[go: up one dir, main page]

JPH05141206A - Power plant performance diagnosis method - Google Patents

Power plant performance diagnosis method

Info

Publication number
JPH05141206A
JPH05141206A JP30432091A JP30432091A JPH05141206A JP H05141206 A JPH05141206 A JP H05141206A JP 30432091 A JP30432091 A JP 30432091A JP 30432091 A JP30432091 A JP 30432091A JP H05141206 A JPH05141206 A JP H05141206A
Authority
JP
Japan
Prior art keywords
efficiency
performance
data
diagnosis
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30432091A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oba
裕幸 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30432091A priority Critical patent/JPH05141206A/en
Publication of JPH05141206A publication Critical patent/JPH05141206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

(57)【要約】 【目的】 プラント機器の性能診断に際して、オンライ
ンで自動的に、しかも他発電所の同一型式機器の過去の
時系列の効率データも参照して、診断対象機器の性能異
常を診断する方法を提供する。 【構成】 各発電所の構成機器の正常な効率データを時
系列に保存し、性能診断を行うに際して、診断対象機器
の過去の時系列の効率データとともに、保存された他発
電所の診断対象機器と同一型式機器の過去の時系列の効
率データを使用して、性能診断時の予測効率と過去の効
率データのバラツキ度を求め、診断時の実績効率と予測
効率との差がデータデータバラツキ度から決められる異
常判定裕度しきい値以上になった場合に、診断対象機器
の性能異常と判定する。
(57) [Summary] [Purpose] When diagnosing the performance of plant equipment, the performance abnormality of the equipment to be diagnosed is automatically checked online and also by referring to past time-series efficiency data of equipment of the same type at other power plants. Provide a method to diagnose. [Configuration] Normal efficiency data of the components of each power plant are stored in time series, and when performing performance diagnosis, the past time-series efficiency data of the diagnostic target device and the saved diagnostic target devices of other power plants are saved. Using the past time-series efficiency data of the same type of equipment, the degree of variation between the predicted efficiency at the time of performance diagnosis and the past efficiency data is obtained, and the difference between the actual efficiency at the time of diagnosis and the predicted efficiency is the data data variation degree. If it exceeds the abnormality judgment tolerance threshold value determined from the above, it is judged as a performance abnormality of the diagnosis target device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば火力・原子力発
電所プラント等に設置される蒸気タービン、復水器、給
水過熱器、あるいはボイラー等の予防保全の支援を行う
ために、性能異常を診断する発電プラントの性能診断方
法に関する。
BACKGROUND OF THE INVENTION The present invention relates to preventive maintenance of steam turbines, condensers, feed water superheaters, boilers, etc. installed in, for example, thermal power / nuclear power plant, etc. The present invention relates to a performance diagnosis method for a power plant to be diagnosed.

【0002】[0002]

【従来の技術】火力発電プラントや原子力発電プラント
等の巨大な発電プラントシステムは、その所有者にとっ
て重要な資産であり、また、それから所有者にもたらさ
れる経済的利益は、発電プラントの各構成機器の運転時
における性能によって大きく変化する。例えば、100
万キロワット級の発電機を駆動する蒸気タービンにおけ
る熱効率の1%の差は、ほぼ数十億円の価値に相当する
ものと考えられている。そのため、プラントの構成機器
の運転性能が常に最適なものとなるように維持し、運用
することは極めて重要な事柄である。
2. Description of the Related Art Huge power plant systems such as thermal power plants and nuclear power plants are important assets for their owners, and the economic benefits to the owners are the components of the power plant. It greatly changes depending on the performance during operation. For example, 100
A 1% difference in the thermal efficiency of a steam turbine that drives a 10,000 kilowatt class generator is considered to be worth several billion yen. Therefore, it is extremely important to maintain and operate the plant components so that the operation performance of the components is always optimum.

【0003】従来、火力発電プラント等の発電監視制御
システムは、性能計算およびその管理機能を備えてお
り、一定条件のもとでディジタル制御装置により収集さ
れたプロセス状態量、例えば流量、温度、圧力、あるい
は発電機出力などに基づいて、送電端効率、発電端効
率、ボイラー効率、給水過熱器性能、復水器性能および
タービン効率などを計算し、それらの計算結果をもと
に、発電所管理技術者が各機器の効率の長期変化傾向を
定期的にチェックすることによって、性能管理および性
能異常の判定を行っている。
Conventionally, power generation monitoring and control systems for thermal power plants and the like have performance calculation and management functions thereof, and process state quantities collected by a digital controller under a fixed condition, such as flow rate, temperature, and pressure. Or, based on the output of the generator, calculate the transmission end efficiency, power generation end efficiency, boiler efficiency, feedwater superheater performance, condenser performance, turbine efficiency, etc., and manage the power plant based on these calculation results. An engineer performs performance management and judgment of performance abnormality by periodically checking the long-term change tendency of the efficiency of each device.

【0004】[0004]

【発明が解決しようとする課題】発電プラントの各構成
機器の予防保全を行うためには、各構成機器の性能異常
の判定を精度よく実施できることが必要不可欠である。
In order to perform preventive maintenance of each component equipment of a power plant, it is essential to be able to accurately determine the performance abnormality of each component equipment.

【0005】ところが、従来のプラント構成機器の性能
管理・異常判定方法では、性能異常の判断作業を主に人
間系に頼っており、非常に手間のかかるものであった。
特に異常な性能変化を判定するには、長期間に亙る効率
データの蓄積と詳細な解析作業が必要なために時間がか
かり、発電プラントの各構成機器の運転管理や予防保全
のための詳細点検や補修等の計画立案時に、データをタ
イミング良く充分に利用できない場合があった。
However, in the conventional method of performance management / abnormality determination of plant component equipment, the work of determining a performance abnormality mainly depends on a human system, which is very troublesome.
In particular, determining abnormal performance changes requires a long period of time because it requires accumulation of efficiency data and detailed analysis work, and it takes time to perform detailed inspections for operational management and preventive maintenance of each component of the power plant. There were cases where the data could not be fully utilized in a timely manner during the planning of repairs and repairs.

