[go: up one dir, main page]

JPH05220403A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst

Info

Publication number
JPH05220403A
JPH05220403A JP4130936A JP13093692A JPH05220403A JP H05220403 A JPH05220403 A JP H05220403A JP 4130936 A JP4130936 A JP 4130936A JP 13093692 A JP13093692 A JP 13093692A JP H05220403 A JPH05220403 A JP H05220403A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
copper
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4130936A
Other languages
Japanese (ja)
Inventor
Hiromasa Suzuki
宏昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4130936A priority Critical patent/JPH05220403A/en
Publication of JPH05220403A publication Critical patent/JPH05220403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide an exhaust gas purifying catalyst excellent in NOx purifying activity after durable treatment and effective for purifying exhaust gas of an oxygen excessive atmosphere. CONSTITUTION:At least one kind of a metal selected from copper, cobalt, nickel, iron and platinum is supported on zeolite beta or copper and alkaline earth metal and/or rare earth metal are supported on zeolite beta.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関な
どから排出される排気ガス中の窒素酸化物(NOx)を
浄化する排気ガス浄化用触媒に関し、更に詳しくは、希
薄燃焼エンジンからの排気ガスのような酸素過剰雰囲気
下の排気ガス中(所謂リーン排気ガス中)のNOxを効
率良く窒素(N2 )と酸素(O2 )とに分解して浄化す
ることのできる排気ガス浄化用触媒に関する。なお、本
発明において「酸素過剰雰囲気」とは排気ガス中に含ま
れる一酸化炭素、水素及び炭化水素等の還元性物質を完
全に酸化させるのに必要な酸素量よりも過剰な量の酸素
が含まれている雰囲気をいう。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying nitrogen oxides (NOx) in exhaust gas discharged from an internal combustion engine of an automobile or the like, and more particularly to a lean burn engine. Exhaust gas purification capable of efficiently decomposing NOx in exhaust gas (so-called lean exhaust gas) in an oxygen excess atmosphere such as exhaust gas into nitrogen (N 2 ) and oxygen (O 2 ) for purification Regarding catalysts. In the present invention, the term "excess oxygen atmosphere" means that an amount of oxygen that is in excess of that required to completely oxidize reducing substances such as carbon monoxide, hydrogen and hydrocarbons contained in exhaust gas. The atmosphere that is included.

【0002】[0002]

【従来の技術】内燃機関から排出される排気ガス中の有
害物質である窒素酸化物(NOx)、一酸化炭素(C
O)及び炭化水素(HC)は、例えば白金、ロジウム、
パラジウム等を担体上に担持させた三元触媒により除去
することが知られている。しかしながら、ディーゼルエ
ンジン排気ガスについては、排気ガス中に酸素が多く含
まれているために、上記三元触媒は窒素酸化物の浄化用
には有効ではなかった。
2. Description of the Related Art Nitrogen oxides (NOx) and carbon monoxide (C) which are harmful substances in exhaust gas discharged from an internal combustion engine.
O) and hydrocarbons (HC) are, for example, platinum, rhodium,
It is known to remove palladium and the like with a three-way catalyst supported on a carrier. However, as for diesel engine exhaust gas, the three-way catalyst is not effective for purifying nitrogen oxides because the exhaust gas contains a large amount of oxygen.

【0003】また近年のガソリンエンジンにおいては、
低燃費化や排出炭酸ガスの低減の目的で希薄燃焼させる
ことが必要となってきている。しかしながら、この希薄
燃焼ガソリンエンジンの排気ガスは、酸素過剰雰囲気で
あるため、上記した従来の三元触媒は有効ではなかっ
た。
In recent gasoline engines,
It has become necessary to perform lean combustion for the purpose of improving fuel efficiency and reducing carbon dioxide emissions. However, since the exhaust gas of this lean burn gasoline engine is in an oxygen excess atmosphere, the above-mentioned conventional three-way catalyst has not been effective.

