JPH05218733A - Simplified spaceship antenna reflector for being folded into vessel having limited volume - Google Patents
Simplified spaceship antenna reflector for being folded into vessel having limited volumeInfo
- Publication number
- JPH05218733A JPH05218733A JP4258145A JP25814592A JPH05218733A JP H05218733 A JPH05218733 A JP H05218733A JP 4258145 A JP4258145 A JP 4258145A JP 25814592 A JP25814592 A JP 25814592A JP H05218733 A JPH05218733 A JP H05218733A
- Authority
- JP
- Japan
- Prior art keywords
- reflector
- container
- shape
- shell
- original shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/16—Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
- H01Q15/161—Collapsible reflectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S343/00—Communications: radio wave antennas
- Y10S343/02—Satellite-mounted antenna
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49016—Antenna or wave energy "plumbing" making
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Aerials With Secondary Devices (AREA)
- Details Of Aerials (AREA)
Abstract
(57)【要約】
【目的】 本発明は、宇宙船で使用するアンテナ反射器
を制限された容積の容器中に折畳み、使用時に容器から
展開する方法を得ることを目的とする。
【構成】 アンテナ反射器10を予め定められたクリープ
歪み限度を有する一体のフレキシブルな材料で構成し、
クリープ歪み限度内の変形力を反射器のエッジ付近の直
径的に反対の位置16,18に供給し、反射器10を展開する
までストリング20によって変形された状態に維持し、ス
トリング20を緩めて反射器10を変形された状態から解放
してもとの状態に戻すことを特徴とする。
(57) [Summary] [Object] The present invention aims to obtain a method for folding an antenna reflector used in a spacecraft into a container having a limited volume and deploying the antenna reflector from the container at the time of use. [Structure] The antenna reflector 10 is composed of an integral flexible material having a predetermined creep strain limit,
Deformation forces within the creep strain limit are applied to diametrically opposite positions 16, 18 near the edge of the reflector to keep the reflector 10 deformed by the string 20 until deployed and loosen the string 20. It is characterized in that the reflector 10 is returned to the original state when released from the deformed state.
Description
【0001】[0001]
【産業上の利用分野】本発明は、宇宙船アンテナ反射器
に関し、特に保護用の制限された容積の発射容器による
折畳みおよび展開を容易にする簡単化された宇宙船アン
テナ反射器に関する。FIELD OF THE INVENTION This invention relates to spacecraft antenna reflectors, and more particularly to a simplified spacecraft antenna reflector that facilitates folding and unfolding by a protective limited volume launch vessel.
【0002】[0002]
【従来の技術】宇宙船アンテナ反射器は典型的に凹面デ
ィスクとして構成されている。反射器に関する電気的設
計の詳細はディスクの寸法、特に直径および断面曲率を
規定する。宇宙船ペイロードの重量制限は反射器の厚さ
を反射器が宇宙船発射に関連するダイナミックな力で損
傷を受けるようなレベルに制限する。反射器は発射中の
典型的な動作形態(すなわち宇宙船の外面上の支持塔上
に配置される)で取付けられるならば、大気中の牽引力
および発射ブースタの振動は特に反射器に損傷を与える
可能性がある。したがって、反射器を発射応力から保護
するように設計された制限された容積の容器中に反射器
が折畳まれることが望ましい。Spacecraft antenna reflectors are typically constructed as concave disks. The electrical design details for the reflector define the dimensions of the disc, in particular the diameter and the cross-section curvature. Spacecraft payload weight limitations limit the thickness of the reflector to such a level that the reflector is damaged by the dynamic forces associated with spacecraft launch. If the reflector is mounted in a typical operating configuration during launch (ie, placed on a support tower on the outer surface of a spacecraft), traction in the atmosphere and launch booster vibrations can damage the reflector in particular there is a possibility. Therefore, it is desirable to fold the reflector into a container of limited volume designed to protect the reflector from firing stress.
