JPH05141219A - Device for removing particulate in exhaust - Google Patents
Device for removing particulate in exhaustInfo
- Publication number
- JPH05141219A JPH05141219A JP3306160A JP30616091A JPH05141219A JP H05141219 A JPH05141219 A JP H05141219A JP 3306160 A JP3306160 A JP 3306160A JP 30616091 A JP30616091 A JP 30616091A JP H05141219 A JPH05141219 A JP H05141219A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- filter element
- heat transfer
- heat
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001914 filtration Methods 0.000 claims abstract description 51
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 239000010419 fine particle Substances 0.000 claims description 33
- 238000001816 cooling Methods 0.000 claims description 15
- 239000013618 particulate matter Substances 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 239000010970 precious metal Substances 0.000 claims 1
- 239000003595 mist Substances 0.000 abstract description 8
- 230000003247 decreasing effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000011084 recovery Methods 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- -1 that is Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は排気中の微粒子除去装置
に係り、特にボイラ、内燃機関等から排出される高温の
燃焼排気中に含まれる微粒子及び有機留分を除去するに
好適な排気中の微粒子除去装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for removing particulate matter from exhaust gas, and more particularly to an exhaust gas suitable for removing particulates and organic fractions contained in high temperature combustion exhaust gas discharged from boilers, internal combustion engines and the like. Of the fine particle removing device
【0002】[0002]
【従来の技術】ディーゼル機関等の内燃機関やボイラ等
の燃焼装置の排気中には、環境汚染の原因となる炭素及
び燃料中の灰分を主成分とする微粒子、すなわち煤塵
や、冷却されるとミスト、すなわち液状の微粒子となる
有機留分の蒸気が含まれている。有機留分の中では、可
溶性有機留分すなわちSOF(Soluble Org
anic Fraction)と呼ばれる物質が特に多
い。可溶性有機留分は、未燃の潤滑油及び同定不可能な
燃焼生成物等から成る、炭素数10〜20程度の炭化水
素類を主にした燃焼排出物質である。可溶性有機留分の
気化温度は概略150℃〜45℃の範囲にある。2. Description of the Related Art In the exhaust gas of an internal combustion engine such as a diesel engine or a combustion apparatus such as a boiler, carbon, which causes environmental pollution, and fine particles containing ash in fuel, that is, soot and dust, are cooled. It contains mist, that is, vapor of an organic fraction that becomes liquid fine particles. Among the organic fractions, soluble organic fractions, namely SOF (Soluble Org)
There are particularly many substances called anic Fraction). The soluble organic fraction is a combustion emission substance mainly composed of hydrocarbons having about 10 to 20 carbon atoms, which is composed of unburned lubricating oil, unidentified combustion products and the like. The vaporization temperature of the soluble organic fraction is generally in the range of 150 ° C to 45 ° C.
【0003】この様な微粒子及び有機留分の大気への放
出を低減するために、昭和63年からは大気汚染防止法
施行令及び同法施行規則が改正、施行され、法の規制も
強化されている。In order to reduce the release of such fine particles and organic fractions into the atmosphere, the Air Pollution Control Law Enforcement Ordinance and its enforcement regulations were amended and enforced from 1988, and the regulations of the law were strengthened. ing.
【0004】微粒子を除去するための装置としては、自
動車等に積載される比較的小型の機関に付設されるもの
として図14に示す様な排気入口10と浄化ガス出口1
3とを備えたケーシング15内に柱状あるいは板状のろ
過エレメント43を配し、その外周には、緩衝材16を
有しておりろ過エレメント43で排気に含まれる微粒子
をろ過するものが提案されている。ろ過エレメント43
に用いられる素材としては、三次元網目微小路を有する
セラミックフォーム、金属フォーム或いはセラミックや
金属等の燃結体、織布、繊維成形体等が知られている。
ろ過エレメント43上に捕捉された微粒子はそこに担持
されている酸化触媒の作用によるか、別に設置されたバ
ーナ等の焼却手段により、焼却される。しかしながら、
ディーゼル機関等から排出される排気中の微粒子は数ミ
クロン以下のものが多い。従って、目の細かい素材でエ
レメントを構成する必要があるが、機関効率を維持する
ためには、流動抵抗をできるだけ小さくすることが肝要
となる。As a device for removing fine particles, an exhaust inlet 10 and a purified gas outlet 1 as shown in FIG. 14 are attached to a relatively small engine mounted on an automobile or the like.
It is proposed that a columnar or plate-shaped filter element 43 is arranged in a casing 15 provided with 3, and a buffer material 16 is provided on the outer periphery thereof to filter fine particles contained in exhaust gas with the filter element 43. ing. Filtration element 43
As a material used in the above, a ceramic foam, a metal foam, a fired body of ceramic or metal, a woven cloth, a fiber molded body, or the like, which has a three-dimensional network minute path, is known.
The fine particles captured on the filter element 43 are incinerated by the action of the oxidation catalyst carried therein or by an incinerator such as a burner installed separately. However,
The exhaust particles emitted from diesel engines and the like are often particles of a few microns or less. Therefore, although it is necessary to form the element with a fine mesh material, it is important to minimize the flow resistance in order to maintain the engine efficiency.
