JPH0516530B2 - - Google Patents
Info
- Publication number
- JPH0516530B2 JPH0516530B2 JP58171591A JP17159183A JPH0516530B2 JP H0516530 B2 JPH0516530 B2 JP H0516530B2 JP 58171591 A JP58171591 A JP 58171591A JP 17159183 A JP17159183 A JP 17159183A JP H0516530 B2 JPH0516530 B2 JP H0516530B2
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- heat
- flow rate
- rate detector
- sensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Details Of Flowmeters (AREA)
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は流動流体の流動量を検出する流量検
出器に係り、特に発熱体と流動流体間の熱伝達を
利用して流動量を検出する感熱形流量検出器に関
するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a flow rate detector that detects the flow rate of a flowing fluid, and particularly relates to a flow rate detector that detects the flow rate using heat transfer between a heating element and a flowing fluid. This relates to a type of flow rate detector.
従来、流動流体の流動量を検出する装置の一つ
として感熱形流量検出器なるものがある。第1図
はこの感熱形流量検出器の概略的構成図である。
Conventionally, there is a heat-sensitive flow rate detector as one of the devices for detecting the flow rate of a flowing fluid. FIG. 1 is a schematic diagram of this heat-sensitive flow rate detector.
第1図に於いて、1はシリコン半導体を主体と
するバルク状発熱体、2はこのバルク状発熱体1
に給電すると共にこれを支持する電極リード、3
はこの電極リード2を固定する例えばトランジス
タのパツケージに該当する支持体、4は前記電極
リード2と接続している取出しリード、5は例え
ばステンレススチール製の配管パイプ、6はこの
配管パイプ5の内部を通過する流体であるミネラ
ル・スピリツジ(minelal spirit)、7はバルク状
発熱体1より発熱量を検出する差動ブリツジ、増
幅器等を含む検出回路、8はこの検出回路7から
出力される検出出力信号線である。 In Fig. 1, 1 is a bulk heating element mainly made of silicon semiconductor, and 2 is this bulk heating element 1.
an electrode lead for supplying power to and supporting the same; 3;
is a support corresponding to, for example, a transistor package for fixing the electrode lead 2; 4 is an extraction lead connected to the electrode lead 2; 5 is a plumbing pipe made of stainless steel, for example; and 6 is the inside of this plumbing pipe 5. 7 is a differential bridge that detects the amount of heat generated from the bulk heating element 1, a detection circuit including an amplifier, etc., and 8 is a detection output output from this detection circuit 7. It is a signal line.
上記の様に構成された感熱形流量検出器の動作
を説明する。先ず発熱体1への給電電力Pinは
Pin=Is2・Rs=Vs2/Rs ……(1)
で表わされる。ここでIsは発熱体1を流れる電
流、Rsは発熱体1の抵抗、Vsは発熱体1の電圧
である。そしてこの発熱体1とミネルラルスピリ
ツツ6間の熱伝達量をPoutとすれば熱平衡状態
に於ては
Pin=Pout=h・As・△T ……(2)
なる式が成立する。ここでhは発熱体1とミネラ
ルスピリツチ6間の熱伝達率、Asは発熱体1の
表面積、△Tは発熱体1とミネラル・スピリツツ
6間の温度である。又一般に流体の流れの特徴を
表わすレイノイズ数Reが1<Re<2000の層流条
件下に於いて、この発熱体1とミネラル・スピリ
ツツ6間の熱伝達率hは
ha+b・v0.5 ……(3)
なる実験式が成立する。ここでa、bは定数、v
はミネラル・スピリツツ6の平均流速を示してい
る。従つて(1)、(2)、(3)式より、この発熱体1の電
気的インピーダンスRsを検出回路7で検出する
ことで、この回路の出力端の検出出力信号線8に
はミネラル・スピリツツ6の流速v(或いは流量
Q)が検出出力信号として出力される。しかるに
例えば発熱体1として0.7×0.7×0.15mm3のシリコ
ンチツプにリン(P)を1015cm-13ドープしたN形の
均質材料を用い、支持体3としてはTQ−46トラ
ンジスタパツケージを流用し、ステンレス・スチ
ール製の配管パイプ5は径が0.767cm、長さが30
cmのものを用い、そしてこの発熱体1をミネラ
ル・スピリツツ6の流入口より後方略25.3cmのと
ころに設置する。この状態に於て、感熱形流量検
出器は電極リード2を介して支持体3側へ流出す
る熱量が大きいため、独特の温度ドリフトを発生
する。即ちこの発熱体1への給電電力Pinはこれ
と流体とのやりとりを行なうPFLOWと支持体3側
への流出PLEAKとの和Pin=PFLOW+PLEAKで表わさ
れるのでPLEAKが時間と共に変化する事によつて
前記Poutも変化し、この感熱形流量検出器に前
述の温度ドリフトを発生させる欠点を有してい
た。而も、この支持体3側への流出PLEAKとは如
何なる線径と材質を用いても必ず存在する為に前
記温度ドリフトは避けられない問題を有してい