【0003】[0003]
【発明が解決しようとする課題】制限容器の形状は本来
のアンテナ反射器形状が発射中に容器の内側に適合する
ように一時的に変更されることを必要とする。発射後、
反射器は容器から解放されて展開されて元の形状に戻さ
れる。The shape of the limiting container requires that the original antenna reflector shape be temporarily modified to fit inside the container during firing. After launch,
The reflector is released from the container and unfolded back to its original shape.
【0004】通常の技術によると、アンテナ反射器は折
畳みのための反射器形状の変更を容易にするように付加
的な部品を用いて設計されている。しばしば使用されて
いる1つの方法は開傘のように展開するカンチレバーを
有するリブフレームを有するセグメント反射器を使用す
ることである。しかしながら、これらの設計は高価であ
り、反射器製造を複雑にし、反射器を適当に折畳み展開
する複雑なシステムを必要とする。According to conventional techniques, antenna reflectors are designed with additional components to facilitate modification of the reflector shape for folding. One method that is often used is to use a segment reflector with a rib frame with cantilevers that deploy like an umbrella. However, these designs are expensive, complicate reflector manufacturing, and require complex systems for proper folding and unfolding of the reflector.
【0005】したがって、宇宙船アンテナ反射器の折畳
みおよび展開に関する技術は知られているが、さらに進
歩する必要がある。Therefore, while techniques for folding and unfolding spacecraft antenna reflectors are known, there is a need for further advances.
【0006】一体のフレキシブルなアンテナ反射器を制
限容器に折畳み、反射器を容器から展開する方法を提供
する技術上の必要性が本発明によって解決される。The present invention solves the technical need to provide a method of folding an integral flexible antenna reflector into a confining container and deploying the reflector from the container.
【0007】[0007]
【課題を解決するための手段】一般に、本発明は、a)
反射器を変形された状態に置くために変形力を反射器の
エッジ付近の直径的に反対の位置に供給し、b)反射器
を展開するまで変形された状態に維持し、c)反射器を
変形された状態から解放する段階を含む。特定の実施例
のおいて、反射器を変形された状態に維持する段階は展
開のときに解放される抑制素子を反射器のエッジの直径
的に反対の位置の間に取付ける段階を含む。SUMMARY OF THE INVENTION In general, the invention comprises a)
Deformation forces are applied to diametrically opposite positions near the edges of the reflector to place the reflector in its deformed state, b) maintaining the deformed state until deployed, and c) the reflector. Releasing the deformed state from the deformed state. In a particular embodiment, maintaining the reflector in a deformed state includes mounting restraining elements that are released upon deployment between diametrically opposite positions of the edges of the reflector.
【0008】本発明によると、アンテナ反射器は折畳み
のために反射器の形状を再び制限して展開のときに元の
形状に戻すことが可能である弾性特性を与えられる。According to the invention, the antenna reflector is provided with elastic properties which allow it to re-limit the shape of the reflector due to folding and return to its original shape upon deployment.
【0009】[0009]
【実施例】図1の(a)は製造された本発明のフレキシ
ブルな薄いシェルのアンテナ反射器10の1実施例の簡単
な斜視図である。図1の(b)はその正面図であり、図
1の(c)はその側面図である。図1の(a)乃至
(c)に示されているように、反射器10は支持マスト14
が中心に取付けられた結合固定具12を有する放物線シェ
ルである。1 (a) is a simplified perspective view of one embodiment of a manufactured flexible thin shell antenna reflector 10 of the present invention. 1 (b) is a front view thereof, and FIG. 1 (c) is a side view thereof. As shown in FIGS. 1A-1C, the reflector 10 includes a support mast 14
Is a parabolic shell having a centrally mounted coupling fixture 12.