【0006】また、性能診断に際しては、他発電所にお
ける同一型式機器の効率データも参照すると診断精度が
一段と向上するが、使用データ数が膨大になること、お
よびどのようなデータを収集するかという点での検討が
不十分にため、実際上利用できない状況にあった。
Further, in the performance diagnosis, if the efficiency data of the same type equipment in another power plant is also referred to, the diagnosis accuracy is further improved, but the number of data used becomes enormous and what kind of data is collected. Due to insufficient examination in terms, it was in a situation where it could not be used in practice.

【0007】本発明はこのような実状に鑑みてなされた
もので、プラント機器の性能診断に際して、オンライン
で自動的に、しかも他発電所の同一型式機器の過去の時
系列の効率データも参照して、診断対象機器の性能異常
を精度良く実施できる発電プラントの性能診断方法を提
供することを目的とするものである。
The present invention has been made in view of the above circumstances, and when diagnosing the performance of plant equipment, it refers to the past time series efficiency data of the same type equipment of other power plants automatically and online. Therefore, it is an object of the present invention to provide a performance diagnosis method for a power plant that can accurately perform a performance abnormality of a diagnosis target device.

【0008】[0008]

【課題を解決するための手段】本発明の発電プラントの
性能診断方法は、発電プラントの運転中のプロセスデー
タに基づいて、そのプラントの構成機器の性能診断を行
う発電プラントの性能診断方法において、各発電所の構
成機器の正常な効率データを時系列に保存し、性能診断
を行うに際して、診断対象機器の過去の時系列の効率デ
ータとともに、前記保存された他発電所の診断対象機器
と同一型式機器の過去の時系列の効率データを使用し
て、性能診断時の予測効率と過去の効率データのバラツ
キ度を求め、診断時の実績効率と前記予測効率との差が
前記データデータバラツキ度から決められる異常判定裕
度しきい値以上になった場合に、診断対象機器の性能異
常と判定することを特徴とする。
A method for diagnosing a performance of a power plant according to the present invention is a method for diagnosing a performance of a power plant, which performs performance diagnosis of constituent equipment of the plant based on process data during operation of the power plant. The normal efficiency data of the components of each power plant are saved in time series, and when performing performance diagnosis, the same as the saved diagnosis target device of other power plants along with past time series efficiency data of the diagnostic target device. Using the past time-series efficiency data of the model equipment, obtain the degree of variation between the predicted efficiency at the time of performance diagnosis and the past efficiency data.The difference between the actual efficiency at the time of diagnosis and the estimated efficiency is the data data variation degree. It is characterized in that it is judged to be a performance abnormality of the device to be diagnosed when it exceeds the abnormality determination tolerance threshold determined from the above.

【0009】[0009]

【作用】上記構成の本発明方法において、性能診断時に
は、まず他発電所の診断対象機器と同一型式機器の過去
の時系列の効率データを検索し、この効率データと、診
断対象機器の過去の時系列の効率データとをもとに、性
能診断時の予測効率および効率データのバラツキ度を求
める。
In the method of the present invention having the above-described structure, at the time of performance diagnosis, first, the past time-series efficiency data of the equipment of the same type as the equipment to be diagnosed at another power plant is searched, and this efficiency data and the past of the equipment to be diagnosed are retrieved. Based on the time-series efficiency data, the prediction efficiency at the time of performance diagnosis and the variation degree of the efficiency data are obtained.

【0010】さらに、診断対象機器の診断時の実績効率
と前記予測効率との差が、前記効率データのバラツキ度
から決められる異常判定裕度しきい値以上になった時は
性能異常と判定する。一方、性能異常と判定されない場
合は、診断時の実績効率を記憶部に保存し、次の診断に
備える。
Further, when the difference between the actual efficiency at the time of diagnosing the device to be diagnosed and the predicted efficiency becomes equal to or more than the abnormality determination margin threshold value determined from the variation degree of the efficiency data, it is determined that the performance is abnormal. .. On the other hand, if it is not determined that the performance is abnormal, the actual efficiency at the time of diagnosis is stored in the storage unit to prepare for the next diagnosis.

【0011】[0011]

【実施例】次に、図面を参照しながら本発明の実施例を
説明する。図1は本発明の方法において使用される発電
プラント性能診断装置の構成例を示している。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows an example of the configuration of a power plant performance diagnostic device used in the method of the present invention.

【0012】同図において、統括性能診断装置1はデー
タ伝送装置2を介して、発電所A,B,…のユニット制
御用計算機装置3a,3b,…に接続されている。これ
らの制御用計算機装置は、各発電所の蒸気タービン、復
水器、給水過熱器、ボイラー等のプラント構成機器を制
御する制御装置(図示せず)を総括制御するもので、デ
ータ伝送装置4a,4b,…に接続されている。また、
これらのデータ伝送装置4a,4b,…には、各発電所
の蒸気タービン、復水器、給水過熱器、ボイラー等のプ
ラント構成機器(図示せず)の性能診断を行う蒸気ター
ビン性能診断装置5a,5b,…、復水器性能診断装置
6a,6b,…、給水過熱器性能診断装置(図示せ
ず)、ボイラー性能診断装置(図示せず)等が接続され
されている。図2は、本発明の発電プラント性能診断方
法における処理フローの一例を示している。同図におい
て、処理ステップ101では性能診断用プロセス値を収
集し、処理ステップ102では性能診断起動判定を行
い、処理ステップ103では性能診断の起動に必要な起
動条件を満足しているか否かの判定を行う。処理ステッ
プ103で起動条件を満足していない場合は、処理ステ
ップ101に戻り、次の周期での性能診断用プロセス値
を収集する。
In FIG. 1, the integrated performance diagnosis device 1 is connected to the unit control computer devices 3a, 3b, ... Of the power stations A, B ,. These control computer devices collectively control a control device (not shown) that controls plant components such as steam turbines, condensers, feed water superheaters, and boilers of each power plant, and the data transmission device 4a. , 4b, ... Also,
These data transmission devices 4a, 4b, ... Include a steam turbine performance diagnosis device 5a for performing performance diagnosis of plant constituent devices (not shown) such as steam turbines, condensers, feed water superheaters, and boilers of each power plant. , 5b, ..., Condenser performance diagnostic device 6a, 6b, ..., Water supply superheater performance diagnostic device (not shown), Boiler performance diagnostic device (not shown), etc. are connected. FIG. 2 shows an example of a processing flow in the power plant performance diagnosis method of the present invention. In the figure, a process step 101 collects process values for performance diagnosis, a process step 102 makes a performance diagnosis activation determination, and a process step 103 determines whether or not the activation condition necessary for performance diagnostic activation is satisfied. I do. If the start condition is not satisfied in processing step 103, the process returns to processing step 101, and the process value for performance diagnosis in the next cycle is collected.