【0004】かかる状況下に自動車の排気ガス浄化用触
媒として、一酸化炭素(CO)及び炭化水素(HC)の
酸化と、窒素酸化物(NOx)の還元を同時に行なう触
媒が種々提案されている。このような触媒として、例え
ばNOxの接触分解用触媒としてゼオライトに銅をイオ
ン交換した銅担持ゼオライト触媒(Cu/ZSM-5)(例
えば特開昭60−125250号公報参照)が知られている。
Under such circumstances, various catalysts for purifying exhaust gas of automobiles have been proposed which simultaneously oxidize carbon monoxide (CO) and hydrocarbons (HC) and reduce nitrogen oxides (NOx). .. As such a catalyst, for example, a copper-supported zeolite catalyst (Cu / ZSM-5) in which copper is ion-exchanged with zeolite is known as a catalyst for catalytically decomposing NOx (see, for example, JP-A-60-125250).

【0005】また、米国特許第 3308069号 (1967) (Mob
il Oil)にはゼオライトβの製造法が示されているが、
ゼオライトβを用いたNOx浄化触媒に関する記載は全
く認められない。
US Pat. No. 3,308,069 (1967) (Mob
il Oil) shows the manufacturing method of zeolite β,
No mention is made of any NOx purification catalyst using zeolite β.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来知
られている銅イオン交換ゼオライト(ZSM-5)触媒は、
その触媒耐久性に問題があるため、実用化されていなか
った。即ち、銅/ゼオライト(ZSM-5)触媒は、初期N
Ox浄化率は高いが、例えば 600℃程度の高温で耐久処
理した後のNOx浄化率が低いという問題があった。従
って、本発明は、耐熱性が高く、耐久処理後においても
NOx浄化率の高い排気ガス浄化用触媒を提供すること
を目的とする。
However, the conventionally known copper ion exchanged zeolite (ZSM-5) catalyst is
Since it has a problem in catalyst durability, it has not been put to practical use. That is, the copper / zeolite (ZSM-5) catalyst is
Although the Ox purification rate is high, there is a problem that the NOx purification rate is low after endurance treatment at a high temperature of, for example, about 600 ° C. Therefore, an object of the present invention is to provide an exhaust gas purifying catalyst that has high heat resistance and a high NOx purification rate even after endurance treatment.

【0007】[0007]

【課題を解決するための手段】本発明に従えば、ゼオラ
イトβに、銅、コバルト、ニッケル、鉄及び白金の中か
ら選ばれる少なくとも一種の金属を担持せしめてなる排
気ガス浄化用触媒が提供される。
According to the present invention, there is provided an exhaust gas purifying catalyst comprising zeolite β carrying at least one metal selected from copper, cobalt, nickel, iron and platinum. It

【0008】本発明に従えば、また、ゼオライトβに、
銅と、アルカリ土類金属及び希土類金属の中から選ばれ
た少なくとも一種の金属とを共存担持せしめてなる排気
ガス浄化用触媒が提供される。
According to the invention, the zeolite β also comprises
Provided is an exhaust gas purifying catalyst which co-supports copper and at least one metal selected from alkaline earth metals and rare earth metals.

【0009】本発明者らは、従来公知のゼオライト(ZS
M-5)担持の排気ガス浄化用触媒の耐久性の問題を解決
すべく種々検討を進めていたところ、銅、コバルト、ニ
ッケル、鉄及び/又は白金の金属を従来のゼオライト
(ZSM-5)とは異なるゼオライトβに担持させることに
より耐熱性の高い排気ガス浄化用触媒を得ることに成功
した。
The inventors of the present invention have heretofore known zeolite (ZS
M-5) While conducting various investigations to solve the problem of durability of the supported exhaust gas purification catalyst, copper, cobalt, nickel, iron and / or platinum metal was added to conventional zeolite (ZSM-5). We succeeded in obtaining an exhaust gas purifying catalyst with high heat resistance by loading it on zeolite β different from the above.