【0005】そのためには、排気の流速を下げ、ろ過部
の通気面積を広くとることが必要となるが、図14に示
す様な従来の装置では機関出力あたりの装置サイズが相
対的に大きくなり好ましくない。この様な点に鑑み、図
15及び図16図の様なハニカム構造のろ過エレメント
44が提案されている。多数の小流路すなわちセル47
により構成されるハニカム構造体において、その入口側
端面45及び出口側端面46の隣接するセル47を交互
に封止材49で封止する。この時、入口側が封止された
セル47は出口側では開口しており、出口側で封止した
セル47は入口側が開口している。排気11は入口側が
開口したセルからセル壁48を貫通して、隣接する出口
側開口セルに至る。For that purpose, it is necessary to reduce the flow velocity of the exhaust gas and to widen the ventilation area of the filtering portion. However, in the conventional device as shown in FIG. 14, the device size per engine output becomes relatively large. Not preferable. In view of these points, a filter element 44 having a honeycomb structure as shown in FIGS. 15 and 16 has been proposed. Multiple small channels or cells 47
In the honeycomb structure constituted by, the adjacent cells 47 on the inlet side end surface 45 and the outlet side end surface 46 are alternately sealed with the sealing material 49. At this time, the cell 47 sealed on the inlet side is open on the outlet side, and the cell 47 sealed on the outlet side is open on the inlet side. The exhaust gas 11 penetrates through the cell wall 48 from the cell whose inlet side is open, and reaches the adjacent outlet side open cell.
【0006】この装置においては、微粒子は主としてセ
ル壁48の表面で捕捉される。この様な構造はハニカム
の流動方向長さを長くすればろ過面積が比例的に増加す
るので、排気管断面をあまり大きくすることなく必要な
ろ過面積を確保することに関しては有利となる。しか
し、この様なハニカム型ろ過エレメントは押し出し成型
等の方法で一体に製作されているために、大型化が困難
なこと、セルのサイズ等にも制限があること、セル内に
堆積する微粒子の量に偏りがあったり量が多すぎたりす
ると、焼却処理時にはエレメントの焼損や温度分布に起
因する破損がおきること、セルの一部分の破損に対して
もエレメント全部を交換する必要があること等の欠点も
有する。In this device, the fine particles are trapped mainly on the surface of the cell wall 48. With such a structure, the filtration area increases proportionally as the length of the honeycomb in the flow direction increases. Therefore, it is advantageous in securing the necessary filtration area without making the exhaust pipe cross section too large. However, since such a honeycomb-type filtration element is integrally manufactured by a method such as extrusion molding, it is difficult to increase the size, the size of the cell is limited, and the amount of fine particles deposited in the cell is reduced. If the amount is uneven or the amount is too large, the element may be burnt or damaged due to temperature distribution during the incineration process, and even if the cell is partially damaged, it is necessary to replace the entire element. It also has drawbacks.
【0007】一方、大型固定設備用の微粒子除去装置と
しては、微粒子ろ過部として、前述したいずれのエレメ
ントを採用するにしても、図17の様な構成となるのが
普通である。発電機2に接続されたディーゼル機関1か
ら排出される排気11は、微粒子ろ過部50で排気中の
微粒子を低減され、通常は熱回収部6を経て煙突7から
放出される。微粒子ろ過部50における目詰まりの検出
には、微粒子ろ過部50の上流と下流の差圧を計測する
差圧検出器9が用いられる。ろ過部の目詰まりが検出さ
れると、ダンパ29を開き、例えばバーナ28から高温
ガスを供給して、微粒子ろ過部50に堆積した微粒子を
焼却する。On the other hand, as a fine particle removing device for a large-scale fixed equipment, the structure shown in FIG. 17 is usually adopted regardless of which of the above-mentioned elements is used as the fine particle filtering section. Exhaust gas 11 emitted from the diesel engine 1 connected to the generator 2 is reduced in particulate matter in the exhaust gas by the particulate filter section 50, and is normally discharged from the chimney 7 through the heat recovery section 6. A differential pressure detector 9 that measures the differential pressure between the upstream side and the downstream side of the particulate filter 50 is used to detect clogging in the particulate filter 50. When clogging of the filtration unit is detected, the damper 29 is opened, and, for example, high temperature gas is supplied from the burner 28 to incinerate the fine particles deposited on the fine particle filtration unit 50.
【0008】一方、ディーゼル機関1は、水冷ジャケッ
ト3を備えており、ポンプ8を経て供給される給水22
により冷却される。また、前記給水22は水冷ジャケッ
ト3から温水26として排出され、その一部又は全部が
熱回収入口弁20を介して熱回収部の伝熱管51に供給
され、熱回収用の熱媒体として作用し、より高温の温水
又は蒸気21となる。On the other hand, the diesel engine 1 is equipped with a water cooling jacket 3 and is supplied with water 22 via a pump 8.
Is cooled by. Further, the water supply 22 is discharged as hot water 26 from the water cooling jacket 3, and a part or all of the water is supplied to the heat transfer pipe 51 of the heat recovery section via the heat recovery inlet valve 20 and acts as a heat medium for heat recovery. , Hot water or steam 21 of higher temperature.
