JPH05143972A - Metal thin film magnetic recording medium and its production - Google Patents
Metal thin film magnetic recording medium and its productionInfo
- Publication number
- JPH05143972A JPH05143972A JP30354991A JP30354991A JPH05143972A JP H05143972 A JPH05143972 A JP H05143972A JP 30354991 A JP30354991 A JP 30354991A JP 30354991 A JP30354991 A JP 30354991A JP H05143972 A JPH05143972 A JP H05143972A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic recording
- sputtering
- thin film
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
(57)【要約】
【目的】 耐久性に優れ、ひいては高密度記録化の可能
な金属薄膜型磁気記録媒体を提供する。
【構成】 非磁性基板1 の上にCr下地層2 、磁気記録
層3 およびC層4 がスパッタリングにより同順序で成膜
されている。前記C層4 は、成膜後にN2 ガス雰囲気中
で逆スパッタされ、又はC層の成膜に際して、ArとN
2 との混合ガス雰囲気中でバイアススパッタにより成膜
されたものである。このため、C層4 の少なくとも表面
層にはN原子がC原子中に混入したものとなっている。
(57) [Summary] [Object] To provide a metal thin film type magnetic recording medium having excellent durability and capable of high density recording. [Structure] A Cr underlayer 2, a magnetic recording layer 3 and a C layer 4 are formed on a non-magnetic substrate 1 in the same order by sputtering. The C layer 4 is reverse sputtered in an N 2 gas atmosphere after the film formation, or Ar and N are formed when the C layer is formed.
The film was formed by bias sputtering in a mixed gas atmosphere with 2 . Therefore, at least the surface layer of the C layer 4 has N atoms mixed in with the C atoms.
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気ディスク装置に使用
される面内記録用金属薄膜型磁気記録媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal thin film type magnetic recording medium for in-plane recording used in a magnetic disk device.
【0002】[0002]
【従来の技術】近年、磁気記録媒体の高密度記録化に伴
って、CoNiCr、CoCrTa等の一軸結晶磁気異
方性を有するCo合金を非磁性基板上にCr下地層を介
してスパッタリングにより成膜した面内記録用金属薄膜
型磁気記録媒体が用いられている。2. Description of the Related Art In recent years, a Co alloy having uniaxial crystal magnetic anisotropy such as CoNiCr and CoCrTa is formed on a non-magnetic substrate by sputtering through a Cr underlayer along with the increase in density of magnetic recording media. A metal thin film magnetic recording medium for in-plane recording is used.
【0003】磁気記録媒体における技術的課題の一つ
は、媒体表面と磁気ヘッドとの接触抵抗を軽減し、耐摩
耗性、耐久性を向上させることにある。従来、耐久性の
向上のため、基板表面にテキスチャーと呼ばれる凹凸加
工を施し、以って媒体表面を凹凸にして接触抵抗を軽減
している。又、Co合金からなる磁気記録層の上に保護
層としてC(カーボン)層を形成したり、更にその上に
液体潤滑層を形成している。One of the technical problems in the magnetic recording medium is to reduce the contact resistance between the surface of the medium and the magnetic head and improve the wear resistance and durability. Conventionally, in order to improve durability, unevenness processing called texture is applied to the substrate surface to make the medium surface uneven so as to reduce the contact resistance. Further, a C (carbon) layer is formed as a protective layer on the magnetic recording layer made of Co alloy, and a liquid lubricating layer is further formed thereon.
【0004】[0004]
【発明が解決しようとする課題】上記のような耐久性向
上手段が採られているにも拘らず、磁気記録媒体を繰り
返して回転、停止すると、媒体表面と磁気ヘッド表面と
が繰り返して接触することに起因して、摩擦係数が増大
し、回転起動が不可能になったり、C層が摩耗してヘッ
ドクラッシュが起こったりするようになり、媒体の耐久
性(寿命)に一定の限度がある。Despite the above-mentioned durability improving means, when the magnetic recording medium is repeatedly rotated and stopped, the medium surface and the magnetic head surface are repeatedly brought into contact with each other. As a result, the friction coefficient increases, rotation start becomes impossible, and the C layer wears and causes a head crash, so that the durability (life) of the medium has a certain limit. ..