た。 The operation of the heat-sensitive flow rate detector configured as described above will be explained. First, the power Pin supplied to the heating element 1 is expressed as Pin=Is 2 ·Rs=Vs 2 /Rs (1). Here, Is is the current flowing through the heating element 1, Rs is the resistance of the heating element 1, and Vs is the voltage of the heating element 1. If the amount of heat transfer between the heating element 1 and the mineral spirits 6 is Pout, the following equation holds true in a state of thermal equilibrium: Pin=Pout=h・As・ΔT (2). Here, h is the heat transfer coefficient between the heating element 1 and the mineral spirits 6, As is the surface area of the heating element 1, and ΔT is the temperature between the heating element 1 and the mineral spirits 6. Also, under laminar flow conditions where the Ray noise number Re, which generally represents the characteristics of fluid flow, is 1<Re<2000, the heat transfer coefficient h between the heating element 1 and the mineral spirits 6 is ha+b・v 0.5 ...( 3) The following empirical formula is established. Here a, b are constants, v
indicates the average flow velocity of mineral spirits 6. Therefore, from equations (1), (2), and (3), by detecting the electrical impedance Rs of this heating element 1 with the detection circuit 7, the mineral The flow velocity v (or flow rate Q) of the spirits 6 is output as a detection output signal. However, for example, as the heating element 1, an N-type homogeneous material in which a 0.7 x 0.7 x 0.15 mm 3 silicon chip is doped with 10 15 cm -13 of phosphorus (P) is used, and as the support 3, a TQ-46 transistor package is used. , stainless steel plumbing pipe 5 has a diameter of 0.767 cm and a length of 30 cm.
cm, and this heating element 1 is installed approximately 25.3 cm behind the inlet of the mineral spirits 6. In this state, the heat-sensitive flow rate detector generates a unique temperature drift because a large amount of heat flows out to the support body 3 side through the electrode lead 2. In other words, the electric power Pin supplied to the heating element 1 is expressed as the sum of P FLOW , which exchanges fluid with it, and P LEAK flowing out to the support 3 side, Pin = P FLOW + P LEAK , so P LEAK changes with time. As a result, the Pout also changes, and this heat-sensitive flow rate detector has the disadvantage of causing the aforementioned temperature drift. However, since this outflow P LEAK to the support body 3 side always exists no matter what wire diameter and material is used, the temperature drift has an unavoidable problem.
この発明は上記の如き従来のものの欠点を除去
する目的でなされたもので、流体の流速を検出す
る第1発熱体の他にこれを囲繞し支持体側への熱
流の流出を零或いは一定とする第2発熱体を配設
する事により温度ドリフトの無い高精度の感熱形
流量検出器を提供するものである。
This invention was made for the purpose of eliminating the above-mentioned drawbacks of the conventional system.In addition to the first heating element for detecting the flow velocity of the fluid, this invention is surrounded by a first heating element to make the outflow of heat flow to the support side zero or constant. By disposing the second heating element, a highly accurate heat-sensitive flow rate detector without temperature drift is provided.
以下、この発明の実施例を図面に基づいて詳述
する。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第2図はこの発明の第一の実施例で感熱形流量
検出器の素子部の概略的拡大構成図、第3図は第
2図に示した素子による感熱形流量検出器を用い
た概略的回路構成図である。 FIG. 2 is a schematic enlarged configuration diagram of the element section of a heat-sensitive flow rate detector according to the first embodiment of the present invention, and FIG. 3 is a schematic diagram of a heat-sensitive flow rate detector using the element shown in FIG. FIG. 3 is a circuit configuration diagram.