【0009】[0009]
【発明が解決しようとする課題】前記のように、排気中
には炭素質及び灰分からなる微粒子の他に有機留分を含
む。この有機留分は、排気の温度が高い場合には蒸気、
低い場合にはミストとして存在する。ディーゼル機関等
の起動時や低負荷時には排気温度が低いので、微粒子ろ
過部50には前記微粒子及び有機留分の大半が捕捉され
るが、高負荷運転時は排気温度が高くなり、前期有機留
分の大部分が蒸気として微粒子ろ過部50を透過し、大
気に放出されることになる。As described above, the exhaust contains the organic fraction in addition to the fine particles of carbonaceous matter and ash. This organic fraction is steam when the temperature of the exhaust gas is high,
When it is low, it exists as mist. Since the exhaust gas temperature is low when the diesel engine is started or when the load is low, most of the fine particles and the organic fraction are captured in the particulate filter 50, but the exhaust gas temperature becomes high during the high load operation, and the organic fraction of the previous period becomes high. Most of the permeation passes through the particulate filter 50 as vapor and is released to the atmosphere.
【0010】一方、微粒子ろ過部50の下流には熱回収
部が設置されるが、伝熱管の表面温度は前記有機留分が
凝縮する温度以下であることが多い。従って、有機留分
の一部は伝熱管の表面に付着し、さらにろ過部で捕捉さ
れなかった微粒子の付着をも助長して、伝熱管の汚れを
増し、熱伝達率を著しく低下させる。On the other hand, although a heat recovery section is installed downstream of the fine particle filtration section 50, the surface temperature of the heat transfer tube is often lower than the temperature at which the organic fraction is condensed. Therefore, a part of the organic fraction adheres to the surface of the heat transfer tube and further promotes the adhesion of fine particles not captured in the filtration section, increasing the contamination of the heat transfer tube and significantly reducing the heat transfer coefficient.
【0011】本発明の目的は、熱回収部の熱伝達率を低
下させることなく、排気温度が低い起動時や低負荷時の
みならず、排気温度が高い高負荷運転時にも、有機留分
の大気への排出を低減し得る排気中の微粒子除去装置を
提供することにある。The object of the present invention is not to reduce the heat transfer coefficient of the heat recovery part, but to reduce the organic fraction not only during low exhaust temperature startup or low load but also during high load operation with high exhaust temperature. It is an object of the present invention to provide a device for removing particulate matter in exhaust gas that can reduce discharge to the atmosphere.
【0012】[0012]
【課題を解決するための手段】上記目的は、微粒子及び
有機留分を含む排気が流れる排気流路にろ過エレメント
を配置し、該ろ過エレメントの温度を調整、主として冷
却することによって達成される。ろ過エレメントの温度
調整手段としては、ろ過エレメントを貫通、又はろ過エ
レメントに接して、その内部に熱媒体が流れる伝熱管を
配するか、或いはその一端が前記ろ過エレメントを貫
通、又はろ過エレメントに接し、他端がケーシングの外
側に位置するヒートパイプ等の伝熱素子を配する等の手
段が採用される。The above object can be achieved by arranging a filter element in an exhaust passage through which exhaust gas containing fine particles and an organic fraction flows, and adjusting the temperature of the filter element, mainly cooling. As the temperature adjusting means of the filtration element, the filtration element is penetrated, or in contact with the filtration element, a heat transfer tube through which a heat medium flows is arranged inside, or one end thereof penetrates the filtration element or is in contact with the filtration element. A means for arranging a heat transfer element such as a heat pipe whose other end is located outside the casing is adopted.
【0013】[0013]
【作用】排気温度が高い高負荷運転時に、蒸気として微
粒子ろ過部に供給される有機留分は、冷却されることに
より、その大部分がミストとなり、微粒子ろ過部で捕捉
され、大気への排気量が低減される。[Function] During high-load operation at a high exhaust temperature, most of the organic fraction supplied as vapor to the particulate filter becomes a mist when it is cooled, is captured by the particulate filter, and is discharged to the atmosphere. The quantity is reduced.
【0014】さらに、ろ過エレメントへのミスト付着に
より炭素質及び灰分からなる微粒子の捕捉も助長される
ため、微粒子そのものの排出量も低減される。また、微
粒子ろ過部の下流に配される熱回収部伝熱管の汚れも少
なくなり、熱伝達率の低下も小さく、システム全体にお
ける熱効率の向上を図ることができる。Further, since the mist adhered to the filtration element facilitates the capture of fine particles composed of carbonaceous matter and ash, the discharge amount of the fine particles themselves is also reduced. In addition, the heat recovery tube heat transfer tube disposed downstream of the particle filtering section is less contaminated and the heat transfer coefficient is less deteriorated, so that the thermal efficiency of the entire system can be improved.
【0015】[0015]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1における第1の実施例において、図17に示
す従来の同一の構成部分は同一符号で示している。微粒
子除去装置5は、ディーゼル機関1の排気流路4に設置
される。微粒子除去装置5の下流には、熱回収部6が配
される。微粒子除去装置5は、主として、排気入口10
と浄化ガス出口13とを備えるケーシング15、ろ過エ
レメント12及び伝熱管18から成る。ろ過エレメント
12は、緩衝材16によってケーシング15内に保持さ
れている。ろ過エレメント12としては、熱伝導率の大
きい素材で構成する方が伝熱の面から考えて望ましい。
ろ過エレメント12には、金属酸化物、貴金属等に代表
される酸化触媒が担持されている。Embodiments of the present invention will be described below with reference to the drawings. In the first embodiment shown in FIG. 1, the same components as in the prior art shown in FIG. 17 are designated by the same reference numerals. The fine particle removing device 5 is installed in the exhaust passage 4 of the diesel engine 1. A heat recovery unit 6 is arranged downstream of the particle removal device 5. The particulate removing device 5 mainly includes an exhaust inlet 10
And a filter element 12 and a heat transfer tube 18. The filter element 12 is held in the casing 15 by a cushioning material 16. From the viewpoint of heat transfer, it is preferable that the filter element 12 is made of a material having a high thermal conductivity.