【0013】一方、処理ステップ103で起動条件を満
足していると判定された場合は、処理ステップ104,
105,106,107の処理を行う。即ち、処理ステ
ップ104では他発電所の性能診断対象機器と同一型式
機器の過去の時系列の効率データを検索する。処理ステ
ップ105では性能診断対象機器の診断時の実績効率を
求める。処理ステップ106では他発電所の性能診断対
象機器と同一型式機器の過去の時系列の効率データと診
断対象機器の過去の時系列の効率データから、診断時の
予測効率と効率データのバラツキ度を求める。続いて、
処理ステップ107では、診断時の実績効率と予測効率
との差が、過去の効率データのバラツキ度から決められ
る異常判定裕度しきい値以上になった場合に、性能異常
と判定する。
On the other hand, when it is determined in the processing step 103 that the starting condition is satisfied, the processing step 104,
The processing of 105, 106 and 107 is performed. That is, in processing step 104, the past time-series efficiency data of the equipment of the same type as the equipment to be performance-diagnosed at another power plant is searched. In processing step 105, the actual efficiency at the time of diagnosis of the performance diagnosis target device is obtained. In processing step 106, the predicted efficiency at the time of diagnosis and the degree of variation in efficiency data are calculated from the past time-series efficiency data of the equipment of the same type as the performance diagnosis target equipment of another power plant and the past time-series efficiency data of the diagnosis target equipment. Ask. continue,
In the processing step 107, when the difference between the actual efficiency at the time of diagnosis and the predicted efficiency is equal to or larger than the abnormality determination margin threshold value determined from the variation degree of the efficiency data in the past, it is determined that the performance is abnormal.

【0014】本発明では、上述の処理ステップ101〜
103の処理を各発電所のユニット制御用計算装置3
a,3b,…で行い、処理ステップ104の処理を統括
性能診断装置1で行い、また処理ステップ105〜10
7の処理を各発電所の個別性能診断装置である蒸気ター
ビン性能性能診断装置5a,5b,…、復水器性能診断
装置6a,6b,…、給水加熱器性能診断装置(図示せ
ず)、ボイラー性能診断装置(図示せず)で行う。さら
に、図2には示していないが、性能が正常と判定された
時には、その診断時の実績効率を統括性能診断装置の発
電所群効率記憶部内に格納する処理を行う。
In the present invention, the processing steps 101 to 101 described above are performed.
The processing of 103 is performed by the calculation device 3 for unit control of each power plant.
a, 3b, ..., Process step 104 is performed by the integrated performance diagnostic device 1, and process steps 105 to 10 are performed.
7 is a steam turbine performance performance diagnostic device 5a, 5b, ..., which is an individual performance diagnostic device of each power plant, a condenser performance diagnostic device 6a, 6b, ..., a feed water heater performance diagnostic device (not shown), It is performed by a boiler performance diagnostic device (not shown). Further, although not shown in FIG. 2, when the performance is determined to be normal, a process of storing the actual efficiency at the time of diagnosis in the power plant group efficiency storage unit of the integrated performance diagnostic device is performed.

【0015】なお、この実施例では、共通の装置として
の統括性能診断装置1以外は各発電所とも同一の手段で
構成されているため、以下の説明においては、発電所と
しては発電所Aを、また性能診断装置としては蒸気ター
ビン性能診断装置5aを対象として、詳細な構成を説明
する。
In this embodiment, except for the integrated performance diagnostic device 1 as a common device, each power plant is constituted by the same means, and therefore in the following description, the power plant A will be referred to as the power plant. Further, the detailed configuration will be described with respect to the steam turbine performance diagnostic device 5a as the performance diagnostic device.

【0016】ユニット制御用計算機装置3aは、発電プ
ラントの監視・制御機能を司るもので、図3はその内部
構成例を示している。同図において、データ送受信処理
手段9は、データ伝送装置4aを介して、それに接続さ
れる各個別性能診断装置との間で各種データのやりとり
を行い、またデータ伝送装置2を介して、それに接続さ
れる統括性能診断装置1との間で各種データのやりとり
を行う。
The unit control computer device 3a controls the monitoring and control functions of the power plant, and FIG. 3 shows an example of its internal configuration. In the figure, the data transmission / reception processing means 9 exchanges various data with each individual performance diagnostic device connected thereto via the data transmission device 4a, and also connects to it via the data transmission device 2. Various types of data are exchanged with the integrated performance diagnostic device 1.

【0017】性能診断用プロセス値収集手段10は、制
御装置等(図示せず)で収集されるプロセスデータ群か
ら、蒸気タービン、復水器、給水加熱器、ボイラー等の
性能診断に必要なプロセスデータを一定周期Tで収集す
るものであり、収集されたプロセスデータは、プロセス
値記憶部11に格納される。図4は、この格納されるプ
ロセスデータの態様を例示するもので、蒸気タービン性
能診断の場合には、ボイラ入口給水量、主蒸気圧力、再
熱蒸気圧力、復水器真空度、主蒸気温度、再熱蒸気温
度、発電気出力(負荷)等が格納される。なお、プロセ
ス値記憶部11には、復水器、給水過熱器、ボイラー性
能診断用プロセスデータも同時に格納される。
The process value collection means 10 for performance diagnosis is a process necessary for performance diagnosis of a steam turbine, a condenser, a feed water heater, a boiler, etc. from a process data group collected by a control device (not shown). The data is collected in a constant cycle T, and the collected process data is stored in the process value storage unit 11. FIG. 4 exemplifies an aspect of the stored process data. In the case of steam turbine performance diagnosis, boiler inlet feed water amount, main steam pressure, reheat steam pressure, condenser vacuum degree, main steam temperature. , Reheat steam temperature, generated power output (load), etc. are stored. The process value storage unit 11 also stores a condenser, a feed water superheater, and boiler performance diagnostic process data at the same time.