【0010】反射器10はグラファイトファイバ強化プラ
スチックのようなフレキシブルな半剛性材料の単一の薄
い凹面均質シートから構成されている。反射器10は通常
のように、すなわち正しい形状の正確な形態に多層積層
体によって製造されることができる。反射器10の寸法は
通常のように定めることができる。反射器は導電から構
成され、または非導電材料から構成されて、導電材料で
被覆されてもよい。The reflector 10 is composed of a single thin concave homogeneous sheet of flexible semi-rigid material such as graphite fiber reinforced plastic. The reflector 10 can be manufactured in the usual way, that is to say with the correct shape and exact form by means of multilayer stacks. The dimensions of the reflector 10 can be determined as usual. The reflector may be made of conductive or non-conductive material and coated with a conductive material.
【0011】本発明によると、反射器10を折畳んだ形態
になるまで変形させ、十分に変形んでない状態になるま
で展開するために十分にフレキシブルであることは重要
である。これは反射器の変形による歪みがクリープ歪み
制限、すなわち反射器が元の形状に戻らない力のレベル
より低くされている構成を必要とする。According to the present invention, it is important that the reflector 10 be sufficiently flexible to be deformed to a folded configuration and deployed to a fully undeformed state. This requires a configuration in which the distortion due to the deformation of the reflector is below the creep strain limit, ie the level of force at which the reflector does not return to its original shape.
【0012】図2の(a)は折畳まれた(変形された)
形態の本発明のアンテナ反射器10の1実施例の上面図で
あり、図2の(b)はその側面図である。図3の(a)
は展開された状態の本発明の1実施例の上面図であり、
図3の(b)はその側面図である。FIG. 2A is folded (deformed).
FIG. 3 is a top view of an embodiment of the antenna reflector 10 of the present invention in the form, and FIG. 2B is a side view thereof. FIG. 3 (a)
FIG. 3 is a top view of one embodiment of the present invention in an expanded state,
FIG. 3B is a side view thereof.
【0013】図2の(a)に示されているように、反射
器10はその周辺に直径の正反対に位置する点16,18 にお
ける均一の力を供給することによって変形される。反射
器10は図2の(a)に示されたストリング20または例え
ば反射器10が折畳まれる宇宙シャトルのサイドレールの
ようなコンテナ(図示せず)によって折畳み状態に維持
されることができる。ストリングを使用するならば、そ
れは点火装置22によって切断される。その代りに、反射
器をある温度で変形させ、別の温度で展開するまで変形
された状態に維持することができるような材料が選択さ
れることができる。要するに、本発明では反射器が変形
された状態に維持されて展開される方法に制限はない。As shown in FIG. 2 (a), the reflector 10 is deformed by applying a uniform force on its periphery at points 16 and 18 located diametrically opposite. The reflector 10 can be maintained in the folded state by the string 20 shown in FIG. 2 (a) or a container (not shown), such as a space shuttle side rail in which the reflector 10 is folded. . If a string is used, it will be cut by the igniter 22. Alternatively, a material may be chosen that allows the reflector to deform at one temperature and remain deformed until deployed at another temperature. In short, the present invention does not limit the manner in which the reflector can be maintained and deployed in its deformed state.
【0014】したがって、本発明によれば単一部片の均
質反射器を設けることによってセグメント設計の欠点を
除去する。反射器は現在の製造工程を用いて製造される
ことができ、保護発射容器に適合するように変形され、
展開のときに所望の形状に戻されることができる。カン
チレバーおよびモータからの過剰な重量は必要なく、折
畳みのための変形または再度展開を行うのにモータ制御
システムは必要ではない。セグメント化する必要がない
ため鎖状効果を生じることがない。本発明は高価なカン
チレバー、リブ、およびモータ制御システムを含む通常
の反射器をセグメント化するのに必要な製造段階を省く
ことができるので、十分なコストの節約ができる。Therefore, the present invention eliminates the disadvantages of the segment design by providing a single piece homogeneous reflector. The reflector can be manufactured using current manufacturing processes, modified to fit the protective launch container,
It can be returned to the desired shape upon deployment. No excess weight from the cantilever and motor is needed, and no motor control system is needed to effect the folding deformation or redeployment. There is no chain effect as there is no need for segmentation. The present invention eliminates the manufacturing steps required to segment conventional reflectors, including expensive cantilevers, ribs, and motor control systems, resulting in significant cost savings.