【0010】本発明者らは更に検討をすすめた結果、ゼ
オライトβに、銅と、アルカリ土類金属及び/又は希土
類金属とを共存担持させることにより触媒の浄化性能及
び耐久性能が一層高くすることができることを見出し
た。
As a result of further study by the present inventors, the catalyst β is further improved in purification performance and durability by coexisting copper and alkaline earth metal and / or rare earth metal on zeolite β. I found that I can do it.

【0011】ゼオライトβ自体は公知であり、例えば前
記した米国特許第 3308069号明細書にその製造方法が記
載されており、本発明ではかかる方法によって製造した
ゼオライトβを担体として用いることができる。
Zeolite β itself is known, and its production method is described in, for example, the above-mentioned US Pat. No. 3,308,069. In the present invention, zeolite β produced by such a method can be used as a carrier.

【0012】ゼオライトβの製造法について、更に説明
すると、前記した米国特許に記載されるように、シリカ
源として例えばシリカゾル、アルミナ源として例えばア
ルミン酸ナトリウム、結晶化型剤として例えばTEA
(テトラエチルアンモニウムヒドロキシド)を用いて、
水熱合成によりゼオライトβを合成することができる。
水熱合成は例えば混合ゲル体をテフロンライニングのス
テンレス製オートクレーブにて自然圧力下(〜20kg/cm
2) 150℃にて2〜10日間保持し、目的のゼオライトβ結
晶体を得ることができる。得られた結晶体は水洗・乾燥
し、 550℃に加熱して残留有機分を取り除いて触媒用担
体とすることができる。この時のSiO2/Al2O3モル比は10
〜 100が好ましく、30〜40が更に好ましい。
The method for producing zeolite β will be further described. As described in the above-mentioned US patent, silica source, for example, silica sol, alumina source, for example, sodium aluminate, and crystallization type agent, for example, TEA.
(Tetraethylammonium hydroxide)
Zeolite β can be synthesized by hydrothermal synthesis.
For hydrothermal synthesis, for example, a mixed gel body is placed in a Teflon-lined stainless steel autoclave under natural pressure (up to 20 kg / cm).
2 ) By holding at 150 ° C for 2 to 10 days, the desired zeolite β crystal can be obtained. The obtained crystal is washed with water, dried, and heated at 550 ° C. to remove the residual organic content, whereby a catalyst carrier can be obtained. At this time, the SiO 2 / Al 2 O 3 molar ratio is 10
-100 are preferable, and 30-40 are more preferable.

【0013】本発明の第一の態様では上記触媒担体に常
法に従って、イオン交換法や含浸法等により、Cu、C
o、Ni、Fe、Pt及びPdの中から選ばれた少なく
とも1種の金属を担持する。イオン交換は前記金属の適
当な水溶性塩(例えば酢酸塩、硝酸塩など)の水溶液に
浸漬して行なうことができる。前記金属の担持量には特
に限定はないが、好ましくはゼオライトβ中のAlと金
属の原子比で1:0.5〜1:2である。
In the first aspect of the present invention, the above catalyst carrier is subjected to a conventional method such as ion exchange method or impregnation method to obtain Cu or C.
At least one metal selected from o, Ni, Fe, Pt, and Pd is supported. Ion exchange can be performed by immersing in an aqueous solution of a suitable water-soluble salt of the above-mentioned metal (eg, acetate, nitrate, etc.). The amount of the metal supported is not particularly limited, but the atomic ratio of Al to the metal in the zeolite β is preferably 1: 0.5 to 1: 2.