The filtration element 12 carries an oxidation catalyst typified by metal oxides, noble metals and the like.
【0016】。本実施例では、伝熱管18はろ過エレメ
ント12を貫通するように配置されているが、伝熱面積
を増加させ、冷却能力を高めるために、図2の様に管群
を形成せしめると良い。.. In the present embodiment, the heat transfer tubes 18 are arranged so as to penetrate through the filtration element 12, but in order to increase the heat transfer area and enhance the cooling capacity, it is preferable to form a tube group as shown in FIG.
【0017】一方、前記した如くディーゼル機関1は、
水冷ジャケット3を備えており、ポンプ8を経て供給さ
れる給水22により冷却される。さらに、前記給水は水
冷ジャケット3から温水26として排出され、その一部
は熱回収部6の伝熱管51に供給され、熱回収用の熱媒
体として作用し、より高温の温水又は蒸気21となる。
また、前記温水26は微粒子除去装置5内の伝熱管18
にも供給される。伝熱管18及び51には、それぞれろ
過エレメント入口弁17及び熱回収部入口弁20が設け
られる。微粒子除去装置5における排気出入口の差圧を
検出するために差圧検出器9及びろ過エレメント12の
温度を監視するために温度検出器52が、それぞれ設置
されている。なお、24及び25はバイパス弁である。On the other hand, as described above, the diesel engine 1
It is equipped with a water cooling jacket 3 and is cooled by water supply 22 supplied via a pump 8. Further, the water supply is discharged from the water cooling jacket 3 as hot water 26, a part of which is supplied to the heat transfer tube 51 of the heat recovery section 6 and acts as a heat medium for heat recovery to become hot water or steam 21 of higher temperature. ..
Further, the hot water 26 is used as the heat transfer tube 18 in the particle removing device 5.
Will also be supplied. The heat transfer tubes 18 and 51 are provided with a filter element inlet valve 17 and a heat recovery unit inlet valve 20, respectively. A temperature detector 52 is installed to monitor the temperature of the differential pressure detector 9 and the temperature of the filtration element 12 in order to detect the differential pressure of the exhaust gas inlet / outlet in the particulate removal device 5. Incidentally, 24 and 25 are bypass valves.
【0018】次に上記のように構成される第1実施例の
作用を説明する。微粒子及び有機留分蒸気を含む排気1
1は、微粒子除去装置5の排気入口に供給される。一
方、伝熱管18には、冷却用熱媒体として温水26が供
給され、伝熱管18の周囲のろ過エレメント12が冷却
される。そのため、ろ過エレメント12に触れた前記排
気中の有機留分蒸気は液化してミストとなり、炭素質及
び灰分からなる微粒子と共にろ過エレメント12に捕捉
される。微粒子及び有機留分が低減された浄化ガス14
は、浄化ガス出口13から排出され、熱回収部6を経て
煙突7から大気へ放出される。Next, the operation of the first embodiment constructed as above will be described. Exhaust gas containing fine particles and organic fraction vapor 1
1 is supplied to the exhaust inlet of the particle removing device 5. On the other hand, the hot water 26 is supplied to the heat transfer tube 18 as a heat medium for cooling, and the filtration element 12 around the heat transfer tube 18 is cooled. Therefore, the organic fraction vapor in the exhaust gas that has touched the filter element 12 is liquefied and becomes mist, and is captured by the filter element 12 together with the fine particles composed of carbonaceous matter and ash. Purified gas with reduced fine particles and organic fraction 14
Is discharged from the purified gas outlet 13, passes through the heat recovery section 6, and is discharged from the chimney 7 to the atmosphere.
【0019】熱回収部6では、既に微粒子及び有機留分
が低減されているので、伝熱管51は汚されることな
く、熱伝達率の低下もない。差圧検出器9により微粒子
除去装置5の差圧が許容値を越えたことが検出された場
合には、排気温度が高い高負荷時を見計らって、ろ過エ
レメント入口弁17を調整し、伝熱管18内の温水の流
量を減じるか、温水の供給を停止して、ろ過エレメント
12及び伝熱管18の表面温度を上昇させる。これによ
り、ろ過エレメント12に担持された酸化触媒を機能さ
せ、ろ過エレメント12に捕捉されている微粒子及び有
機留分を燃焼させ、ろ過エレメント12の再生を図るこ
とができる。Since the fine particles and the organic fraction have already been reduced in the heat recovery section 6, the heat transfer tube 51 is not polluted and the heat transfer coefficient is not reduced. When the differential pressure detector 9 detects that the differential pressure of the particulate removing device 5 exceeds the allowable value, the filtration element inlet valve 17 is adjusted by observing the time when the exhaust gas temperature is high and the load is high. The flow rate of hot water in 18 is reduced, or the supply of hot water is stopped to raise the surface temperature of the filtration element 12 and the heat transfer tube 18. As a result, the oxidation catalyst carried by the filtration element 12 is made to function, the fine particles and the organic fraction captured by the filtration element 12 are burned, and the filtration element 12 can be regenerated.