【0015】本発明は特別の適用に対して特別の実施例
を参照してここに説明されたが、当業者は付加的な変更
および技術的範囲内の実施例を認識するであろう。Although the present invention has been described herein with reference to a particular embodiment for a particular application, those skilled in the art will recognize additional modifications and embodiments within the scope.
【0016】したがって、任意の全てのそのような適
用、変更、および実施例は添付特許請求の範囲に記載さ
れた発明の技術的範囲に含まれるべきである。Accordingly, all such adaptations, modifications, and embodiments should be within the scope of the invention as defined by the appended claims.
【図1】製造された本発明のアンテナ反射器の1実施例
の簡単な斜視図、上面図、および側面図。1 is a simplified perspective view, top view, and side view of one embodiment of the manufactured antenna reflector of the present invention. FIG.
【図2】折畳まれた本発明のアンテナ反射器の1実施例
の上面図および側面図。FIG. 2 is a top and side view of one embodiment of a folded antenna reflector of the present invention.
【図3】展開された本発明のアンテナ反射器の上面図お
よび側面図。FIG. 3 is a top view and a side view of the expanded antenna reflector of the present invention.
10…反射器、12…固定具、14…支持マスト、20…ストリ
ング、22…点火装置。10 ... Reflector, 12 ... Fixture, 14 ... Support mast, 20 ... String, 22 ... Ignition device.
Claims (9)
る一体のフレキシブルなアンテナ反射器を制限された容
積の容器中に収容するように折畳み、前記反射器を前記
容器から展開する方法において、 変形された状態で前記反射器を前記制限された容積の容
器内に配置するために、前記反射器の前記クリープ歪み
限度より少ない変形応力を前記反射器に与えるように設
定された力を前記反射器の縁部分に隣接する前記反射器
のほぼ対向する部分に供給し、 前記反射器を展開するまで前記変形状態に維持し、 前記反射器を前記変形状態から解放し、前記容器から前
記反射器を展開する段階を含むことを特徴とする方法。1. A method of folding an integral flexible antenna reflector having a predetermined creep strain limit to accommodate in a container of limited volume and deploying the reflector from the container In order to place the reflector in the container of the limited volume in a closed state, a force of the reflector is set to exert a deformation stress on the reflector that is less than the creep strain limit of the reflector. Supplying to substantially opposite portions of the reflector adjacent the edge portion, maintaining the deformed state until the reflector is deployed, releasing the reflector from the deformed state and deploying the reflector from the container. A method comprising the steps of:
前記反射器のほぼ対向する部分間に取付ける段階を含む
請求項1記載の方法。2. The method of claim 1, wherein maintaining the reflector comprises mounting suppression elements between substantially opposed portions of the reflector.
ている請求項1記載の方法。3. The method of claim 1, wherein the reflector comprises a parabolic shell.
で、それから展開可能なアンテナ反射器において、 予め定められたクリープ歪み限度を有するフレキシブル
な半剛性材料から構成されたシェルと、 前記容器内で折畳むために前記反射器を変形された状態
に置くのに十分であるが、前記シェル材料に及ぼす変形
がシェル材料のクリープ歪み限度よりも大きくない変形
力をシェルのほぼ対向する部分に供給する手段と、 前記容器からの反射器の展開を容易にするために反射器
を変形された状態から解放する手段とを含むことを特徴
とする反射器。4. A shell made of a flexible semi-rigid material having a predetermined creep strain limit in an antenna reflector foldable into and then deployable in a container of limited volume; A deforming force sufficient to place the reflector in a deformed state for folding at, but with a deformation exerted on the shell material not greater than the creep strain limit of the shell material, to substantially opposite portions of the shell. A reflector comprising means and means for releasing the reflector from a deformed state to facilitate deployment of the reflector from the container.
記載の反射器。5. The shell has a paraboloidal shape.