【0014】本発明の第二の態様では、前述のゼオライ
トβ担体に、常法に従って、イオン交換法又は含浸法に
より、Cuを担持せしめる。Cuの担持量には特に限定
はないが、好ましくはゼオライトβ中のAlに対し50〜
80モル%が良い。50モル%未満の担持量では所望の触媒
効果が得られにくくなり、逆に80モル%を超えると、C
uが移動凝集し易くなり、また希土類及びアルカリ土類
元素も担持しにくくなる傾向にある。
In the second embodiment of the present invention, Cu is supported on the zeolite β carrier by an ion exchange method or an impregnation method according to a conventional method. The amount of Cu supported is not particularly limited, but is preferably 50 to 50 relative to Al in zeolite β.
80 mol% is good. If the supported amount is less than 50 mol%, it becomes difficult to obtain the desired catalytic effect. On the contrary, if it exceeds 80 mol%, C
u tends to move and aggregate, and also tends to make it difficult to support rare earth elements and alkaline earth elements.

【0015】本発明の第二の態様で用いる希土類元素と
してはLa、Ce、Nd、Y、Pr、Smが望ましく、
またアルカリ土類元素としては中でもMg、Ca、S
r、Baが望ましい。本発明の触媒はCuに加え上記元
素を一種類以上担持してなる。希土類及び/又はアルカ
リ土類元素の担持量には特に限定はないが、好ましくは
ゼオライトβ中のAlに対する比にして20〜50モル%で
あり、Cuを合わせた担持量はゼオライトβ中のAlに
対して、好ましくは80〜 120モル%で、 100モル%であ
るのが最も好ましい。
As the rare earth element used in the second aspect of the present invention, La, Ce, Nd, Y, Pr and Sm are desirable,
Among the alkaline earth elements, Mg, Ca, S
r and Ba are desirable. The catalyst of the present invention supports one or more of the above elements in addition to Cu. The amount of the rare earth element and / or the alkaline earth element supported is not particularly limited, but is preferably 20 to 50 mol% as a ratio to Al in the zeolite β, and the supported amount including Cu is Al in the zeolite β. On the other hand, it is preferably 80 to 120 mol%, and most preferably 100 mol%.

【0016】本発明の第二の態様において、ゼオライト
βにCuをイオン交換で担持する場合は、アンモニア等
を添加して、塩基性とした水溶液中で行う方が交換性が
良くて好ましい。また、そのときのpHは10〜12の範囲
にするのが最も好ましい。
In the second embodiment of the present invention, when Cu is carried on the zeolite β by ion exchange, it is preferable to add ammonia or the like in an aqueous solution made basic so that the exchangeability is good. The pH at that time is most preferably in the range of 10 to 12.

【0017】希土類金属及びアルカリ土類金属の担持法
としては一般的方法に従って、例えば酢酸、硝酸塩等を
用い、担持順序としてはCuイオン交換後に行うのがよ
く、Cuイオンの再溶出を抑える目的でアンモニア等の
添加によりpHを10〜12の範囲にして担持させるのが好
ましい。
The rare earth metal and alkaline earth metal can be loaded in accordance with a general method, for example, acetic acid, nitrate, etc., and the order of loading is preferably Cu ion exchange, for the purpose of suppressing re-elution of Cu ions. It is preferable that the pH is supported in the range of 10 to 12 by adding ammonia or the like.

【0018】本発明に係る触媒は、粉状体、ペレット状
体、ハニカム状体など形状、構造を問わず任意の形態で
用いることができる。
The catalyst according to the present invention can be used in any form such as powder, pellets, and honeycombs regardless of shape and structure.

【0019】本発明に係る排気ガス浄化用触媒は、NO
x、CO及びHCを含む排気ガス、特に酸素過剰排気ガ
ス(即ち、自動車等の内燃機関から排出される空燃比の
大きい状態(いわゆるリーン領域)での排気ガス)と通
常の方法で接触させることにより排気ガスを浄化するこ
とができる。
The exhaust gas purifying catalyst according to the present invention is NO
Contacting with exhaust gas containing x, CO and HC, especially oxygen-excess exhaust gas (that is, exhaust gas in a state with a large air-fuel ratio (so-called lean region) exhausted from an internal combustion engine of an automobile, etc.) by a normal method. Thus, the exhaust gas can be purified.