第2図に於いて、2は例えば金(Au)、アルミ
ニウム(Al)等の細線をボンデイング等で配線
せる電極リード、4a,4bは取出しリード、9
はシリコン等の半導体の主体より成る薄板状ダイ
ヤフラム、10は蒸着等によつて形成されるアル
ミニウム(Al)等のコンタクト電極、11aは
前記薄板状ダイヤフラム9に不純物を拡散した拡
散層より成る第1発熱体、11bは前記第1発熱
体を囲繞する様に不純物を拡散した拡散層より成
る第2発熱体である。 In Fig. 2, 2 is an electrode lead for wiring thin wires of gold (Au), aluminum (Al), etc. by bonding, etc., 4a and 4b are extraction leads, and 9
10 is a thin plate-like diaphragm mainly made of a semiconductor such as silicon; 10 is a contact electrode made of aluminum (Al) or the like formed by vapor deposition; and 11a is a first diffusion layer made of the thin-plate diaphragm 9 with impurities diffused therein. The heating element 11b is a second heating element made of a diffusion layer in which impurities are diffused so as to surround the first heating element.
又、上記のように構成される感熱形流量検出器
の素子部の前記ダイヤフラム9は略150μのシリ
コン基板の中央部を略50μ迄選択エツチングを施
したものであり、このシリコン基板の横方向(紙
面上横方向)の長さ略3mmとこの中央部の厚さと
比較して略1:60と極めて薄い為に、厚み方向に
対して温度分布を発生しにくい構造となつてい
る。 The diaphragm 9 of the element part of the heat-sensitive flow rate sensor constructed as described above is made by selectively etching the central part of a silicon substrate of approximately 150 μm to approximately 50 μm. It has a length of about 3 mm (horizontal direction on the paper) and is extremely thin at about 1:60 compared to the thickness of this central part, so it has a structure that makes it difficult to generate temperature distribution in the thickness direction.
次に、この第1、第2発熱体11a,11bを
用いた感熱形流量検出器による検出を第3図の概
略的回路構成図に基づいて説明する。 Next, detection by the heat-sensitive flow rate detector using the first and second heating elements 11a and 11b will be explained based on the schematic circuit diagram of FIG. 3.
第3図に於て、12は温度補償素子、13,1
4はブリツジ抵抗、15は差動増幅器、16はリ
ニアライザ、17は定温度差制御回路である。こ
の温度補償素子12とブリツジ抵抗13、第1発
熱体11aとブリツジ抵抗14は夫々接続し、こ
の接続点より引き出された信号線は差動増幅器1
5に接続している。この第1発熱体11aと温度
補償素子12の一端子は取出しリード4a,4b
を介して接地され、このブリツジ抵抗13,14
の夫々の一端子は電源に接続されている。そして
この第1発熱体11aを囲繞せる第2発熱体11
bには定温度差制御回路17よりの制御信号線が
接続しており、この定温度差制御回路17には第
1発熱体11aとブリツジ抵抗14との接続点か
ら引き出された信号線が接続している。又この第
2発熱体11bの他端は取出しリード4bを第1
発熱体11a同様に接地されている。一方、前記
差動増幅器15の出力は検出特性の非直線性を補
正するリニアライザ16に入力している。尚、流
体を通過させる配管パイプ5は図示しないが第1
図同様である。しかも前述の構成からなる感熱形
流量検出器の第1の発熱体11aは配管パイプ5
内に配置され、第2の発熱体11bは被測定流体
の流れ方向に対して第1の発熱体11aの上流側
に位置しないようにする。 In FIG. 3, 12 is a temperature compensation element, 13, 1
4 is a bridge resistor, 15 is a differential amplifier, 16 is a linearizer, and 17 is a constant temperature difference control circuit. The temperature compensating element 12 and the bridge resistor 13 are connected to each other, and the first heating element 11a and the bridge resistor 14 are connected to each other, and a signal line drawn out from this connection point is connected to the differential amplifier 1.
Connected to 5. One terminal of the first heating element 11a and the temperature compensation element 12 is connected to the extraction leads 4a and 4b.
This bridge resistor 13, 14 is grounded through
One terminal of each is connected to a power supply. And a second heating element 11 that surrounds this first heating element 11a.
A control signal line from a constant temperature difference control circuit 17 is connected to b, and a signal line drawn out from the connection point between the first heating element 11a and the bridge resistor 14 is connected to this constant temperature difference control circuit 17. are doing. The other end of the second heating element 11b connects the lead 4b to the first
Like the heating element 11a, it is grounded. On the other hand, the output of the differential amplifier 15 is input to a linearizer 16 that corrects nonlinearity of the detection characteristics. Although the piping pipe 5 through which the fluid passes is not shown, the first
Same as the figure. Moreover, the first heating element 11a of the heat-sensitive flow rate detector having the above-mentioned configuration is the piping pipe 5.