The described reflector.
記載の反射器。6. The shell is an integral structure.
The described reflector.
プ歪み限度を有する弾性アンテナ反射器を、元の形状に
保持するように形成されていない制限された容積の容器
中に折畳み、前記容器から展開する方法において、 前記反射器が前記容器内に適合してそれによって保持さ
れることができるように前記反射器を前記元の形状と異
なる変形された形状に屈曲し、 前記変形された形状の前記反射器を前記容器中に折畳
み、 前記反射器をはね返ることによって実質上その元の形状
に戻し、 元の形状で前記反射器を前記容器から展開する段階を含
む方法。7. Folding an elastic antenna reflector having an original shape and having a predetermined creep strain limit into a container of limited volume not formed to hold the original shape, A method of deploying from a container, wherein the reflector is bent into a deformed shape different from the original shape so that the reflector can fit into and be held by the container, Folding the reflector in shape into the container, returning the reflector to substantially its original shape by bouncing the reflector, and deploying the reflector from the container in its original shape.
射器に与えられ、それは前記反射器の前記予め定められ
たクリープ歪み限度よりも少ない請求項7記載の方法。8. The method of claim 7, wherein a deformation is applied to the reflector during the bending step which is less than the predetermined creep strain limit of the reflector.
前記反射器を変形された形状に保持する抑制素子を前記
反射器に取付け、 前記抑制素子を解放して前記反射器を元の形状に戻し、
それによって展開を容易にする段階をさらに含む請求項
8記載の方法。9. A suppressor element is attached to the reflector that holds the reflector in a deformed shape prior to the step of returning the reflector to its original shape, releasing the suppressor element to restore the reflector to its original shape. Return to the shape of
9. The method of claim 8, further comprising the step of facilitating deployment thereby.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US76636991A | 1991-09-27 | 1991-09-27 | |
| US766369 | 1991-09-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH05218733A true JPH05218733A (en) | 1993-08-27 |
| JPH0760971B2 JPH0760971B2 (en) | 1995-06-28 |
Family
ID=25076226
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4258145A Expired - Lifetime JPH0760971B2 (en) | 1991-09-27 | 1992-09-28 | A simplified spacecraft antenna reflector for folding into a container of limited volume. |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US5574472A (en) |
| EP (1) | EP0534110B1 (en) |
| JP (1) | JPH0760971B2 (en) |
| CA (1) | CA2072537C (en) |
| DE (1) | DE69211461T2 (en) |
Families Citing this family (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5644322A (en) * | 1995-06-16 | 1997-07-01 | Space Systems/Loral, Inc. | Spacecraft antenna reflectors and stowage and restraint system therefor |
| FR2777118B1 (en) | 1998-04-03 | 2000-06-02 | Aerospatiale | ELASTICALLY DEFORMABLE ANTENNA REFLECTOR FOR A SPACE ENGINE |
| US6047928A (en) * | 1998-05-19 | 2000-04-11 | Hughes Electronics Corporation | Friction clamp restraint mechanism for springback reflectors |
| FR2780819B1 (en) | 1998-07-02 | 2000-09-08 | Aerospatiale | ELASTICALLY DEFORMABLE ANTENNA REFLECTOR FOR A SPACE ENGINE |
| FR2780820B1 (en) * | 1998-07-02 | 2000-09-08 | Aerospatiale | ELASTICALLY DEFORMABLE ANTENNA REFLECTOR FOR A SPACE MACHINE AND A SPACE MACHINE COMPRISING SUCH A REFLECTOR |
| US6313811B1 (en) | 1999-06-11 | 2001-11-06 | Harris Corporation | Lightweight, compactly deployable support structure |
| US6618025B2 (en) | 1999-06-11 | 2003-09-09 | Harris Corporation | Lightweight, compactly deployable support structure with telescoping members |
| US6266030B1 (en) | 2000-03-27 | 2001-07-24 | The Boeing Company | Flexible self-actuated structure and associated method |
| US6344835B1 (en) | 2000-04-14 | 2002-02-05 | Harris Corporation | Compactly stowable thin continuous surface-based antenna having radial and perimeter stiffeners that deploy and maintain antenna surface in prescribed surface geometry |