【0005】また、近時、高密度記録の要求が益々強く
なっており、磁気記録層とヘッドとの間隔を小さくする
ため、C層の薄膜化が要求されている。本発明はかかる
問題に鑑みなされたもので、耐久性に優れ、ひいては高
密度記録化の可能な金属薄膜型磁気記録媒体およびその
好適な製造法を提供することを目的とする。Recently, the demand for high-density recording has been increasing more and more, and in order to reduce the distance between the magnetic recording layer and the head, thinning of the C layer is required. The present invention has been made in view of the above problems, and an object of the present invention is to provide a metal thin film magnetic recording medium having excellent durability and capable of high-density recording, and a suitable manufacturing method thereof.
【0006】[0006]
【課題を解決するための手段】本発明の金属薄膜型磁気
記録媒体は、非磁性基板の上にCr下地層、磁気記録層
およびC層が同順序で積層形成された金属薄膜型磁気記
録媒体において、前記C層の少なくとも表面層にN原子
が混入しているものである。また、その製造法は、非磁
性基板の上にCr下地層、磁気記録層およびC層がスパ
ッタリングにより同順序で積層形成された金属薄膜型磁
気記録媒体の製造法において、前記C層の成膜後にN2
ガス雰囲気中で逆スパッタするか、又はC層をArとN
2 との混合ガス雰囲気中でバイアススパッタにより成膜
する。The metal thin film type magnetic recording medium of the present invention is a metal thin film type magnetic recording medium in which a Cr underlayer, a magnetic recording layer and a C layer are laminated in the same order on a non-magnetic substrate. In the above, N atoms are mixed in at least the surface layer of the C layer. The manufacturing method is the same as the method for manufacturing a metal thin film magnetic recording medium in which a Cr underlayer, a magnetic recording layer, and a C layer are laminated in the same order on a nonmagnetic substrate by sputtering. Later N 2
Reverse sputtering in a gas atmosphere, or C layer with Ar and N
A film is formed by bias sputtering in a mixed gas atmosphere with 2 .
【0007】[0007]
【作用】スパッタリングによってC層を成膜後、N2 ガ
ス雰囲気中で逆スパッタをすることにより、またC層を
ArとN2 との混合ガス雰囲気中でバイアススパッタ
(基板に負の電圧を印加した状態でスパッタする方法)
を行うことにより、窒素ガスイオンが負電位にあるC層
に取り込まれ、C層の表面層ないし全層にN原子を混入
した層を形成する。尚、バイアススパッタを行う場合、
アルゴンガスイオンもC層に取り込まれるが、Cに対す
る親和力がNのようにないため、C層より速やかに離脱
し、ほとんどC層中に混入することはない。After the C layer is formed by sputtering, reverse sputtering is performed in an N 2 gas atmosphere, and the C layer is bias sputtered in a mixed gas atmosphere of Ar and N 2 (a negative voltage is applied to the substrate). Method of spattering in a wet condition)
By doing so, nitrogen gas ions are taken into the C layer at a negative potential to form a layer in which N atoms are mixed in the surface layer or all layers of the C layer. When performing bias sputtering,
Argon gas ions are also taken into the C layer, but since they do not have an affinity for C like N, they are rapidly desorbed from the C layer and are hardly mixed into the C layer.
【0008】C層の表面層にN原子の混入した層が形成
されると、磁気ヘッドとの連続接触状態において、N原
子を含まないC層に比べて、ヘッド表面とのせん断強さ
が小さくなり、それ故摩擦係数が小さくなり、耐久性が
向上する。また、C層中にN原子が混入することによ
り、結晶構造が歪み、硬度が向上することも耐久性の向
上に資する。When a layer containing N atoms is formed on the surface layer of the C layer, the shear strength with the head surface is smaller in the continuous contact state with the magnetic head than the C layer containing no N atoms. Therefore, the coefficient of friction is reduced and the durability is improved. Further, the inclusion of N atoms in the C layer distorts the crystal structure and improves hardness, which also contributes to improvement in durability.