【0018】性能診断起動判定手段12は、プラントの
整定を前記プロセス値記憶部11に格納された整定の指
標となる負荷(発電機出力)、および主蒸気/再熱蒸気
温度データの時間に対する変化の変動幅が予め設定した
変動幅内にあるかどうかに基づいて判断し、プラントの
整定/不整定情報から、各個別性能診断装置へ性能診断
実行指令を出力するタイミングを判定するものである。
この性能診断処理を起動するタイミングの詳細は、図5
および図6に示すように、発電プラントの負荷が一定に
達した後、負荷変動幅がA分間、予め設定した範囲ΔW
内にあるかどうかの負荷整定を確認し、この負荷整定条
件が満たされたら、次に前記負荷整定条件と共に主蒸気
/再熱蒸気温度がB分間、予め設定した範囲ΔT内にあ
るかどうかの主蒸気/再熱蒸気温度整定の確認を行う。
次に、負荷整定判定、主蒸気/再熱蒸気温度整定判定を
同時にかつ周期的に行い、前記負荷整定条件・主蒸気/
再熱蒸気温度整定条件のいずれかが整定から不整定に移
った時、データ送受信処理手段9によって、データ伝送
装置2を介して統括性能診断装置1へ他発電所の診断機
器と同一型式機器の過去の時系列の効率データの検索実
行指令を出力し、またデータ送受信処理手段9によっ
て、データ伝送装置4aを介して各個別性能診断装置へ
性能診断実行指令を出力する。
The performance diagnosis start determination means 12 changes the settling of the plant as a settling index stored in the process value storage section 11 (generator output) and main steam / reheat steam temperature data with respect to time. Is determined based on whether or not the fluctuation range is within a preset fluctuation range, and the timing at which a performance diagnosis execution command is output to each individual performance diagnosis device is determined from the settling / unsettling information of the plant.
Details of the timing of activating this performance diagnosis process are shown in FIG.
And as shown in FIG. 6, after the load of the power plant reaches a certain level, the load fluctuation width is A minutes, and the preset range ΔW
If the load settling condition is satisfied, then whether the main steam / reheat steam temperature is within the preset range ΔT for B minutes together with the load settling condition is checked. Check the main steam / reheat steam temperature setting.
Next, the load settling judgment and the main steam / reheat steam temperature settling judgment are performed simultaneously and periodically, and the load settling condition / main steam /
When any one of the reheat steam temperature settling conditions shifts from settling to unstabilization, the data transmission / reception processing means 9 sends the data to the integrated performance diagnostic device 1 via the data transmission device 2 to identify the equipment of the same type as the diagnostic equipment of another power plant. It outputs a search execution command for past time-series efficiency data, and the data transmission / reception processing means 9 outputs a performance diagnosis execution command to each individual performance diagnostic device via the data transmission device 4a.

【0019】図7は、統括性能診断装置1の具体的構成
例を示している。同図において、データ送受信処理手段
13は、データ伝送装置2を介して、各発電所のユニッ
ト制御用計算機装置3a,3b,…と各種のデータのや
り取りを行う。発電所群効率記憶部14は、図8にに示
すような態様で、各発電所の構成機器である蒸気タービ
ン、復水器、給水過熱器、ボイラー等の時系列の効率デ
ータを時間データとともに格納する。効率データ検索手
段15は、各発電所のユニット制御用計算機装置(例え
ば3a)内の性能診断起動判定手段(例えば12)から
の検索実行指令を、データ伝送装置2を介してデータ送
受信処理手段13で受信すると、発電所群効率記憶部1
4から、診断対象機器と同一型式機器の過去の時系列の
効率データを検索する。このようにして検索された過去
の時系列の効率データは、データ送受信処理手段13に
よって該当する発電所のユニット制御用計算機装置(例
えば3a)へデータ伝送装置2を介して送信される。次
に、ユニット制御用計算機装置(例えば3a)内のデー
タ送受信処理手段(例えば9)は、この時系列の効率デ
ータを、データ伝送装置(例えば4a)を介して診断対
象機器の個別性能診断装置へ送信する。効率データ格納
手段16は、各発電所の個別性能診断装置より送信さ
れ、データ伝送装置(例えば4a)→ユニット制御用計
算機装置(例えば3a)→データ伝送装置(例えば2)
を経由して、データ送受信処理手段13で受信した性能
診断時の正常な効率データを、時間データとともに発電
所群効率記憶部14に格納する。
FIG. 7 shows a specific configuration example of the integrated performance diagnostic device 1. In FIG. 1, the data transmission / reception processing means 13 exchanges various data with the unit control computer devices 3 a, 3 b, ... Of each power plant via the data transmission device 2. The power plant group efficiency storage unit 14 stores time-series efficiency data of steam turbines, condensers, feed water superheaters, boilers, etc., which are components of each power plant, together with time data in a manner as shown in FIG. Store. The efficiency data search means 15 sends a search execution command from the performance diagnosis start determination means (for example, 12) in the unit control computer device (for example, 3a) of each power plant to the data transmission / reception processing means 13 via the data transmission device 2. When received by, the power plant group efficiency storage unit 1
From 4, the past time-series efficiency data of the device of the same model as the device to be diagnosed is retrieved. The past time-series efficiency data retrieved in this manner is transmitted by the data transmission / reception processing means 13 to the unit control computer device (for example, 3a) of the corresponding power plant via the data transmission device 2. Next, the data transmission / reception processing means (for example, 9) in the unit control computer device (for example, 3a) uses this time-series efficiency data via the data transmission device (for example, 4a) to diagnose the individual performance of the diagnostic target device. Send to. The efficiency data storage means 16 is transmitted from the individual performance diagnostic device of each power plant, and is a data transmission device (for example, 4a) → a unit control computer device (for example, 3a) → a data transmission device (for example, 2).
The normal efficiency data at the time of performance diagnosis, which is received by the data transmission / reception processing unit 13 via the, is stored in the power plant group efficiency storage unit 14 together with the time data.