| US6718619B2 (en) * | 2000-12-15 | 2004-04-13 | Atheros Communications, Inc. | Method of manufacturing a central stem monopole antenna |
| RU2230406C2 (en) * | 2001-08-27 | 2004-06-10 | Симонов Владимир Федорович | Stable-size integral part of composite materials, method and mold for its manufacture |
| JP4326247B2 (en) * | 2003-03-31 | 2009-09-02 | 三菱重工業株式会社 | Pre-preg for fiber reinforced plastic having inflatability and method for producing the same |
| JP3924258B2 (en) | 2003-04-01 | 2007-06-06 | 三菱重工業株式会社 | Manufacturing method of fiber reinforced plastic |
| US7151509B2 (en) * | 2003-12-24 | 2006-12-19 | The Boeing Company | Apparatus for use in providing wireless communication and method for use and deployment of such apparatus |
| US7710348B2 (en) * | 2008-02-25 | 2010-05-04 | Composite Technology Development, Inc. | Furlable shape-memory reflector |
| RU2370864C1 (en) * | 2008-08-28 | 2009-10-20 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Umbrella antenna of space craft |
| RU2370865C1 (en) * | 2008-08-28 | 2009-10-20 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Umbrella antenna of space craft |
| US9281569B2 (en) | 2009-01-29 | 2016-03-08 | Composite Technology Development, Inc. | Deployable reflector |
| US8259033B2 (en) * | 2009-01-29 | 2012-09-04 | Composite Technology Development, Inc. | Furlable shape-memory spacecraft reflector with offset feed and a method for packaging and managing the deployment of same |
| WO2011006506A1 (en) | 2009-07-15 | 2011-01-20 | Aalborg Universitet | Foldable frame supporting electromagnetic radiation collectors |
| RU2447550C2 (en) * | 2010-05-04 | 2012-04-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Umbrella antenna for spacecraft |
| WO2015195850A1 (en) * | 2014-06-17 | 2015-12-23 | Karl Von Kries | Rigid deformable reflectors and methods of manufacturing thereof |
| US9899743B2 (en) | 2014-07-17 | 2018-02-20 | Cubic Corporation | Foldable radio wave antenna deployment apparatus for a satellite |
| US9960498B2 (en) | 2014-07-17 | 2018-05-01 | Cubic Corporation | Foldable radio wave antenna |
| US10811759B2 (en) | 2018-11-13 | 2020-10-20 | Eagle Technology, Llc | Mesh antenna reflector with deployable perimeter |
| US11139549B2 (en) | 2019-01-16 | 2021-10-05 | Eagle Technology, Llc | Compact storable extendible member reflector |
| US11009263B2 (en) | 2019-02-25 | 2021-05-18 | Karl von Kries | Systems and methods for altering rotation of a solar rotational manufacturing system |
| US10797400B1 (en) | 2019-03-14 | 2020-10-06 | Eagle Technology, Llc | High compaction ratio reflector antenna with offset optics |
| US11128033B1 (en) * | 2020-04-08 | 2021-09-21 | The Boeing Company | Impact recoverable antennas |
| CN112909483A (en) * | 2021-01-15 | 2021-06-04 | 大连理工大学 | Inflated and expanded shell film reflector antenna reflector |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3176303A (en) * | 1962-02-21 | 1965-03-30 | Whittaker Corp | Collapsible antenna with plurality of flexible reflector petals releasably retained |
| US3202998A (en) * | 1962-05-16 | 1965-08-24 | Edward L Hoffman | Flexible foam erectable space structures |
| US3496687A (en) * | 1967-03-22 | 1970-02-24 | North American Rockwell | Extensible structure |
| US3521290A (en) * | 1967-06-16 | 1970-07-21 | Nasa | Self-erecting reflector |
| US3541569A (en) * | 1968-03-08 | 1970-11-17 | Trw Inc | Expandable parabolic reflector |