【0009】尚、C層のCの結晶構造は、SP2 性の高
いアモルファスカーボンとなっており、N原子の混入に
よっても結晶構造の本質的な変化はない。The C crystal structure of the C layer is amorphous carbon having a high SP 2 property, and the crystal structure does not change substantially even when N atoms are mixed.
【0010】[0010]
【実施例】以下、図1に示した磁気記録媒体の製造を例
にとって説明する。この媒体は、非磁性基板1 の上に、
Cr下地層2 、磁気記録層3 、およびC層4 がこの順序
で積層成膜されており、前記C層4 の上には、液体潤滑
層5 が塗布形成されている。EXAMPLES The production of the magnetic recording medium shown in FIG. 1 will be described below as an example. This medium is on the non-magnetic substrate 1,
A Cr underlayer 2, a magnetic recording layer 3 and a C layer 4 are laminated in this order, and a liquid lubricating layer 5 is formed on the C layer 4 by coating.
【0011】前記基板1 としては、Al合金製基板1 の
上に、剛性を確保するため10〜20μm程度の非晶質Ni
−Pメッキ層が形成されたものが通常使用されるが、か
かる構成に限らず、ガラス基板やセラミックス基板等、
ある程度の剛性のある非磁性材ならいずれのものも使用
可能である。尚、基板の上面には、通常、磁気ヘッドと
の接触摩擦抵抗を軽減するためにテキスチャーと呼ばれ
る凹凸加工が施される。As the substrate 1, an amorphous Ni substrate of about 10 to 20 μm is formed on the Al alloy substrate 1 in order to secure rigidity.
-A P-plated layer is usually used, but the structure is not limited to this, and a glass substrate, a ceramic substrate, or the like may be used.
Any non-magnetic material having a certain degree of rigidity can be used. Incidentally, the upper surface of the substrate is usually provided with an unevenness process called a texture in order to reduce the contact frictional resistance with the magnetic head.
【0012】基板1 の上に形成されるCr下地層2 は、
その上に形成される一軸結晶磁気異方性を示すCo合金
(結晶構造hcp)のc軸(結晶磁気異方性を示す結晶
軸)を面内配向させるために形成されるもので、通常、
500 〜2000Å程度の厚さにスパッタリングにより形成さ
れる。前記磁気記録層3 は、既述の通り、CoNiC
r、CoCrPa、CoCrPt等の一軸結晶磁気異方
性を示すCo合金を用いてスパッタリングにより形成さ
れる。尚、磁気記録層3 は、Co合金を単層に形成した
ものに限らず、Co合金層とCr層とを交互に複層形成
したもの (最上層はCo合金層) でもよい。磁気記録層
3 の層厚 (Co合金単層ならその層厚、複層ならCo合
金層の合計厚)は通常600 〜800 Åとされる。再生出力
の確保とノイズ低減のためには、磁気記録媒体としてB
rδが400 〜600 G・μ程度のものが要求されているか
らである。The Cr underlayer 2 formed on the substrate 1 is
Co alloy showing uniaxial crystal magnetic anisotropy formed thereon
It is formed to orient the c-axis (crystal axis showing crystal magnetic anisotropy) of (crystal structure hcp) in the plane, and
It is formed by sputtering to a thickness of about 500 to 2000Å. As described above, the magnetic recording layer 3 is made of CoNiC.
It is formed by sputtering using a Co alloy exhibiting uniaxial crystal magnetic anisotropy such as r, CoCrPa, and CoCrPt. The magnetic recording layer 3 is not limited to a single layer of Co alloy, but may be a multilayer of alternating layers of Co alloy layers and Cr layers (the uppermost layer is a Co alloy layer). Magnetic recording layer
The thickness of layer 3 (the thickness of the Co alloy single layer, the total thickness of the Co alloy layer if it is multiple layers) is usually 600 to 800 Å. In order to secure reproduction output and reduce noise, B as a magnetic recording medium is used.
This is because rδ of about 400 to 600 G · μ is required.