The second heating element 11b is arranged not to be located upstream of the first heating element 11a with respect to the flow direction of the fluid to be measured.
上記の様な構成で流体の流速、又は流量を検出
する為に配管パイプ5内部を通過した流体は第1
発熱体11aに衝突し、この流速又は流量に応じ
た冷却効果をもたらす。この結果、第1発熱体1
1aはその電気抵抗率を変える事になる。そし
て、この電気抵抗率の変化は第2図に示されてい
る取出しリード4より取出し、差動増幅器5で増
幅し、リニアライザ16の出力に流速、又は流量
の検出値が出力される。この時、第2発熱体11
bが第1発熱体11aを囲繞しており、而も支持
体3に接触している為に、この支持体3側に熱量
が流出する。この結果、第2発熱体11bの抵抗
率の変化は第1発熱体11aと異なる変化を来た
すことになる。そこで、定温度差制御回路17は
第2発熱体11bを流体による第1発熱体11a
の電気抵抗率の変化或るいは変化量と同じく変化
させる様に何を制御する。所謂この第2発熱体1
1bは第1発熱体11aと同一温度又は一定温度
差になるように外部に設けられている定温度差制
御回路17で制御される。従つて前述した第1発
熱体11aから支持体3側へ流出する熱量PLEAK
は時間による流体の流速又は流量に依存しない事
になる。そして前記定温度差制御回路17により
この第1発熱体11aと第2発熱体11bとが同
一温度に制御される条件下では熱量PLEAK=0と
なり、この第1発熱体11aと第2発熱体11b
とが一定温度差に制御されている条件では熱量
PLEAK=一定となる。前述の如く、第2発熱体を
ダイヤフラム9に設ける事により流量検出器の温
度による時間依存形のドリフト、流速依存形のド
リフトが除去されると共に高精度の測定がなされ
る。 In order to detect the flow rate or flow rate of the fluid with the above configuration, the fluid that has passed through the inside of the piping pipe 5 is
It collides with the heating element 11a and brings about a cooling effect according to the flow rate or flow rate. As a result, the first heating element 1
1a will change its electrical resistivity. Then, this change in electrical resistivity is taken out from the takeout lead 4 shown in FIG. At this time, the second heating element 11
b surrounds the first heating element 11a and is in contact with the support 3, so that heat flows out to the support 3 side. As a result, the resistivity of the second heating element 11b changes differently from that of the first heating element 11a. Therefore, the constant temperature difference control circuit 17 replaces the second heating element 11b with the first heating element 11a using fluid.
What is controlled so that it changes as well as the change or amount of change in the electrical resistivity of. This so-called second heating element 1
1b is controlled by a constant temperature difference control circuit 17 provided externally so as to have the same temperature or a constant temperature difference as that of the first heating element 11a. Therefore, the amount of heat flowing out from the first heating element 11a to the support body 3 side P LEAK
will not depend on the flow rate or flow rate of the fluid over time. Under the condition that the first heating element 11a and the second heating element 11b are controlled to the same temperature by the constant temperature difference control circuit 17, the amount of heat P LEAK becomes 0, and the first heating element 11a and the second heating element 11b
Under conditions where the and are controlled to a constant temperature difference, the amount of heat
P LEAK = constant. As described above, by providing the second heating element on the diaphragm 9, time-dependent drift and flow velocity-dependent drift due to the temperature of the flow rate detector are eliminated, and highly accurate measurement is achieved.
尚、この第1の実施例では第1、第2発熱体1
1a,11bは同一の薄板状シリコンに2つの不
純物拡散層を形成してなつているが、この第1、
第2発熱体を例えばセラミツク等の薄板上にシリ
コン等の感温半導体、又は金(Pu)、銅(Cu)等
の金属、更には銅−ニツケル(Cu−Ni)等の合
金を接着或るは蒸着により固着させても同等の動
作をし効果が得られる。 In addition, in this first embodiment, the first and second heating elements 1
1a and 11b are made by forming two impurity diffusion layers on the same thin silicon plate.
The second heating element is formed by bonding a temperature-sensitive semiconductor such as silicon, a metal such as gold (Pu), copper (Cu), or an alloy such as copper-nickel (Cu-Ni) on a thin plate such as ceramic. Even if it is fixed by vapor deposition, the same operation and effect can be obtained.