| US4133501A (en) * | 1975-09-30 | 1979-01-09 | Communications Satellite Corporation | Self-deployable solar cell panel |
| US4115784A (en) * | 1977-02-04 | 1978-09-19 | The United States Of America As Represented By The Secretary Of The Air Force | Deployable ground plane antenna |
| US4683475A (en) * | 1981-07-02 | 1987-07-28 | Luly Robert A | Folding dish reflector |
| JPS60178706A (en) * | 1984-02-24 | 1985-09-12 | Mitsubishi Electric Corp | deployable antenna reflector |
| US4804971A (en) * | 1986-04-16 | 1989-02-14 | Chapparral Communications | Guy system for parabolic reflecting antenna |
| US4796033A (en) * | 1987-06-18 | 1989-01-03 | Hughes Aircraft Company | Hub and rim reflector |
| US4926181A (en) * | 1988-08-26 | 1990-05-15 | Stumm James E | Deployable membrane shell reflector |
-
1992
- 1992-06-26 CA CA002072537A patent/CA2072537C/en not_active Expired - Fee Related
- 1992-08-10 DE DE69211461T patent/DE69211461T2/en not_active Expired - Fee Related
- 1992-08-10 EP EP92113600A patent/EP0534110B1/en not_active Expired - Lifetime
- 1992-09-28 JP JP4258145A patent/JPH0760971B2/en not_active Expired - Lifetime
-
1995
- 1995-06-30 US US08/491,331 patent/US5574472A/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| US5574472A (en) | 1996-11-12 |
| DE69211461T2 (en) | 1996-10-24 |
| JPH0760971B2 (en) | 1995-06-28 |
| CA2072537A1 (en) | 1993-03-28 |
| DE69211461D1 (en) | 1996-07-18 |
| EP0534110A1 (en) | 1993-03-31 |
| EP0534110B1 (en) | 1996-06-12 |
| CA2072537C (en) | 1997-10-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH05218733A (en) | Simplified spaceship antenna reflector for being folded into vessel having limited volume | |
| EP3480885A1 (en) | Deployable antenna reflector | |
| US4314682A (en) | Deployable shield | |
| US4926181A (en) | Deployable membrane shell reflector | |
| US6208317B1 (en) | Hub mounted bending beam for shape adjustment of springback reflectors | |
| US11973258B2 (en) | Compactable structures for deployment in space | |
| EP1067623A3 (en) | Deployment of dual reflector systems | |
| US20210367348A1 (en) | Deployable Reflector for an Antenna | |
| JP2647040B2 (en) | Sun shield | |
| US6219010B1 (en) | Elastically deformable antenna reflector for a spacecraft | |
| JPH11321799A (en) | Antenna reflector | |
| JP2728081B2 (en) | Space structure extension structure | |
| JPH0145762B2 (en) | ||
| JPS6229206A (en) | Mesh expansion antenna | |
| JPS6124305A (en) | Antenna expanding mechanism | |
| JPS59176199A (en) | Expanding device for space missile | |
| JP2728035B2 (en) | Antenna device | |
| US6155173A (en) | Model rocket motor retainer | |
| JPH04160803A (en) | Deployable parabolic antenna | |
| JP3019777B2 (en) | Retention mechanism of spacecraft deployable structure | |
| JPS6249709A (en) | Expansion type antenna reflector | |
| JPH05213289A (en) | Clamp cable for expansive structure | |
| JP3520948B2 (en) | Anti-entanglement structure | |
| JPS5963300A (en) | Unfolder for space missile | |
| JPS59140200A (en) | Expanding device for space ship |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080628 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 14 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 14 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100628 Year of fee payment: 15 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110628 Year of fee payment: 16 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120628 Year of fee payment: 17 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130628 Year of fee payment: 18 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130628 Year of fee payment: 18 |