【0013】前記磁気記録層3 の上には保護層としてC
層4 が200 〜400 Å程度形成されており、更にその上面
にはフッ素化ポリエーテル等の液体潤滑剤により液体潤
滑層5 が20〜50Å程度塗布形成されている。前記C層4
は、少なくともその表面層にN原子が混入されている。
N原子の混入方法としては、磁気記録層3 の上にC層を
スパッタリングにより成膜した後、N2 ガス雰囲気下で
基板 (C層) 側に負の電圧を印加して逆スパッタした
り、又C層を成膜する際、ArとN2 との混合ガス雰囲
気中で基板 (C層) 側に負のバイアス電圧を印加してス
パッタ (バイアススパッタ) することにより、実現する
ことができる。A C layer is formed on the magnetic recording layer 3 as a protective layer.
The layer 4 is formed on the order of 200 to 400 Å, and the liquid lubricating layer 5 is formed on the upper surface thereof by application of a liquid lubricant such as fluorinated polyether on the order of 20 to 50 Å. The C layer 4
Has N atoms mixed into at least its surface layer.
As a method of mixing N atoms, a C layer is formed on the magnetic recording layer 3 by sputtering, and then a negative voltage is applied to the substrate (C layer) side in an N 2 gas atmosphere to perform reverse sputtering. Further, when the C layer is formed, it can be realized by applying a negative bias voltage to the substrate (C layer) side in a mixed gas atmosphere of Ar and N 2 and performing sputtering (bias sputtering).
【0014】図2はバイアススパッタを実施するための
スパッタリング装置の原理図を示しており、本装置によ
っても逆スパッタを行うことができる。図において、真
空容器21の下部にはC層 (磁性層やCr層についても適
用可) の成膜用原子を放出するためのターゲット22が設
置され、その回りに環状の陽極23が取り付けられてお
り、スパッタリング用電源24によって負の電圧 (一般的
には−1KV以下)が印加されている。一方、上部には
基板3 を取り付けるためのホルダー25が設けられてお
り、該ホルダー25に取り付けられた基板3 には、バイア
ス電源26によりホルダー25を介して負の電圧が印加され
る。27は排気管で、真空ポンプに配管接続されており、
28はArガス等のスパッタリングガス供給管である。こ
のスパッタ装置により逆スパッタを行なうには、ターゲ
ットにはプラズマを発生させるための最小のパワーをか
けた状態で、基板に負のバイアス電圧を印加する。この
ようにすると、基板にはターゲットの原子が成膜される
ことなく、Arイオンによって、基板ないしその上に成
膜された膜表面が叩かれ、逆スパッタされる。FIG. 2 shows the principle of a sputtering apparatus for carrying out bias sputtering, and this apparatus can also perform reverse sputtering. In the figure, in the lower part of the vacuum container 21, a target 22 for emitting C layer (also applicable to magnetic layer and Cr layer) film forming atoms is installed, and an annular anode 23 is attached around it. Therefore, a negative voltage (generally -1 KV or less) is applied by the sputtering power source 24. On the other hand, a holder 25 for attaching the substrate 3 is provided on the upper portion, and a negative voltage is applied to the substrate 3 attached to the holder 25 by the bias power supply 26 via the holder 25. 27 is an exhaust pipe, which is connected to a vacuum pump by piping.
28 is a sputtering gas supply pipe for Ar gas or the like. In order to perform reverse sputtering with this sputtering device, a negative bias voltage is applied to the substrate with the minimum power for generating plasma applied to the target. In this case, the target atoms are not deposited on the substrate, and the Ar or ion strikes the substrate or the surface of the film deposited thereon to perform reverse sputtering.