第4図はこの発明の第2の実施例で感熱形流量
検出器の素子部の概略的拡大構成図である。 FIG. 4 is a schematic enlarged configuration diagram of an element portion of a heat-sensitive flow rate detector according to a second embodiment of the present invention.
第4図に於て、18は第1発熱体11aと第2
発熱体11bとを結合し支持する結合部材、4
a′はこの結合部材18に接着又は蒸着により形成
され第1発熱体11aに給電する取出しリード、
4b′は取出しリード4a′同様に形成され第2発熱
体11bに給電する取出しリードである。 In FIG. 4, 18 indicates the first heating element 11a and the second heating element 11a.
a coupling member for coupling and supporting the heating element 11b; 4;
a' is an extraction lead formed on this coupling member 18 by adhesion or vapor deposition and feeding power to the first heating element 11a;
Reference numeral 4b' designates an extraction lead which is formed similarly to the extraction lead 4a' and supplies power to the second heating element 11b.
以上の構成による感熱形流量検出器の素子部が
第1実施例同様第3図に示した外部回路と接続が
為され、感熱形流量検出器の回路が構成される。
そして第1発熱体11aと第2発熱体11bとは
定温度差制御回路17によつて流体との衝突によ
る温度差が零、又は一零に保たれるように制御さ
れているので、この第1発熱体11aから結合部
材18である支持体側へ流出する熱流は零、又は
一定であり第1発熱体11aによる計測の際、温
度ドリフトを生じる事はない。従つて第1実施例
同様の効果が得られる。更に加えてこの第1、第
2発熱体11a,11bは表面積を大きく出来る
ので流体の第1、第2発熱体11a,11b間の
授受の熱量を大きくとることができ、少流量に於
ても安定した検出が為される。而も流体の空間的
に平均的に流速を検出することができる。この第
1、第2発熱体11a,11bはシリコン等の感
温半導体より構成されているが、シリコンに限ら
れるものではなく白金(Pt)、銅(Cu)等の金属
又はCu−Ni等の合金等であつても同等の効果が
得られる。又この第1、第2発熱体11a,11
bはバルク状薄板で示してあるが、例えばアルミ
ナ・セラミツク基板上に白金(Pt)膜等を蒸着
したものであつても良く、そして更にその他セラ
ミツク等の耐熱絶縁体上に銅(Cu)或いはCu−
Ni等の合金、サーミスタ等を接着又は蒸着によ
り形成しても前記同様の機能を果たすことができ
る。 The element portion of the heat-sensitive flow rate detector having the above configuration is connected to the external circuit shown in FIG. 3, as in the first embodiment, to constitute a circuit of the heat-sensitive flow rate detector.
The first heating element 11a and the second heating element 11b are controlled by the constant temperature difference control circuit 17 so that the temperature difference due to collision with the fluid is maintained at zero or zero. The heat flow flowing from the first heating element 11a to the supporting body, which is the coupling member 18, is zero or constant, and no temperature drift occurs during measurement by the first heating element 11a. Therefore, effects similar to those of the first embodiment can be obtained. In addition, since the surface area of the first and second heating elements 11a and 11b can be increased, a large amount of heat can be exchanged between the first and second heating elements 11a and 11b, even at a small flow rate. Stable detection is achieved. Furthermore, the spatially averaged flow velocity of the fluid can be detected. The first and second heating elements 11a and 11b are made of a temperature-sensitive semiconductor such as silicon, but are not limited to silicon, and are made of metal such as platinum (Pt), copper (Cu), or Cu-Ni. The same effect can be obtained even with alloys, etc. Moreover, these first and second heating elements 11a, 11
Although b is shown as a bulk thin plate, it may also be a platinum (Pt) film deposited on an alumina/ceramic substrate, or copper (Cu) or Cu−
The same function as described above can be achieved by forming an alloy such as Ni, a thermistor, etc. by adhesion or vapor deposition.
第5図はこの発明の第3の実施例で感熱形流量
検出器の素子部の概略的拡大構成図である。 FIG. 5 is a schematic enlarged configuration diagram of an element portion of a heat-sensitive flow rate detector according to a third embodiment of the present invention.