【0020】ここで、ユニット制御用計算機装置3a内
の性能診断起動判定手段12で性能診断実行指令が出力
されると、各個別性能診断装置で必要なプロセスデータ
は、図4に示すプロセス値記憶部11内の格納データか
ら選択され、データ送受信処理手段9によってデータ伝
送装置4aを介して、各個別性能診断装置へ送信され
る。
Here, when the performance diagnosis execution determining command 12 in the unit control computer 3a outputs a performance diagnosis execution command, the process data necessary for each individual performance diagnosis device is stored in the process value storage shown in FIG. The data is selected from the data stored in the unit 11 and transmitted by the data transmission / reception processing means 9 to each individual performance diagnostic device via the data transmission device 4a.

【0021】図9は、本発明方法において使用される蒸
気タービン性能診断装置5aの具体的構成例を示してい
る。同図において、データ送受信処理診断17は、デー
タ伝送装置4aを介して他の装置との各種データのやり
取りを行う。機器効率計算手段18は、データ送受信処
理診断17によつて、データ伝送装置4aを介して取込
んだ性能診断用プロセスデータをもとに、性能異常判定
の指標となる機器効率計算を行う。ここで、性能異常判
定の指標は、蒸気タービンの場合はタービン効率、復水
器の場合は冷却管清浄度、給水加熱器の場合は終端温度
(TD)とドレン出口温度差(DC)、ボイラーの場合
はボイラ効率等である。
FIG. 9 shows a specific example of the construction of the steam turbine performance diagnostic device 5a used in the method of the present invention. In the figure, the data transmission / reception processing diagnosis 17 exchanges various data with other devices via the data transmission device 4a. The equipment efficiency calculation means 18 calculates equipment efficiency, which is an index for performance abnormality determination, based on the performance diagnosis process data captured via the data transmission device 4a by the data transmission / reception processing diagnosis 17. Here, the indicators of the performance abnormality determination are turbine efficiency in the case of a steam turbine, cooling pipe cleanliness in the case of a condenser, terminal temperature (TD) and drain outlet temperature difference (DC) in the case of a feed water heater, and boiler. In case of, it is boiler efficiency.

【0022】蒸気タービン性能診断の場合、機器効率計
算手段18は、プロセス値記憶部11の記憶、即ち蒸気
温度、圧力等からエンタルピ等の算出を行って、蒸気タ
ービンの内部効率ηを下式に基づいて算出する。 η=HU/HA
In the case of steam turbine performance diagnosis, the equipment efficiency calculation means 18 calculates the enthalpy and the like from the storage of the process value storage unit 11, that is, from the steam temperature, pressure, etc., and the internal efficiency η of the steam turbine is given by the following equation. Calculate based on η = HU / HA

【0023】ここで、図10のエンタルピ・エントロピ
線図に示すように、HAはノズル入口蒸気温度T1、圧
力P1から羽根出口P2までの断熱熱落差、HUはノズ
ル入口蒸気温度T1、圧力P1状態と羽根出口蒸気温度
T2、圧力P2状態でのエンタルピ差である。
As shown in the enthalpy-entropy diagram of FIG. 10, HA is the nozzle inlet vapor temperature T1, the adiabatic heat drop from the pressure P1 to the blade outlet P2, and HU is the nozzle inlet vapor temperature T1 and the pressure P1 state. And the enthalpy difference at the blade outlet steam temperature T2 and pressure P2.

【0024】タービン効率は蒸気タービンの第1段落か
ら第n段落まで求められ、それらの計算結果は、図11
に例示するような態様で、診断年月時分データととも
に、機器効率記憶部19に格納される。
The turbine efficiency is obtained from the first paragraph to the nth paragraph of the steam turbine, and the calculation results are shown in FIG.
In the mode as illustrated in FIG. 3, the data is stored in the device efficiency storage unit 19 together with the diagnosis year / month / hour data.

【0025】また、前述したように、性能診断時に必要
な他発電所の同一型式機器の効率は、統括性能診断装置
1で検索後、伝送され、「今回の性能診断用として検索
されたB発電所のタービン効率の時系列データ」、「今
回の性能診断用として検索されたC発電所のタービン効
率の時系列データ」、…が図12に例示するような態様
で、他発電所機器効率記憶部20に格納される。
Further, as described above, the efficiency of the equipment of the same type at another power plant required for the performance diagnosis is transmitted by the integrated performance diagnosis device 1 and then transmitted to the "B power generation searched for this performance diagnosis". "Temperature efficiency time series data of power station", "Time series data of turbine efficiency of C power station retrieved for performance diagnosis this time", ... It is stored in the unit 20.

【0026】予測効率計算手段21は、図13に示すよ
うに、性能診断時から過去一定期間(例えば、1ケ月
間)の性能診断対象機器のデータ(図13中に、黒丸実
線で示す)と他発電所の効率データ(図13中に、白丸
実線で示す)とを使用し、最小二乗法等を用いて外挿
し、性能診断時の予測効率AOS´を求める。
As shown in FIG. 13, the predictive efficiency calculation means 21 stores the data (indicated by the solid black circles in FIG. 13) of the equipment subject to performance diagnosis for the past fixed period (for example, one month) from the time of performance diagnosis. Using the efficiency data of other power stations (shown by the solid white circle in FIG. 13), extrapolation is performed using the method of least squares or the like to obtain the predicted efficiency AOS ′ at the time of performance diagnosis.