【0015】また、図3は直流二極スパッタリング装置
の原理図を示しており、スパッタを行なう場合は、ター
ゲット22に接続された端子Aにスパッタリング用電源の
負の高電圧を印加し、基板取付用ホルダー25に接続され
た端子Bを接地する。一方、逆スパッタを行なう場合
は、スパッタを行なう場合とは逆に、端子Aに正の電位
をもたせ、端子Bに負の電圧をもたせることにより、プ
ラズマを発生させ、Arイオンによって基板ないし形成
された膜の表面を叩くことにより、逆スパッタを行な
う。FIG. 3 shows the principle of the DC bipolar sputtering apparatus. When sputtering is performed, a negative high voltage of the power supply for sputtering is applied to the terminal A connected to the target 22 to mount it on the substrate. The terminal B connected to the holder 25 is grounded. On the other hand, in the case of performing the reverse sputtering, contrary to the case of performing the sputtering, by applying a positive potential to the terminal A and a negative voltage to the terminal B, plasma is generated and the substrate or the substrate is formed by Ar ions. Reverse sputtering is performed by hitting the surface of the film.
【0016】尚、スパッタリング装置としては、例え
ば、真空容器内に基板を加熱するためのヒーターが併設
されていてもよい。また、ターゲット裏面にマグネット
を設けたマグネトロンスパッタ装置でもよい。更に、ス
パッタリング用電源やバイアス電源としては、直流に限
らず高周波(RF)電源でもよい。もっとも、C層の成
膜用としては、バイアススパッタ、逆スパッタを行うこ
とができるものでなければならない。As the sputtering apparatus, for example, a heater for heating the substrate may be provided in a vacuum container. Alternatively, a magnetron sputtering device having a magnet on the back surface of the target may be used. Further, the power supply for sputtering and the bias power supply are not limited to direct current, and a high frequency (RF) power supply may be used. However, for forming the C layer, it is necessary to be able to perform bias sputtering and reverse sputtering.
【0017】Cr下地層、磁気記録層、C層のスパッタ
条件は、使用するスパッタリング装置、基板やターゲッ
ト材等により異なるが、一般的にArガス分圧1〜10×
10-3Torr、基板温度 150〜300 ℃程度である。次に
具体的実施例を掲げる。 (1) アルミニウム合金基板の表面にNi−P無電解メッ
キ層 (20μm) を形成し、表面をポリッシュ、テキスチ
ャー処理をした後、直流マグネトロンスパッタリングに
より、Ar雰囲気7×10-3Torrの下でCr下地層10
00Å、磁気記録層 (Co合金単層) 600 Å、C層 200Å
をこの順序で成膜し試料A (従来例) を得た。 (2) また、試料AをN2 ガス雰囲気 (7.0 ×10-3Tor
r) 下で逆スパッタし、試料B (実施例1)を得た。 (3) また、Cr下地層、磁気記録層を(1) と同様の条件
で成膜した後、ArとN2 との混合ガス雰囲気下で、基
板に負のバイアス電圧 (−300 V) を印加しながらCを
スパッタして試料C(実施例2)を得た。 (4) 試料A, BおよびCに対して、薄膜ヘッドを用いて
ドラッグテスト (ディスク回転数 100rpm) を行った
結果を表1に示す。表中の値はμf(動摩擦係数)であ
る。The sputtering conditions for the Cr underlayer, magnetic recording layer, and C layer differ depending on the sputtering apparatus used, substrate, target material, etc., but generally Ar gas partial pressure is 1 to 10 ×.
The substrate temperature is about 10 −3 Torr and the substrate temperature is about 150 to 300 ° C. Next, specific examples will be given. (1) A Ni-P electroless plating layer (20 μm) is formed on the surface of an aluminum alloy substrate, the surface is polished and textured, and then DC magnetron sputtering is performed to form Cr in an Ar atmosphere of 7 × 10 −3 Torr. Underlayer 10
00Å, magnetic recording layer (Co alloy single layer) 600Å, C layer 200Å
Was deposited in this order to obtain Sample A (conventional example). (2) In addition, the sample A was subjected to N 2 gas atmosphere (7.0 × 10 -3 Tor).
Reverse sputtering was performed under r) to obtain Sample B (Example 1). (3) After depositing the Cr underlayer and the magnetic recording layer under the same conditions as in (1), a negative bias voltage (-300 V) is applied to the substrate in a mixed gas atmosphere of Ar and N 2. Sample C (Example 2) was obtained by sputtering C while applying voltage. (4) Table 1 shows the results of a drag test (disk rotation speed 100 rpm) performed on Samples A, B and C using a thin film head. The values in the table are μf (dynamic friction coefficient).