【0020】本実施例では、ろ過エレメント12に酸化
触媒を担持してあるので、ろ過エレメント再生のための
特別な熱源を要することなく、ろ過エレメント12の再
生が行え、経済性に優れた装置を提供することができ
る。In the present embodiment, since the oxidation catalyst is carried on the filter element 12, the filter element 12 can be regenerated without requiring a special heat source for regenerating the filter element, and an economically excellent apparatus can be provided. Can be provided.
【0021】なお、ろ過エレメント再生時に、ろ過エレ
メント12の温度を温度検出器52により検出して、ろ
過エレメント入口弁17により伝熱管18内の温水流量
を調整することによって、ろ過エレメント12の焼損を
防止することもできる。また、本実施例では、熱回収部
6へ供給する予熱水を一部分岐して伝熱管18に供給し
ているが、伝熱管18に空気或いはその他の流体を熱媒
体として用いても良い。During regeneration of the filter element, the temperature of the filter element 12 is detected by the temperature detector 52, and the flow rate of hot water in the heat transfer tube 18 is adjusted by the filter element inlet valve 17 to prevent the filter element 12 from burning. It can be prevented. Further, in this embodiment, the preheated water to be supplied to the heat recovery unit 6 is partially branched and supplied to the heat transfer tube 18, but air or another fluid may be used as the heat medium in the heat transfer tube 18.
【0022】本発明の第2の実施例を図3に示す。第2
の実施例は、ろ過エレメント12を再生するに当たっ
て、ろ過エレメント12内に堆積した微粒子及び有機留
分に着火するための電気ヒータ27をろ過エレメント1
2の上流側に設けたものであり、焼却再生のための着火
動作を確実に行わせしめることができる。上記した構成
以外の部分は、第1実施例と同様である。A second embodiment of the present invention is shown in FIG. Second
In the embodiment of the present invention, in regenerating the filter element 12, the electric heater 27 for igniting the particulate matter and the organic fraction accumulated in the filter element 12 is provided.
Since it is provided on the upstream side of 2, the ignition operation for incineration regeneration can be surely performed. The parts other than the above-mentioned structure are the same as those in the first embodiment.
【0023】本発明の第3の実施例を図4に示す。本実
施例では、ろ過エレメント12を再生するに当たって、
微粒子除去装置の上流にバーナ28を付設し、ダンパ2
9及びダンパ30を介して高温ガスをろ過エレメント1
2に供給するものであり、再生時におけるろ過エレメン
ト12の温度分布が比較的均等になるため、ろ過エレメ
ント12の部分的な焼損や破損を防止することができ
る。A third embodiment of the present invention is shown in FIG. In the present embodiment, when regenerating the filtration element 12,
A burner 28 is attached upstream of the particle removing device, and the damper 2
Filter element 1 for hot gas through
The temperature distribution of the filter element 12 at the time of regeneration is relatively uniform, so that partial burnout or damage of the filter element 12 can be prevented.
【0024】本発明の第4の実施例を図5に示す。本実
施例では、ろ過エレメント12を貫通する伝熱管18の
周りに電気抵抗体31を配してある。ろ過エレメント1
2の焼却再生時に迅速な加熱昇温が可能となるだけでな
く、伝熱管18近傍に多量に堆積する微粒子及び有機留
分の焼却に特に有効になる。A fourth embodiment of the present invention is shown in FIG. In this embodiment, the electric resistor 31 is arranged around the heat transfer tube 18 penetrating the filtration element 12. Filtration element 1
Not only is it possible to rapidly heat and raise the temperature at the time of incineration and regeneration of No. 2, but it is particularly effective for incineration of fine particles and organic fractions accumulated in large amounts in the vicinity of the heat transfer tube 18.
【0025】本発明の第5の実施例を図6に示す。本実
施例では、ろ過エレメント12は排気の流れ方向から見
て、熱媒体19a、19bが流動する伝熱管18の周囲
に形成された酸化触媒担持部33の上流側に、γ−アル
ミナ、ゼオライト等に代表される有機留分吸着材担持部
32を配したものである。吸着材は、所定の温度条件に
おいて、有機留分を吸着又は放出するので、酸化触媒担
持部32の後流部に配された酸化触媒の反応負荷を平均
化することができ、更にはろ過エレメント12の部分的
な焼損や破損を防止することができる。また、有機留分
の大気への放出を、排気温度の高低にかかわらず抑制す
ることができる。FIG. 6 shows a fifth embodiment of the present invention. In the present embodiment, the filtration element 12 is provided with γ-alumina, zeolite, etc. on the upstream side of the oxidation catalyst supporting portion 33 formed around the heat transfer tube 18 through which the heat mediums 19a and 19b flow, as viewed from the exhaust flow direction. The organic fraction adsorbent supporting portion 32 typified by the above is arranged. Since the adsorbent adsorbs or releases the organic fraction under a predetermined temperature condition, it is possible to average the reaction load of the oxidation catalyst arranged in the downstream portion of the oxidation catalyst supporting portion 32, and further, the filtration element. It is possible to prevent partial burnout or damage of 12. Further, it is possible to suppress the release of the organic fraction to the atmosphere regardless of the exhaust gas temperature.