19は第1発熱体11aと第2発熱体11bを
巻いているセラミツク・ボビン(bobbin)、20
aは第1発熱体11aから引き出される接続端、
20bは第2発熱体11aから引き出させる接続
端である。尚、前記セラミツク・ボビン19はア
ルミナ、ステアタイト等の磁石で構成されてお
り、内部が中空状に形成されている。尚、このセ
ラミツク・ボビン19は半径方向の温度分布が無
視できる程の細体であるならば中空状にする必要
がない。 19 is a ceramic bobbin around which the first heating element 11a and the second heating element 11b are wound; 20
a is a connection end drawn out from the first heating element 11a;
20b is a connection end drawn out from the second heating element 11a. The ceramic bobbin 19 is made of a magnet made of alumina, steatite, etc., and is hollow inside. Note that the ceramic bobbin 19 does not need to be hollow if it is so thin that the temperature distribution in the radial direction can be ignored.
第1、第2発熱体11a,11bはセラミツ
ク・ボビン19に夫々所定回数例えば白金(Pt)
の細線を巻くものである。そしてこの第1、第2
発熱体11a,11bの接続端20a,20bは
第1実施例に示した第3図の外部回路が接続し、
前記実施例と同様に動作させることができる。即
ち、第1発熱体11aと第2発熱体11bは定温
度差制御回路17によつて温度差が零、或いは一
定に保持されるように制御される。そして第1発
熱体11aから支持体であるセラミツク・ボビン
19に流出する熱量は時間に依存する事がない為
に温度ドリフトを生せず計測の出力値に悪影響を
及ぼすことがない。従つて前記実施例と同様の効
果がある。更にこの様な発熱体の構成をとる素子
は小さくできるので全体として小型にまとめられ
る他に速い応答性が得られる有用な面をもつてい
る。尚、この第3の実施例ではこの第1、第2発
熱体11a,11bとして白金(Pt)の細線を
用いているが、この様な細線に限定されることな
く白金(Pt)、銅(Cu)、或いはCu−Niの如き合
金薄膜を接着又は蒸着により形成した構造でも前
述同様の効果が得られる。 The first and second heating elements 11a and 11b are each made of platinum (Pt) for a predetermined number of times on the ceramic bobbin 19.
It is used to wind thin wire. And this first and second
The connection ends 20a and 20b of the heating elements 11a and 11b are connected to the external circuit shown in FIG. 3 shown in the first embodiment,
It can be operated in the same manner as the previous embodiment. That is, the first heating element 11a and the second heating element 11b are controlled by the constant temperature difference control circuit 17 so that the temperature difference is maintained at zero or constant. Since the amount of heat flowing from the first heating element 11a to the ceramic bobbin 19, which is a support, does not depend on time, no temperature drift occurs and the measurement output value is not adversely affected. Therefore, the same effects as in the previous embodiment can be obtained. Furthermore, since the element having such a heating element structure can be made small, it has the advantage of not only being compact as a whole but also providing quick response. In this third embodiment, thin platinum (Pt) wires are used as the first and second heating elements 11a and 11b, but the wires are not limited to such thin wires, and platinum (Pt), copper ( The same effect as described above can also be obtained with a structure in which a thin alloy film such as Cu) or Cu-Ni is formed by adhesion or vapor deposition.
以上、第1乃至第3の実施例は夫々発熱体から
支持体側へ流出する熱流が時間に依存せず、温度
ドリフトを生じる事のない高精度の感熱形流量検
出器を提供している。 As described above, the first to third embodiments each provide a highly accurate heat-sensitive flow rate detector in which the heat flow flowing from the heating element to the support body is independent of time and does not cause temperature drift.
この発明は以上説明したとおり、流体の流速或
いは流量を検出する為の第1発熱体を囲繞して温
度ドリフト補正用の第2発熱体を設けた事で、第
1発熱体の支持体に流出する熱量を補正できるの
で、温度による時間依存形のドリフト、流速依存
形のドリフトを除去でき、高精度の検出を行なえ
る効果大なるものがある。
As explained above, in this invention, a second heating element for temperature drift correction is provided surrounding a first heating element for detecting the flow velocity or flow rate of fluid, thereby preventing fluid from flowing to the support of the first heating element. Since the amount of heat generated can be corrected, time-dependent drift due to temperature and flow velocity-dependent drift can be removed, which has the great effect of enabling highly accurate detection.