【0018】[0018]
【表1】 [Table 1]
【0019】表1より、良好な低摩擦係数とされるμf
=1程度となる試験時間は、試料A(従来例)では2〜
3時間であるのに対し、試料B,C(実施例1,2)で
は6〜8時間であり、実施例は従来例に対して2倍以上
耐久性が優れている。 (5) また、試料A, B, Cに液体潤滑剤を20Å塗布し、
薄膜ヘッドを用いてCSS (Constant Start Stop)テス
トを行った。CSSテスト中のμfを測定した結果を表
2に示す。From Table 1, μf is considered to have a favorable low friction coefficient.
The test time for = 1 is about 2 for sample A (conventional example).
In contrast to 3 hours, Samples B and C (Examples 1 and 2) have 6 to 8 hours, and the example is more than twice as durable as the conventional example. (5) Also, apply 20 liters of liquid lubricant to Samples A, B and C,
A CSS (Constant Start Stop) test was performed using a thin film head. Table 2 shows the measurement results of μf during the CSS test.
【0020】[0020]
【表2】 [Table 2]
【0021】表2より、実施例に係る試料B,Cは 300
00回後のμfが 0.3程度と低摩擦係数であるのに対し
て、従来例に係る試料Aでは、同程度のμfにおけるC
SS回数は 10000〜15000 回程度であり、実施例は2倍
以上の耐久性があることが確かめられた。From Table 2, the samples B and C according to the embodiment are 300
The value of μf after 00 times is about 0.3, which is a low coefficient of friction, whereas the sample A according to the conventional example has a C of about the same value of μf.
The number of SSs was about 10,000 to 15,000, and it was confirmed that the example had durability twice or more.
【0022】[0022]
【発明の効果】以上説明した通り、本発明の金属薄膜型
磁気記録媒体は、スパッタリングにより成膜したC層を
N2 ガス雰囲気中で逆スパッタすることにより、又C層
の成膜時にArとN2 との混合ガス中でバイアススパッ
タすることにより、少なくともC層の表面層にN原子を
混入させたので、磁気ヘッド表面との間の摩擦係数を低
下させることができ、またC層の表面硬度を向上させる
ことができ、ひいては耐久性の向上を図ることができ、
またC層の層厚減少により記録密度の高度化をも図るこ
とができる。As described above, in the metal thin film magnetic recording medium of the present invention, the C layer formed by sputtering is reverse-sputtered in the N 2 gas atmosphere, and when the C layer is formed, the C layer is formed by Ar sputtering. By bias sputtering in a mixed gas with N 2 , at least N atoms were mixed into the surface layer of the C layer, so that the friction coefficient between the surface of the magnetic head and the surface of the C layer can be lowered. It is possible to improve hardness, which in turn can improve durability,
Further, the recording density can be improved by reducing the layer thickness of the C layer.
【図1】実施例に係る金属薄膜型磁気記録媒体の要部断
面図である。FIG. 1 is a cross-sectional view of essential parts of a metal thin film magnetic recording medium according to an example.
【図2】バイアススパッタ用のスパッタリング装置の一
例を示す原理図である。FIG. 2 is a principle view showing an example of a sputtering apparatus for bias sputtering.
【図3】逆スパッタの可能なスパッタリング装置の一例
を示す原理図である。FIG. 3 is a principle view showing an example of a sputtering apparatus capable of reverse sputtering.