【0026】図7及び図8図は、本発明の第6の実施例
の要部の実施例を示し、ろ過エレメントを複数のブロッ
ク34に分割し該ブロックの一部又は全部に伝熱管18
を配したものである。本実施例では、ろ過エレメント内
に温度分布を生じた場合でも、熱応力によるエレメント
の破壊を最小限にくい止めることができる。また、図8
に示す様に、ろ過エレメントブロック34を千鳥配列と
なる様に積層配置すれば、ろ過エレメント内における排
気11の吹き抜けも防止することができ、浄化ガス14
として排出される。FIGS. 7 and 8 show an embodiment of the essential part of the sixth embodiment of the present invention, in which the filter element is divided into a plurality of blocks 34, and the heat transfer tube 18 is provided in a part or all of the blocks 34.
Are arranged. In the present embodiment, even if a temperature distribution is generated in the filtration element, it is possible to prevent the element from being destroyed by thermal stress with minimum difficulty. Also, FIG.
If the filter element blocks 34 are stacked and arranged in a zigzag arrangement as shown in FIG. 5, blow-through of the exhaust gas 11 in the filter element can be prevented, and the purified gas 14
Is discharged as.
【0027】図9は本発明の第7の実施例を示してお
り、ろ過エレメントと伝熱管は必ずしも一体化されてい
る必要はなく、排気の流れ方向に複数のろ過エレメント
ブロック35を間隔をあけて配し、各ろ過エレメントブ
ロック35の間隙に伝熱管18群を配置しても良い。こ
の時、ろ過エレメントブロック35と伝熱管18を接触
させて置けば、伝熱管18によるろ過エレメントブロッ
ク35の冷却効果は維持できる。FIG. 9 shows a seventh embodiment of the present invention, in which the filter element and the heat transfer tube do not necessarily have to be integrated, and a plurality of filter element blocks 35 are spaced in the exhaust flow direction. The heat transfer tubes 18 may be arranged in the gap between the filter element blocks 35. At this time, if the filtration element block 35 and the heat transfer tube 18 are placed in contact with each other, the cooling effect of the filtration element block 35 by the heat transfer tube 18 can be maintained.
【0028】ろ過エレメントブロックは図7に示した様
な構造だけでなく、図10〜図12に示すような様々な
構造をとることができる。図10及び図11は一つのろ
過エレメントブロック36、37に熱媒体19が供給さ
れる複数の伝熱管18を配したもの、図12はろ過エレ
メントとして波板38を用いたものである。波板38を
用いた図12の例では、該単位ブロックを積層してハニ
カムブロックを形成させる。The filter element block can have not only the structure shown in FIG. 7 but also various structures shown in FIGS. 10 to 12. 10 and 11 show one filter element block 36, 37 in which a plurality of heat transfer tubes 18 to which the heat medium 19 is supplied are arranged, and FIG. 12 uses a corrugated plate 38 as a filter element. In the example of FIG. 12 using the corrugated plate 38, the unit blocks are stacked to form a honeycomb block.
【0029】この様な構造のろ過エレメントは、主とし
て有機留分を低減するのに適しており、圧力損失が低
く、ほとんど目詰まりの心配がない。ろ過エレメントと
伝熱管の一体化には、ろ過エレメントの材質に応じて、
拡管、圧着、ろう付け、溶接、接着剤による接着及び鋳
込み成型等、諸々の方法が採用される。本発明の第7の
実施例を図13に示す。本実施例では、ろ過エレメント
の冷却素子として、ヒートパイプ39を用いたものであ
る。ヒートパイプ39は非凝縮性ガスを除いた管内に作
動液を密封し、作動液の蒸発と凝縮により伝達する伝熱
素子である。このヒートパイプ39はその一端が吸熱部
40、他端が放熱部41となる。本実施例は、ヒートパ
イプ39の一端がろ過エレメント12を貫通、又はろ過
エレメント12に接し、他端がケーシング15の外側に
位置するようにヒートパイプ39を配し、このヒートパ
イプ39のケーシング15の外側に位置する部分に冷却
手段42を付加している。本実施例では、熱媒体の配管
が不要となるほか、冷却手段として自然対流等の現象を
利用することにすれば、システムが簡易化される。The filter element having such a structure is mainly suitable for reducing the organic fraction, has a low pressure loss, and is hardly clogged. Depending on the material of the filter element, the filter element and heat transfer tube can be integrated.
Various methods such as pipe expansion, pressure bonding, brazing, welding, bonding with an adhesive and casting molding are adopted. A seventh embodiment of the present invention is shown in FIG. In this embodiment, the heat pipe 39 is used as the cooling element of the filtration element. The heat pipe 39 is a heat transfer element that seals the working fluid in the tube excluding the non-condensable gas and transfers the working fluid by evaporation and condensation. The heat pipe 39 has a heat absorbing portion 40 at one end and a heat radiating portion 41 at the other end. In this embodiment, the heat pipe 39 is arranged such that one end of the heat pipe 39 penetrates the filter element 12 or is in contact with the filter element 12 and the other end is located outside the casing 15. The cooling means 42 is added to the portion located on the outer side of. In the present embodiment, the piping of the heat medium is not necessary, and the system is simplified by utilizing a phenomenon such as natural convection as the cooling means.