【0027】効率データバラツキ度計算手段22は、機
器効率記憶部19内に記憶されている性能診断時から過
去一定期間のタービン効率データと、他発電所機器効率
記憶部20に格納された他発電所の性能診断時から過去
一定期間のタービン効率データから、効率のバラツキ度
を標準偏差として求める。
The efficiency data variation degree calculation means 22 uses the turbine efficiency data stored in the equipment efficiency storage unit 19 for a certain period in the past from the time of performance diagnosis and the other power generation equipment stored in the other power station equipment efficiency storage unit 20. From the turbine efficiency data for a certain period in the past from the time of performance diagnosis, the degree of efficiency variation is calculated as the standard deviation.

【0028】性能異常判定手段23は、図13に示すよ
うに、前記予測効率計算手段21で求められる予測効率
AOS´と、効率データバラツキ度計算手段22から求
められるバラツキ度を基にした異常判定裕度しきい値D
AOで定義される範囲を、予測値AOS´と診断時の実
績効率Aとの差が越えたか否かで判定する。この異常判
定裕度しきい値DAOは、次式に示すように、標準偏差
σのn倍として算出される。 |A−AOS´|≧DAO DAO=nσ
As shown in FIG. 13, the performance abnormality determination means 23 determines the abnormality based on the predicted efficiency AOS 'calculated by the predicted efficiency calculation means 21 and the variation degree calculated by the efficiency data variation degree calculation means 22. Tolerance threshold D
The range defined by AO is determined by whether the difference between the predicted value AOS ′ and the actual efficiency A at the time of diagnosis has exceeded. This abnormality determination margin threshold DAO is calculated as n times the standard deviation σ, as shown in the following equation. | A-AOS '| ≧ DAO DAO = nσ

【0029】性能異常判定手段23での異常判定結果
は、図11に示す機器効率記憶部19に、タービン効率
とともフラグデータ(正常:0、異常:1)として格納
される。なお、このフラグデータは、本発明では実施例
として記述しないが、警報出力用等に使用される。
The abnormality determination result by the performance abnormality determining means 23 is stored in the equipment efficiency storage unit 19 shown in FIG. 11 as flag data (normal: 0, abnormality: 1) together with turbine efficiency. Although not described as an example in the present invention, this flag data is used for alarm output and the like.

【0030】最後に、性能異常判定手段23で性能が正
常と判定された場合には、機器効率記憶部19に格納さ
れた診断年月日時分データと実績効率データは、データ
送受信処理手段17によって、データ伝送装置4a→A
発電所ユニット制御用計算機装置3a→データ伝送装置
2を経由して、統括性能診断装置1へ伝送される。統括
性能診断装置1内の効率データ格納手段16は、伝送さ
れてきたA発電所の診断時の正常な効率データを、発電
所群効率記憶部14に格納する。
Finally, when the performance abnormality determining means 23 determines that the performance is normal, the data transmission / reception processing means 17 determines the diagnosis date / time data and the actual efficiency data stored in the equipment efficiency storage section 19. , Data transmission device 4a → A
It is transmitted to the integrated performance diagnosis device 1 via the power station unit control computer device 3a → data transmission device 2. The efficiency data storage means 16 in the integrated performance diagnostic device 1 stores the transmitted normal efficiency data at the time of diagnosis of the power plant A in the power plant group efficiency storage unit 14.

【0031】以上説明したように、本発明においては、
性能診断時には、まず統括性能診断装置1内の発電所群
効率記憶部14から、効率データ検索手段15によっ
て、診断対象機器と同一型式機器の過去の時系列の効率
データを検索する。この時、系列の効率データは、統括
性能診断装置1内のデータ送受信処理手段13によって
該当する発電所に送信され、ユニット制御用計算機装置
(例えば、3a)を経由して、診断対象機器の個別性能
診断装置(例えば、5a)へ送信されるとともに、個別
性能診断装置内のデータ送受信処理手段17によって他
発電所機器効率記憶部20に格納される。
As described above, in the present invention,
At the time of performance diagnosis, first, the efficiency data retrieval means 15 retrieves past time-series efficiency data of the equipment of the same type as the equipment to be diagnosed from the power plant group efficiency storage unit 14 in the integrated performance diagnosis apparatus 1. At this time, the efficiency data of the series is transmitted to the corresponding power plant by the data transmission / reception processing means 13 in the overall performance diagnosis apparatus 1, and passes through the unit control computer apparatus (for example, 3a) to individually diagnose the equipment to be diagnosed. The data is transmitted to the performance diagnostic device (for example, 5a), and is also stored in the other power station equipment efficiency storage unit 20 by the data transmission / reception processing means 17 in the individual performance diagnostic device.

【0032】各発電所の個別性能診断装置では、機器効
率計算手段18によって、性能診断時の実績効率を計算
するとともに、予測効率計算手段21によって、他発電
所機器効率記憶部20に格納された他発電所の同一型式
機器の過去の時系列の効率データと、機器効率記憶部1
9に格納された診断対象機器の過去の時系列の効率デー
タをもとに性能診断時の予測効率を求める。さらに、効
率データバラツキ度計算手段22によって、他発電所機
器効率記憶部20に格納された他発電所の同一型式機器
の過去の時系列の効率データと、機器効率記憶部19に
格納された診断対象機器の過去の時系列の効率データを
もとに、過去の時系列の効率データのバラツキ度を求め
る。
In the individual performance diagnosing device of each power station, the equipment efficiency calculating means 18 calculates the actual efficiency at the time of performance diagnosis, and the predicted efficiency calculating means 21 stores it in the other power station equipment efficiency storing section 20. Past time-series efficiency data of equipment of the same type at other power plants and equipment efficiency storage unit 1
The predicted efficiency at the time of performance diagnosis is obtained based on the past time-series efficiency data of the diagnosis target device stored in 9. Further, the efficiency data variation degree calculating unit 22 stores the past time-series efficiency data of the same type equipment of another power plant stored in the other power station equipment efficiency storage unit 20, and the diagnosis stored in the equipment efficiency storage unit 19. Based on the past time-series efficiency data of the target device, the degree of variation in the past time-series efficiency data is obtained.