1 非磁性基板 2 Cr下地層 3 磁気記録層 4 C保護層 5 液体潤滑層 22 ターゲット 24 スパッタリング用電源 26 バイアス電源 1 Nonmagnetic Substrate 2 Cr Underlayer 3 Magnetic Recording Layer 4 C Protective Layer 5 Liquid Lubrication Layer 22 Target 24 Sputtering Power Supply 26 Bias Power Supply
Claims (3)
層およびC層が同順序で積層形成された金属薄膜型磁気
記録媒体において、 前記C層は少なくともその表面層にN原子が混入してい
ることを特徴とする金属薄膜型磁気記録媒体。1. A metal thin film magnetic recording medium in which a Cr underlayer, a magnetic recording layer and a C layer are laminated in the same order on a non-magnetic substrate, wherein the C layer has N atoms mixed in at least its surface layer. A metal thin film type magnetic recording medium characterized in that
層およびC層がスパッタリングにより同順序で積層形成
された金属薄膜型磁気記録媒体の製造法において、 前記C層の成膜後にN2 ガス雰囲気中で逆スパッタする
ことを特徴とする金属薄膜型磁気記録媒体の製造法。2. A method of manufacturing a metal thin film magnetic recording medium in which a Cr underlayer, a magnetic recording layer and a C layer are laminated in the same order by sputtering on a non-magnetic substrate, wherein N is formed after the formation of the C layer. A method for manufacturing a metal thin film magnetic recording medium, characterized by performing reverse sputtering in a two- gas atmosphere.
層およびC層がスパッタリングにより同順序で積層形成
された金属薄膜型磁気記録媒体の製造法において、 前記C層をArとN2 との混合ガス雰囲気中でバイアス
スパッタにより成膜することを特徴とする金属薄膜型磁
気記録媒体の製造法。3. A method of manufacturing a metal thin film magnetic recording medium in which a Cr underlayer, a magnetic recording layer and a C layer are laminated in the same order on a non-magnetic substrate by sputtering, wherein the C layer is Ar and N 2 A method of manufacturing a metal thin film magnetic recording medium, characterized in that the film is formed by bias sputtering in a mixed gas atmosphere with.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP30354991A JPH05143972A (en) | 1991-11-19 | 1991-11-19 | Metal thin film magnetic recording medium and its production |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP30354991A JPH05143972A (en) | 1991-11-19 | 1991-11-19 | Metal thin film magnetic recording medium and its production |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05143972A true JPH05143972A (en) | 1993-06-11 |
Family
ID=17922347
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP30354991A Pending JPH05143972A (en) | 1991-11-19 | 1991-11-19 | Metal thin film magnetic recording medium and its production |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05143972A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5837357A (en) * | 1995-11-06 | 1998-11-17 | Fuji Electric Co., Ltd. | Magnetic recording medium having a carbon protective layer and method for manufacturing the same |
| JP2000331336A (en) * | 1999-04-22 | 2000-11-30 | Komag Inc | METHOD FOR SPUTTERING CARBON PROTECTIVE FILM ON MAGNETIC DISK HAVING HIGH sp3 CONTENT |
| JP2002063717A (en) * | 2000-06-27 | 2002-02-28 | Komag Inc | Magnetic disk comprising first carbon coating film having high sp3 content and second carbon coating film having low sp3 content |
| US7242553B2 (en) | 2003-09-12 | 2007-07-10 | Shin-Etsu Chemical Co., Ltd. | Substrate for magnetic recording medium |
| US7391291B2 (en) | 2004-02-26 | 2008-06-24 | Shin-Etsu Chemical Co., Ltd. | Sealed rare earth magnet and method for manufacturing the same |
| US7713360B2 (en) | 2004-02-26 | 2010-05-11 | Shin-Etsu Chemical Co., Ltd. | Rare earth permanent magnet |
| US7760059B2 (en) | 2004-01-22 | 2010-07-20 | Shin-Etsu Chemical Co., Ltd. | Permanent magnet type magnetic field generating apparatus |
| US7821366B2 (en) | 2006-08-10 | 2010-10-26 | Shin-Etsu Chemical Co., Ltd. | Magnetic circuit and method of applying magnetic field |
| US7851076B2 (en) | 2007-10-10 | 2010-12-14 | Shin-Etsu Chemical Co., Ltd. | Method of fabricating silicon substrate for magnetic recording media, and magnetic recording medium |
-
1991
- 1991-11-19 JP JP30354991A patent/JPH05143972A/en active Pending