第1図は従来の感熱形流量検出器の概略的構成
図、第2図はこの発明第一の実施例で感熱形流量
検出器の素子部の概略的拡大構成図、第3図は第
2図に示した素子による感熱形流量検出器を用い
た概略回路構成図、第4図はこの発明第二の実施
例で感熱形流量検出器の素子部の概略的拡大構成
図、第5図はこの発明第三の実施例で感熱形流量
検出器の素子部の概略的拡大構成図である。
1……バルク状発熱体、2……電極リード、3
……支持体、4,4a,4b,4a′,4b′,20
a,20b……取出しリード、5……配管パイ
プ、6……ミネラル・スピリツツ、7……検出回
路、8……検出出力信号線、9……ダイヤフラ
ム、10……コンタクト電極、11a……第1発
熱体、11b……第2発熱体、12……温度補償
素子、13,14……ブリツジ抵抗、15……差
動増幅器、16……リニアライザ、17……定温
度差制御回路、18……結合部材、19……セラ
ミツク・ボビン。尚、各図中同一符号は同一また
は相当部分を示すものとする。
FIG. 1 is a schematic block diagram of a conventional heat-sensitive flow rate detector, FIG. 2 is a schematic enlarged block diagram of an element section of a heat-sensitive flow rate detector according to the first embodiment of the present invention, and FIG. 3 is a second embodiment of the heat-sensitive flow rate detector. A schematic circuit configuration diagram using a heat-sensitive flow rate detector using the elements shown in the figure, FIG. 4 is a schematic enlarged configuration diagram of the element part of the heat-sensitive flow rate detector according to the second embodiment of the present invention, and FIG. FIG. 7 is a schematic enlarged configuration diagram of an element portion of a heat-sensitive flow rate detector according to a third embodiment of the present invention. 1... Bulk heating element, 2... Electrode lead, 3
...Support, 4, 4a, 4b, 4a', 4b', 20
a, 20b...Extraction lead, 5...Piping pipe, 6...Mineral spirits, 7...Detection circuit, 8...Detection output signal line, 9...Diaphragm, 10...Contact electrode, 11a...No. 1 heating element, 11b...second heating element, 12...temperature compensation element, 13, 14...bridge resistor, 15...differential amplifier, 16...linearizer, 17...constant temperature difference control circuit, 18... ...Connecting member, 19...ceramic bobbin. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
量を検出する感熱形流量検出器において、該流体
と接し温度によつて電気抵抗率の変化する第1発
熱体と、該第1発熱体を支持する支持部材と、該
第1発熱体を囲繞するとともに上記支持部材に支
持される第2発熱体と、該第1発熱体と該第2発
熱体との温度差を一定又は零とする定温度差制御
手段を備えたことを特徴とする感熱形流量検出
器。 2 前記第1発熱体及び前記第2発熱体はシリコ
ン等の感温半導体のダイヤフラム内に形成した不
純物拡散層より成ることを特徴とする特許請求の
範囲第1項記載の感熱形流量検出器。 3 前記第1発熱体及び前記第2発熱体が薄板状
のシリコン等の感温半導体或いは白金、銅等の金
属或いはCu−Ni等の合金より形成され、かつ該
第1発熱体及び該第2発熱体間を電気的に絶縁支
持する結合部材を有することを特徴とする特許請
求の範囲第1項記載の感熱形流量検出器。 4 前記第1発熱体及び前記第2発熱体がセラミ
ツク等の薄板上にシリコン等の感温半導体或いは
白金、銅等の金属或いはCu−Ni等の合金を接着
或いは蒸着せる発熱体であることを特徴とする特
許請求の範囲第3項記載の感熱形流量検出器。 5 前記第1発熱体及び前記第2発熱体が円筒又
は円柱状の白金、銅等の金属或いはCu−Ni等の
合金より形成され、かつ該第1発熱体及び該第2
発熱体間を電気的に絶縁支持する結合部材を有す
ることを特徴とする特許請求の範囲第1項記載の
感熱形流量検出器。 6 前記第1発熱体及び前記第2発熱体がセラミ
ツク等の耐熱絶縁体より成るボビンの周縁に巻か
れた白金、銅等の細線であることを特徴とする特
許請求の範囲第5項記載の感熱形流量検出器。 7 前記第1発熱体及び前記第2発熱体がセラミ
ツク等の耐熱絶縁体に蒸着或いは接着せる白金、
銅等の金属或いはCu−Ni等の合金より成る薄膜
体であることを特徴とする特許請求の範囲第5項
記載の感熱形流量検出器。[Scope of Claims] 1. In a heat-sensitive flow rate detector that detects flow velocity and flow rate from the amount of heat transfer between a heating element and a flowing fluid, a first heating element that is in contact with the fluid and whose electrical resistivity changes depending on the temperature; , a support member that supports the first heating element, a second heating element that surrounds the first heating element and is supported by the support member, and a temperature difference between the first heating element and the second heating element. 1. A heat-sensitive flow rate detector characterized by comprising constant temperature difference control means that makes the temperature constant or zero. 2. The heat-sensitive flow rate detector according to claim 1, wherein the first heating element and the second heating element are comprised of impurity diffusion layers formed within a diaphragm of a temperature-sensitive semiconductor such as silicon. 3. The first heating element and the second heating element are formed of a thin plate-shaped temperature-sensitive semiconductor such as silicon, a metal such as platinum or copper, or an alloy such as Cu-Ni, and the first heating element and the second heating element 2. The heat-sensitive flow rate detector according to claim 1, further comprising a coupling member that electrically insulates and supports the heating elements. 