【0030】[0030]
【発明の効果】本発明によれば、蒸気として供給される
有機留分をも冷却してミストとし、微粒子ろ過部で捕捉
するため、排気温度が低い起動時や低負荷時のみなら
ず、排気温度が高い高負荷運転時にも有機留分の大気へ
の排出を低減し得る。EFFECTS OF THE INVENTION According to the present invention, the organic fraction supplied as vapor is also cooled to form a mist and captured by the fine particle filtration unit, so that the exhaust temperature is not limited to when the engine is started or when the load is low. Emissions of organic fractions to the atmosphere can be reduced even during high-load operation at high temperatures.
【0031】さらに、ろ過エレメントへのミスト付着に
より炭素質及び灰分からなる微粒子の捕捉も助長される
ため、微粒子の排出は一層低減される。また、微粒子ろ
過部の下流に配される熱回収部の汚れも少なくなり、熱
伝達率の低下も小さく、システム全体における熱効率の
向上を図ることができる。Further, since the mist adhered to the filter element promotes the capture of fine particles composed of carbonaceous matter and ash, the emission of fine particles is further reduced. In addition, the heat recovery unit disposed downstream of the particulate filtration unit is less contaminated, the heat transfer coefficient is less reduced, and the thermal efficiency of the entire system can be improved.
【図1】本発明になる微粒子除去装置の第1の実施例を
示す概略的構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment of a fine particle removing apparatus according to the present invention.
【図2】図1のA−A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.
【図3】本発明の第2の実施例を示す概略的構成図であ
る。FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention.
【図4】本発明の第3の実施例を示す概略的構成図であ
る。FIG. 4 is a schematic configuration diagram showing a third embodiment of the present invention.
【図5】本発明の第4の実施例を示す概略的構成図であ
る。FIG. 5 is a schematic configuration diagram showing a fourth embodiment of the present invention.
【図6】本発明の第5の実施例を示す要部の概略的構成
図である。FIG. 6 is a schematic configuration diagram of a main part showing a fifth embodiment of the present invention.
【図7】本発明の第6の実施例を示す要部斜視図であ
る。FIG. 7 is a perspective view of an essential part showing a sixth embodiment of the present invention.
【図8】図7のろ過エレメントブロックの使用例を示す
断面図である。8 is a cross-sectional view showing an example of use of the filtration element block of FIG.
【図9】ろ過エレメントブロックの一態様を示す断面図
である。FIG. 9 is a cross-sectional view showing one mode of a filtration element block.
【図10】ろ過エレメントブロックの他の態様を示す断
面図である。FIG. 10 is a cross-sectional view showing another aspect of the filtration element block.
【図11】ろ過エレメントブロックの更に他の態様を示
す断面図である。FIG. 11 is a cross-sectional view showing still another aspect of the filtration element block.
【図12】ろ過エレメントブロックの更に他の態様を示
す断面図である。FIG. 12 is a cross-sectional view showing still another aspect of the filtration element block.
【図13】本発明の第7の実施例を示す概略的構成図で
ある。FIG. 13 is a schematic configuration diagram showing a seventh embodiment of the present invention.
【図14】従来の微粒子除去装置を示す要部断面図であ
る。FIG. 14 is a cross-sectional view of essential parts showing a conventional particulate matter removing device.
【図15】従来の微粒子除去装置の他の例を示す要部斜
視図である。FIG. 15 is a main part perspective view showing another example of a conventional particulate matter removing device.
【図16】図15のB−B’断面図である。16 is a cross-sectional view taken along the line B-B ′ of FIG.
【図17】従来の微粒子除去装置の例を示す概略的構成
図である。FIG. 17 is a schematic configuration diagram showing an example of a conventional particulate matter removing apparatus.
1 ディーゼル機関 2 発電機 3 水冷ジャケット 5 微粒子除去装置 6 熱回収部 9 差圧検出器 12 ろ過エレメント 15 ケーシング 16 緩衝材 18 伝熱管 19a 熱媒体 19b 熱媒体 27 電気ヒータ 28 バーナ 31 電気抵抗体 32 吸着材担持部 33 酸化触媒担持部 34、35、36、37 ろ過エレメントブロック 39 ヒートパイプ 40 吸熱部 41 放熱部 42 冷却手段 DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Generator 3 Water cooling jacket 5 Fine particle removal device 6 Heat recovery part 9 Differential pressure detector 12 Filtration element 15 Casing 16 Buffer material 18 Heat transfer tube 19a Heat medium 19b Heat medium 27 Electric heater 28 Burner 31 Electric resistor 32 Adsorption Material support part 33 Oxidation catalyst support part 34, 35, 36, 37 Filtration element block 39 Heat pipe 40 Endothermic part 41 Heat dissipation part 42 Cooling means
Claims (8)
排気流路にろ過エレメントを配置し、このろ過エレメン
トにより排気中の微粒子及び有機留分を捕捉し、除去す
る排気中の微粒子除去装置において、前記ろ過エレメン
トの温度を調整する温度調整手段を備えたことを特徴と
する排気中の微粒子除去装置。1. A device for removing particles in exhaust gas, wherein a filter element is arranged in an exhaust flow path through which exhaust gas containing particles and organic fraction flows, and the filter element captures and removes the particles and organic fraction in exhaust gas. A device for removing particulates in exhaust gas, comprising temperature adjusting means for adjusting the temperature of the filtration element.
等の酸化触媒が担持されていることを特徴とする請求項
1の排気中の微粒子除去装置。2. The particulate matter removing device for exhaust gas according to claim 1, wherein the filtration element carries an oxidation catalyst of metal oxides, precious metals and the like.
