shown in FIG. 2, it is desirable to use a wire saw or the like to reduce the line width from 0.2 to about 0.2 mm from a tungsten plate having a thickness of about 0.2 mm.
It is cut out so as to have a thickness of about 0.5 mm. Figure 3
Shows a state in which the carbon crucible and the tungsten heater are arranged in a vacuum, and 3 is a reflector, and the crucible and the heater are arranged as close as possible so that the radiant heat from the heater can be efficiently transmitted to the crucible. To place.

【0008】図4は1800℃,2000℃,2500
℃におけるタングステン(W)とカーボン(C)の蒸気
圧の関係を示すもので,例えば2000℃においてはW
の蒸気圧は5×10ー9mmT0ll),Cの蒸気圧は1
ー5mmT0ll)となっている。
FIG. 4 shows 1800 ° C., 2000 ° C., 2500
It shows the relationship between the vapor pressure of tungsten (W) and carbon (C) at ℃, for example, W at 2000 ℃
The vapor pressure is 5 × 10 over 9 mmT0ll), the vapor pressure of C 1
0 has become over 5 mmT0ll).

【0009】次に本発明の加熱セルに高融点材料を収納
して真空中に蒸発させることが可能なことを元素の蒸気
圧を用いて説明する。例えば高融点材料としてPt,S
iを用いる。Ptの融点は1769℃であり,1900
℃程度で通常MBE(分子線エピタキシャル成長装置)
で使用しているビーム線強度と同じ蒸気圧(〜10ー3
mT0ll)となる。この温度ではルツボであるカーボ
ンおよびヒータのタングステンの蒸気圧は非常に低いた
め,不純物などの影響は問題とならず,純粋なPtを蒸
発させることが出来る。
Next, the fact that the high melting point material can be stored in the heating cell of the present invention and evaporated in a vacuum will be described using the vapor pressure of the elements. For example, Pt, S as the high melting point material
i is used. The melting point of Pt is 1769 ° C.
MBE (Molecular Beam Epitaxial Growth Equipment) at about ℃
The same vapor pressure (~ 10-3 m) as the beam intensity used in
mT0ll). At this temperature, the vapor pressures of carbon, which is a crucible, and tungsten of the heater are very low, so that the influence of impurities does not pose a problem and pure Pt can be vaporized.

【0010】また,Siについては1500℃で蒸気圧
(10ー3mmT0ll)あり,1700℃では(10ー2
mmT0ll)以上の蒸気圧が得られる。上記の構成の
加熱セルによれば,EBを用いた蒸発源と異なり加熱セ
ル自体の構造が簡素であり,また投入パワー(ヒータに
流す電流)を調節することにより高融点材料の制御を行
うことができる。従って操作性が容易であると共に制御
性のよい加熱セルを実現することができる。
[0010] There vapor pressure (10 @ 3 mmT0ll) at 1500 ° C. for Si, at 1700 ° C. (10 -2
A vapor pressure of mmT0ll) or higher is obtained. According to the heating cell having the above configuration, unlike the evaporation source using EB, the structure of the heating cell itself is simple, and the refractory material is controlled by adjusting the input power (current flowing through the heater). You can Therefore, it is possible to realize a heating cell that is easy to operate and has good controllability.

【0011】[0011]

【発明の効果】本発明によれば,容器の材質をカーボン
とし,前記容器をタングステンヒータにより加熱してい
るので,投入パワーを調節することにより高融点材料の
制御を行うことができる。従って操作性が容易であると
共に制御性のよい加熱セルを実現することができる。
According to the present invention, since the material of the container is carbon and the container is heated by the tungsten heater, the refractory material can be controlled by adjusting the input power. Therefore, it is possible to realize a heating cell that is easy to operate and has good controllability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加熱セルの一実施例を示す構成図であ
る。
FIG. 1 is a configuration diagram showing an embodiment of a heating cell of the present invention.

【図2】ヒータの形成例を示す平面図である。FIG. 2 is a plan view showing an example of forming a heater.

【図3】カーボンルツボとタングステンヒータを真空中
に配置した状態を示す図
FIG. 3 is a diagram showing a state in which a carbon crucible and a tungsten heater are arranged in a vacuum.