4. The first heating element and the second heating element are heating elements made by adhering or vapor-depositing a temperature-sensitive semiconductor such as silicon, a metal such as platinum, copper, or an alloy such as Cu-Ni on a thin plate such as ceramic. A heat-sensitive flow rate detector according to claim 3. 5 The first heating element and the second heating element are formed of a cylindrical or columnar metal such as platinum or copper, or an alloy such as Cu-Ni, and the first heating element and the second heating element
2. The heat-sensitive flow rate detector according to claim 1, further comprising a coupling member that electrically insulates and supports the heating elements. 6. The first heating element and the second heating element are thin wires made of platinum, copper, etc. wound around the periphery of a bobbin made of a heat-resistant insulator such as ceramic. Thermal flow rate detector. 7. Platinum, which the first heating element and the second heating element are deposited on or adhered to a heat-resistant insulator such as ceramic;
6. The heat-sensitive flow rate sensor according to claim 5, wherein the heat-sensitive flow rate detector is a thin film body made of a metal such as copper or an alloy such as Cu-Ni.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58171591A JPS6063421A (en) | 1983-09-17 | 1983-09-17 | Thermal flow rate detector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58171591A JPS6063421A (en) | 1983-09-17 | 1983-09-17 | Thermal flow rate detector |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6063421A JPS6063421A (en) | 1985-04-11 |
| JPH0516530B2 true JPH0516530B2 (en) | 1993-03-04 |
Family
ID=15925994
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP58171591A Granted JPS6063421A (en) | 1983-09-17 | 1983-09-17 | Thermal flow rate detector |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6063421A (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5080020B2 (en) * | 2006-04-13 | 2012-11-21 | 日立オートモティブシステムズ株式会社 | Thermal flow sensor |
| JP5094212B2 (en) * | 2007-05-25 | 2012-12-12 | 日立オートモティブシステムズ株式会社 | Thermal flow meter and control method |
-
1983
- 1983-09-17 JP JP58171591A patent/JPS6063421A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS6063421A (en) | 1985-04-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7021136B2 (en) | Mass flow meter with symmetrical sensors | |
| CN101493349B (en) | Thermal type flow sensor | |
| US8667839B2 (en) | Heat conduction-type sensor for calibrating effects of temperature and type of fluid, and thermal flow sensor and thermal barometric sensor using this sensor | |
| JP3366818B2 (en) | Thermal air flow meter | |
| EP2280251B1 (en) | Thermal flow meter | |
| US4884443A (en) | Control and detection circuitry for mass airflow sensors | |
| US7117736B2 (en) | Flow sensor | |
| CN101308036A (en) | Thermal Flow Meter | |
| JPH1123338A (en) | Thermosensitive flow rate detecting element and flow rate sensor using the same | |
| EP0353996B1 (en) | A flow sensor | |
| JP2016061593A (en) | Catalytic combustion type gas sensor | |
| JP3457826B2 (en) | Thin film resistor and method of manufacturing the same, flow sensor, humidity sensor, gas sensor, temperature sensor | |
| US20090000372A1 (en) | Thermal Flow Measurement Device | |
| JPH1038652A (en) | Thermal mass flow meter | |
| JPH0516530B2 (en) | ||
| JPH07243888A (en) | Flow rate sensor | |
| JP3210530B2 (en) | Thermistor flow rate sensor | |
| JPH0256612B2 (en) | ||
| JP2619735B2 (en) | Heat flow sensor | |
| JP2003106884A (en) | Airflow sensor | |
| JP2003106883A (en) | Airflow sensor | |
| JPH0222516A (en) | flow sensor | |
| JP3766290B2 (en) | Flow sensor | |
| JP3423083B2 (en) | Flow meter sensor | |
| JP2011237456A (en) | Thermal flow sensor |