分の排気流れ方向上流側に、γ−アルミナ、ゼオライト
等の有機留分吸着物質を配したことを特徴とする請求項
2の排気中の微粒子除去装置。3. The particulate matter in the exhaust gas according to claim 2, wherein an organic fraction adsorbing material such as γ-alumina or zeolite is arranged upstream of the oxidation catalyst supporting portion in the filtration element in the exhaust gas flow direction. Removal device.
ガスの出口とを備えるケーシング内に配し、前記ろ過エ
レメントを貫通、又はろ過エレメントに接して、その内
部に熱媒体が流れる伝熱管を配したことを特徴とする請
求項1の排気中の微粒子除去装置。4. A heat transfer pipe is arranged in the casing having an exhaust gas inlet and a purified gas outlet, and penetrates the filter element or is in contact with the filter element and has a heat medium flowing therein. The device for removing particulate matter in exhaust gas according to claim 1, wherein
トを冷却する装置と前記ろ過エレメントを加熱する手段
とがそれぞれ別個に設置されていることを特徴とする請
求項1の微粒子除去装置。5. The fine particle removing apparatus according to claim 1, wherein the temperature adjusting means is provided with a device for cooling the filtration element and a device for heating the filtration element, respectively.
され、該ブロックの一部又は全部に伝熱管を配したこと
を特徴とする請求項4の排気中の微粒子除去装置。6. The device for removing particulate matter in exhaust gas according to claim 4, wherein the filter element is divided into a plurality of blocks, and a heat transfer tube is arranged in a part or all of the block.
の出口とを備えるヘーシング内に配し、その一端が前記
ろ過エレメントを貫通、又はろ過エレメントに接し、他
端がケーシングの外側に位置するヒートパイプを設置
し、該ヒートパイプのケーシングの外側に位置する部分
に冷却手段を付設したことを特徴とする請求項1の排気
中の微粒子除去装置。7. A heat having a filter element disposed in a hex having an exhaust gas inlet and a purified gas outlet, one end of which penetrates the filter element or is in contact with the filter element and the other end of which is located outside the casing. The device for removing particulates in exhaust gas according to claim 1, wherein a pipe is installed, and a cooling means is attached to a portion of the heat pipe located outside the casing.
捉された微粒子及び有機留分を焼却又は減量するための
高温のガスを導入する手段を設けたことを特徴とする請
求項4の微粒子除去装置。8. The particulate matter removing apparatus according to claim 4, wherein a means for introducing a high-temperature gas for incinerating or reducing the particulate matter and the organic fraction captured by the filtration element is provided in the casing.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3306160A JPH05141219A (en) | 1991-11-21 | 1991-11-21 | Device for removing particulate in exhaust |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3306160A JPH05141219A (en) | 1991-11-21 | 1991-11-21 | Device for removing particulate in exhaust |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05141219A true JPH05141219A (en) | 1993-06-08 |
Family
ID=17953773
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3306160A Pending JPH05141219A (en) | 1991-11-21 | 1991-11-21 | Device for removing particulate in exhaust |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05141219A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19503067A1 (en) * | 1995-02-01 | 1996-08-08 | Mtu Friedrichshafen Gmbh | Diesel engine exhaust gas recycle filter combined with heat exchanger |
-
1991
- 1991-11-21 JP JP3306160A patent/JPH05141219A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19503067A1 (en) * | 1995-02-01 | 1996-08-08 | Mtu Friedrichshafen Gmbh | Diesel engine exhaust gas recycle filter combined with heat exchanger |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0264202B1 (en) | Low energy regeneration system for particulate trap for an internal combustion engine | |
| US6024927A (en) | Particulate trap | |
| US4346557A (en) | Incineration-cleanable composite diesel exhaust filter and vehicle equipped therewith | |
| US5488826A (en) | Heat isolated catalytic reactor | |
| KR100269841B1 (en) | Exhaust gas purification apparatus for diesel engine | |
| KR930000473B1 (en) | Exhaust emission purifier for diesel engines | |
| WO2012153706A1 (en) | Wet exhaust gas purification device | |
| EP1601440B1 (en) | Method for filtering exhaust particulates | |
| JP2587068B2 (en) | Apparatus for treating particulates in diesel engine exhaust gas | |
| JPH05141219A (en) | Device for removing particulate in exhaust | |
| JP3147356B2 (en) | Exhaust gas particulate purification equipment | |
| JP3554710B2 (en) | Particle removal device | |
| KR20090131023A (en) | Soot Purifier of Diesel Engine | |
| JP2544659B2 (en) | Particulate trap device | |
| JP3374654B2 (en) | Diesel engine exhaust purification system | |
| JPS59150918A (en) | Diesel engine exhaust gas purification device | |
| JP3341800B2 (en) | DPF burner regeneration device | |
| JP3230799B2 (en) | Exhaust gas purification equipment for diesel engines | |
| JPS6311292Y2 (en) | ||
| KR200275739Y1 (en) | Diesel engine emission smoke purification system | |
| JP2009515083A (en) | Purification system for exhaust gas discharged from an internal combustion engine | |
| KR100817252B1 (en) | Soot Reduction Device for Diesel Engine | |
| JPH09184417A (en) | Dust removal equipment for diesel engines | |
| JP2607563Y2 (en) | Exhaust gas purification filter | |
| JPH0143458Y2 (en) |