【図4】タングステンとカーボンの温度と蒸気圧の関係
を示すである。
FIG. 4 is a graph showing the relationship between the temperature of tungsten and carbon and the vapor pressure.

【符号の説明】[Explanation of symbols]

1 ルツボ(カーボン) 2 ヒータ(タングステン) 3 高融点材料 4 反射板 5 電源 6 真空炉 1 crucible (carbon) 2 heater (tungsten) 3 high melting point material 4 reflector 5 power supply 6 vacuum furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 暁 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 野々山 淳 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Uchida 2-932 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Co., Ltd. (72) Inventor Atsushi Nonoyama 2-932 Nakamachi, Musashino City, Tokyo Within Kawa Denki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 容器に収納された元素を真空中で加熱し
て蒸発させ,前記元素を基板の表面に付着させる装置に
おいて,前記容器の材質をカーボンとし,前記容器をタ
ングステンヒータにより加熱することを特徴とする加熱
セル。
1. An apparatus for heating an element contained in a container to evaporate by heating in a vacuum and depositing the element on the surface of a substrate, wherein the material of the container is carbon, and the container is heated by a tungsten heater. A heating cell characterized by.
JP30065291A 1991-11-15 1991-11-15 Heating cell Pending JPH05140735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30065291A JPH05140735A (en) 1991-11-15 1991-11-15 Heating cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30065291A JPH05140735A (en) 1991-11-15 1991-11-15 Heating cell

Publications (1)

Publication Number Publication Date
JPH05140735A true JPH05140735A (en) 1993-06-08

Family

ID=17887441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30065291A Pending JPH05140735A (en) 1991-11-15 1991-11-15 Heating cell

Country Status (1)

Country Link
JP (1) JPH05140735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207022A (en) * 2005-01-31 2006-08-10 Samsung Sdi Co Ltd Evaporation source and vapor deposition apparatus employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207022A (en) * 2005-01-31 2006-08-10 Samsung Sdi Co Ltd Evaporation source and vapor deposition apparatus employing the same
US7914621B2 (en) 2005-01-31 2011-03-29 Samsung Mobile Display Co., Ltd. Vapor deposition source and vapor deposition apparatus having the same

Similar Documents

Publication Publication Date Title
US6331690B1 (en) Process for producing single-wall carbon nanotubes uniform in diameter and laser ablation apparatus used therein
US5239612A (en) Method for resistance heating of metal using a pyrolytic boron nitride coated graphite boat
CN1982210A (en) Method for growing carbon nanotubes and manufacturing method of field emission device therewith
CN100516285C (en) Electron beam heating evaporation method and device and application thereof
US4415420A (en) Cubic boron nitride preparation
CN109440187B (en) Evaporation source for ultra-high temperature molecular beam epitaxy
US6645572B2 (en) Process for producing a ceramic evaporation boat having an improved initial wetting performance
JPH05140735A (en) Heating cell
JPS5987040A (en) Film precipitation method
US6956320B2 (en) Fast heating cathode
GB2134932A (en) Substrate heating apparatus for molecular beam epitaxy
JPH10214787A (en) Molecular beam cell for si and molecular beam epitaxy system
KR102547666B1 (en) Apparatus of molecular beam epitaxy effusion cell
US6432281B2 (en) Process for formation of a coating on a substrate
JP2570560Y2 (en) Electron beam evaporation source
JP3580101B2 (en) Method and apparatus for producing negative electrode material for lithium ion battery
US6638857B1 (en) E-beam deposition method and apparatus for providing high purity oxide films
JP3778992B2 (en) Heater for vapor phase growth equipment for manufacturing gallium nitride based semiconductor thin films
JPS6345363A (en) Molybdenum heater boat for vapor deposition
KR0177836B1 (en) Resistance heating of metal using graphite crucible coated with pyrolytic boron nitride coating
JP2986742B2 (en) Substrate heating device in vacuum
JPS59107077A (en) Vapor deposition method using electron beam
JPH02225659A (en) Vacuum depositing device
US3824039A (en) Sublimable targets
CN118880251A (en) Metal evaporator