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5837357A (en) * | 1995-11-06 | 1998-11-17 | Fuji Electric Co., Ltd. | Magnetic recording medium having a carbon protective layer and method for manufacturing the same |
| JP2000331336A (en) * | 1999-04-22 | 2000-11-30 | Komag Inc | METHOD FOR SPUTTERING CARBON PROTECTIVE FILM ON MAGNETIC DISK HAVING HIGH sp3 CONTENT |
| JP2002063717A (en) * | 2000-06-27 | 2002-02-28 | Komag Inc | Magnetic disk comprising first carbon coating film having high sp3 content and second carbon coating film having low sp3 content |
| US6565719B1 (en) | 2000-06-27 | 2003-05-20 | Komag, Inc. | Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content |
| US6682807B2 (en) | 2000-06-27 | 2004-01-27 | Komag, Inc. | Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content |
| US6855232B2 (en) | 2000-06-27 | 2005-02-15 | Komag, Inc. | Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content |
| US7242553B2 (en) | 2003-09-12 | 2007-07-10 | Shin-Etsu Chemical Co., Ltd. | Substrate for magnetic recording medium |
| US7760059B2 (en) | 2004-01-22 | 2010-07-20 | Shin-Etsu Chemical Co., Ltd. | Permanent magnet type magnetic field generating apparatus |
| US7391291B2 (en) | 2004-02-26 | 2008-06-24 | Shin-Etsu Chemical Co., Ltd. | Sealed rare earth magnet and method for manufacturing the same |
| US7713360B2 (en) | 2004-02-26 | 2010-05-11 | Shin-Etsu Chemical Co., Ltd. | Rare earth permanent magnet |
| US7821366B2 (en) | 2006-08-10 | 2010-10-26 | Shin-Etsu Chemical Co., Ltd. | Magnetic circuit and method of applying magnetic field |
| US8013701B2 (en) | 2006-08-10 | 2011-09-06 | Shin-Etsu Chemical Co., Ltd. | Magnetic circuit and method of applying magnetic field |
| US7851076B2 (en) | 2007-10-10 | 2010-12-14 | Shin-Etsu Chemical Co., Ltd. | Method of fabricating silicon substrate for magnetic recording media, and magnetic recording medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7006328B2 (en) | Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus | |
| US5494722A (en) | Magnetic recording medium and method for its production | |
| JPH05143972A (en) | Metal thin film magnetic recording medium and its production | |
| JPS61142525A (en) | Magnetic recording medium | |
| JP2625169B2 (en) | Method of manufacturing magnetic disk medium | |
| JP3652616B2 (en) | Magnetic recording medium, manufacturing method thereof, magnetic recording / reproducing apparatus, and sputtering target | |
| JP2721624B2 (en) | Metal thin-film magnetic recording media | |
| JP2593590B2 (en) | Manufacturing method of magnetic recording media | |
| JP2003151128A (en) | Method of manufacturing substrate having soft magnetic layer formed thereon, substrate having soft magnetic layer formed thereon, magnetic recording medium, and magnetic recording device | |
| JPH09147357A (en) | Manufacturing method of magnetic recording medium | |
| WO1994015720A1 (en) | Magnetic recording media on non-metallic substrates and methods for their production | |
| JPH0793738A (en) | Magnetic recording medium | |
| JP2000348334A (en) | Magnetic recording medium and magnetic disk drive | |
| Onishi et al. | Substrate effects on the magnetic characteristics of sputtered media | |
| JPH0349021A (en) | Magnetic recording medium and its manufacturing method | |
| JPH05143971A (en) | Metal thin film type magnetic recording medium | |
| JPH0740342B2 (en) | Magnetic recording medium and manufacturing method thereof | |
| JPH05143970A (en) | Metal thin film magnetic recording medium | |
| JPH0554372A (en) | Metallic thin film type magnetic recording medium | |
| JPH05135342A (en) | Magnetic recording medium | |
| JPH0528483A (en) | Method for manufacturing metal thin film magnetic recording medium | |
| JPH05143969A (en) | Metal thin film magnetic recording medium | |
| JP2000268342A (en) | Magnetic recording media | |
| JP2002197644A (en) | Magnetic recording medium, method of manufacturing for the same, magnetic recording and reproducing device and medium substrate | |
| JPH07249222A (en) | Magnetic recording medium |