【0033】最後に、性能異常判定手段23は、診断対
象機器の性能異常判定診断時の実績効率と前記予測効率
計算手段21で求められた予測効率との差が、効率デー
タバラツキ度計算手段22で求められたバラツキ度から
決められる異常判定裕度しきい値以上になった時、診断
機器の性能異常と判定する。
Finally, the performance abnormality determining means 23 calculates the efficiency data variation degree calculating means 22 based on the difference between the actual efficiency at the time of the performance abnormality determining diagnosis of the diagnosis target equipment and the predicted efficiency obtained by the predictive efficiency calculating means 21. When it exceeds the abnormality determination tolerance threshold value determined from the variation degree obtained in, it is determined that the performance of the diagnostic device is abnormal.

【0034】一方、性能診断後、性能異常判定手段23
で、性能が正常と判定された場合には、データ送受信処
理手段17によって、ユニット制御用計算機装置を経由
して統括性能診断装置1へ、正常な効率データを送信す
る。統括性能診断装置1内の効率データ格納手段16
は、送信されてきた正常な効率データを発電所群効率記
憶部14に格納し、次の診断に備える。
On the other hand, after the performance diagnosis, the performance abnormality judging means 23
When it is determined that the performance is normal, the data transmission / reception processing unit 17 transmits normal efficiency data to the overall performance diagnosis apparatus 1 via the unit control computer apparatus. Efficiency data storage means 16 in the integrated performance diagnostic device 1
Stores the transmitted normal efficiency data in the power plant group efficiency storage unit 14 in preparation for the next diagnosis.

【0035】[0035]

【発明の効果】上述のように、本発明によれば、発電プ
ラントの構成機器である蒸気タービン、復水器、給水過
熱器、ボイラー等の運転中の性能異常判定に際して、オ
ンラインで自動的に診断対象機器の過去の時系列の効率
データの他に、他発電所の同一型式機器の過去の時系列
の効率データも参照するので、診断対象機器の性能異常
判定が精度よく判定可能となり、予防保全のための詳細
点検や補修などの計画立案などに、判定結果をタイミン
グ良く、しかも充分に利用することができる。
As described above, according to the present invention, when determining a performance abnormality during operation of a steam turbine, a condenser, a feedwater superheater, a boiler, etc., which are components of a power plant, it is automatically online. In addition to past time-series efficiency data of the diagnosis target device, past time-series efficiency data of the same type of equipment at other power plants are also referred, so it is possible to accurately judge the performance abnormality of the diagnosis target device, and prevent The determination results can be used in a timely and sufficient manner for planning such as detailed inspection and maintenance for maintenance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法において使用される性能診断装置の
構成例を示す説明図。
FIG. 1 is an explanatory diagram showing a configuration example of a performance diagnostic device used in a method of the present invention.

【図2】本発明方法による性能診断処理フローを例示す
るフローチャート。
FIG. 2 is a flowchart illustrating a performance diagnosis processing flow according to the method of the present invention.

【図3】図1に示すユニット制御用計算機の具体的構成
例を示す説明図。
FIG. 3 is an explanatory diagram showing a specific configuration example of the unit control computer shown in FIG. 1.

【図4】図3に示すプロセス値記憶部に記憶されるプロ
セスデータの態様を例示する説明図。
FIG. 4 is an explanatory diagram illustrating a mode of process data stored in a process value storage unit illustrated in FIG.

【図5】本発明方法において性能診断処理を起動するタ
イミングを説明するグラフ。
FIG. 5 is a graph for explaining the timing of starting the performance diagnosis processing in the method of the present invention.

【図6】本発明方法における性能診断起動判定作動を説
明するフローチャート。
FIG. 6 is a flowchart for explaining a performance diagnosis activation determination operation in the method of the present invention.

【図7】図1に示す統括性能診断装置の具体的構成例を
示す説明図。
FIG. 7 is an explanatory diagram showing a specific configuration example of the overall performance diagnostic device shown in FIG. 1.

【図8】図7に示す発電所群効率記憶部に記憶される各
種データの態様を例示する説明図。
FIG. 8 is an explanatory diagram illustrating an example of various data stored in a power plant group efficiency storage unit illustrated in FIG. 7.

【図9】図1に示す蒸気タービン性能診断装置の具体的
構成例を示す説明図。
FIG. 9 is an explanatory diagram showing a specific configuration example of the steam turbine performance diagnostic device shown in FIG. 1.

【図10】タービン効率の計算説明図。FIG. 10 is an explanatory diagram of calculation of turbine efficiency.

【図11】図9に示す機器効率記憶部に記憶される計算
結果データの態様を例示する説明図。
FIG. 11 is an explanatory diagram illustrating a mode of calculation result data stored in the device efficiency storage unit illustrated in FIG. 9.

【図12】図9に示す他発電所機器効率記憶部に記憶さ
れる各種データの態様を例示する説明図。
12 is an explanatory diagram illustrating an example of various data stored in another power station device efficiency storage unit illustrated in FIG. 9. FIG.

【図13】本発明による性能異常判定を説明するグラ
フ。
FIG. 13 is a graph illustrating the performance abnormality determination according to the present invention.

【符号の説明】[Explanation of symbols]

1…統括性能診断装置、2…データ伝送装置、3a,3
b…ユニット制御用計算機装置、4a,4b…データ伝
送装置、5a,5b…蒸気タービン性能診断装置、6
a,6b…復水器性能診断装置、9…データ送受信処理
手段、10…性能診断用プロセス値収集手段、11…プ
ロセス値記憶部、12…性能診断起動判定手段、13…
データ送受信処理手段、14…発電所群効率記憶部、1
5…効率データ検索手段、16…効率データ格納手段、
17…データ送受信処理手段、18…機器効率計算手
段、19…機器効率記憶部、20…他発電所機器効率記
憶部、21…予測効率計算手段、22…効率データバラ
ツキ度計算手段、23…性能異常判定手段。
1 ... Overall performance diagnostic device, 2 ... Data transmission device, 3a, 3
b ... Unit control computer device, 4a, 4b ... Data transmission device, 5a, 5b ... Steam turbine performance diagnostic device, 6
a, 6b ... Condenser performance diagnostic device, 9 ... Data transmission / reception processing means, 10 ... Performance diagnostic process value collection means, 11 ... Process value storage section, 12 ... Performance diagnostic start determination means, 13 ...
Data transmission / reception processing means, 14 ... Power plant group efficiency storage section, 1
5 ... efficiency data search means, 16 ... efficiency data storage means,
17 ... Data transmission / reception processing means, 18 ... Equipment efficiency calculation means, 19 ... Equipment efficiency storage section, 20 ... Other power station equipment efficiency storage section, 21 ... Predicted efficiency calculation means, 22 ... Efficiency data variation degree calculation means, 23 ... Performance Abnormality judgment means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発電プラントの運転中のプロセスデータ
に基づいて、そのプラントの構成機器の性能診断を行う
発電プラントの性能診断方法において、各発電所の構成
機器の正常な効率データを時系列に保存し、性能診断を
行うに際して、診断対象機器の過去の時系列の効率デー
タとともに、前記保存された他発電所の診断対象機器と
同一型式機器の過去の時系列の効率データを使用して、
性能診断時の予測効率と過去の効率データのバラツキ度
を求め、性能異常診断時の実績効率と前記予測効率との
差が前記バラツキ度から決められる異常判定裕度しきい
値以上になった場合に、診断対象機器の性能異常と判定
することを特徴とする発電プラントの性能診断方法。
1. A method for diagnosing the performance of a component device of a power plant based on process data during operation of the power plant, wherein a normal efficiency data of the component device of each power plant is chronologically arranged. When saving and performing a performance diagnosis, together with past time-series efficiency data of the diagnosis target device, using the past time-series efficiency data of the same type device as the saved diagnosis target device of the other power plant,
When the difference between the predicted efficiency at the time of performance diagnosis and the past efficiency data is obtained, and the difference between the actual efficiency at the time of performance abnormality diagnosis and the predicted efficiency is equal to or greater than the abnormality determination margin threshold value determined from the above-mentioned variation degree. A method for diagnosing a performance of a power plant, comprising:
JP30432091A 1991-11-20 1991-11-20 Power plant performance diagnosis method Pending JPH05141206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30432091A JPH05141206A (en) 1991-11-20 1991-11-20 Power plant performance diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30432091A JPH05141206A (en) 1991-11-20 1991-11-20 Power plant performance diagnosis method

Publications (1)

Publication Number Publication Date
JPH05141206A true JPH05141206A (en) 1993-06-08

Family

ID=17931610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30432091A Pending JPH05141206A (en) 1991-11-20 1991-11-20 Power plant performance diagnosis method

Country Status (1)

Country Link
JP (1) JPH05141206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152789A (en) * 1993-11-26 1995-06-16 Mitsubishi Electric Corp Plant analysis equipment diagnosis system
JPH11229820A (en) * 1998-02-10 1999-08-24 Tokyo Electric Power Co Inc:The Thermal efficiency diagnosis method and apparatus for thermal power plant
JP2006083855A (en) * 2004-09-15 2006-03-30 General Electric Co <Ge> Method of estimating performance of steam turbine with low cost
JP2024156334A (en) * 2023-04-24 2024-11-06 東芝エネルギーシステムズ株式会社 Condenser condition prediction device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152789A (en) * 1993-11-26 1995-06-16 Mitsubishi Electric Corp Plant analysis equipment diagnosis system
JPH11229820A (en) * 1998-02-10 1999-08-24 Tokyo Electric Power Co Inc:The Thermal efficiency diagnosis method and apparatus for thermal power plant
JP2006083855A (en) * 2004-09-15 2006-03-30 General Electric Co <Ge> Method of estimating performance of steam turbine with low cost
JP2024156334A (en) * 2023-04-24 2024-11-06 東芝エネルギーシステムズ株式会社 Condenser condition prediction device

Similar Documents

Publication Publication Date Title
CN100504689C (en) Detect failures of system components in continuous processes
TWI302178B (en) Operation support system for power plant
Carazas et al. Availability analysis of heat recovery steam generators used in thermal power plants
JP3614751B2 (en) Thermal efficiency diagnosis method and apparatus for combined power plant
CN106053105B (en) Method and system for monitoring and diagnosing energy efficiency of regenerative heaters in nuclear power plants
CN112067335A (en) Power plant blower fault early warning method based on multivariate state estimation
CN106249728A (en) A kind of thermal power generation unit on-line performance monitoring method based on characteristics of components
CN105527113B (en) A kind of nuclear power station heat energy efficiency monitoring and fault diagnosis system and method
JP2010504501A (en) Kernel-based method for detecting boiler tube leaks
JP2002155708A (en) Power plant guidance providing system and method
WO2006039168A2 (en) Systems and methods for monitoring fouling and slagging in heat transfer devices in coal fired power plants
US10215058B2 (en) Turbine power generation system having emergency operation means, and emergency operation method therefor
CN106289754B (en) A kind of fired power generating unit component capabilities variation determination method based on Statistical Control Technique
JP6840026B2 (en) Heat exchanger abnormality diagnosis method, abnormality diagnosis system, and its control device
CN119599222A (en) A thermal control equipment early warning system for thermal power plants
Thomson et al. Statistical process control based fault detection of CHP units
CN118378532B (en) A method and system for evaluating the life of heating surface tubes of power station boilers
JPH1020932A (en) Plant abnormality diagnosis device
JPH05141206A (en) Power plant performance diagnosis method
JP2021111207A (en) Plant performance evaluation system and plant performance evaluation method
Zhang et al. Development of online validation and monitoring system for the thermal performance of nuclear power plant in service
JPH0735655A (en) Plant process monitoring equipment
Netto et al. Petri Net Based Reliability Analysis of Thermoelectric Plant Cooling Tower System: Effects of Operational Strategies on System Reliability and Availability [C]
JPS624526B2 (en)
KR20240139344A (en) Apparatus and method for evaluating damage of heat exchanger steam tube