【0020】本発明に係る触媒を用いる浄化方法におい
て、排気ガスを触媒層に導入する空間速度(SV)には
特に制限はない。また、触媒層の温度は 300〜 500℃で
あるのが好ましい。
In the purification method using the catalyst according to the present invention, the space velocity (SV) for introducing the exhaust gas into the catalyst layer is not particularly limited. The temperature of the catalyst layer is preferably 300 to 500 ° C.

【0021】[0021]

【作用】本発明の第一の態様によれば、従来のゼオライ
ト(ZSM-5)より耐熱性の高いゼオライトβを担体とし
て用いるため、炭化水素と窒素酸化物とを含有する酸化
性排気ガス中の窒素酸化物を効果的に除去することがで
き、しかも従来公知のCu/ZSM-5触媒を上回る耐久性
を持つ触媒を得ることができる。
According to the first aspect of the present invention, since zeolite β, which has a higher heat resistance than conventional zeolite (ZSM-5), is used as a carrier, it is used in oxidizing exhaust gas containing hydrocarbons and nitrogen oxides. It is possible to effectively remove the nitrogen oxides, and it is possible to obtain a catalyst having a durability higher than that of the conventionally known Cu / ZSM-5 catalyst.

【0022】本発明の第二の態様ではゼオライトβに銅
と希土類及び/又はアルカリ土類金属とを担持するの
で、CuはNOを選択的に吸着する能力を持ち、他のも
のに比し、NO吸着能に優れており、一方希土類及びア
ルカリ土類元素自体もNO及びNO2 を吸着し、触媒活
性能を有しているため、Cuと希土類及び/又はアルカ
リ土類元素とをゼオライトβへ担持することによって優
れた性能を発揮するのである。特に、Cuイオンは 600
〜 800℃という温度において金属Cuに還元されやすく
ゼオライト上を移動凝集し、耐久性が低下しやすい傾向
にあったが、本発明によればこのCuの移動凝集を希土
類及び/又はアルカリ土類元素がCuイオン間に介在さ
せることにより抑制する効果をも有し、耐久性能の向上
を図ることができる。
In the second embodiment of the present invention, since zeolite β supports copper and rare earth and / or alkaline earth metal, Cu has an ability to selectively adsorb NO, and is superior to other ones, It has excellent NO adsorption capacity, while rare earth and alkaline earth elements themselves also adsorb NO and NO 2 and have catalytic activity. Therefore, Cu and rare earth and / or alkaline earth elements are converted to zeolite β. By carrying it, it exhibits excellent performance. Especially, Cu ion is 600
At a temperature of up to 800 ° C., it tended to be reduced to metallic Cu and migrated and agglomerated on the zeolite, and the durability tended to be lowered. However, according to the present invention, this Cu agglomerated is rare earth and / or alkaline earth element. Also has an effect of suppressing by interposing Cu between Cu ions, and the durability performance can be improved.

【0023】[0023]

【実施例】以下、実施例に従って本発明を具体的に説明
するが、本発明を以下の実施例に限定するものでないこ
とはいうまでもない。
EXAMPLES The present invention will be specifically described below with reference to examples, but it goes without saying that the present invention is not limited to the following examples.

【0024】実施例1及び比較例1 ゼオライトβの製法 アルミン酸ナトリウム17.4g、シリカゾル(日産化学
(株)製スノーテックスN SiO2 、40重量%) 581.0
g、TEAOH(テトラエチルアンモニウムヒドロキシ
ド Aldrich製、40重量%) 210.7g及び水48.0gからな
る混合ゲル体を調製し、この混合ゲル体をテフロンライ
ニングステンレス製オートクレーブに仕込み、 150℃で
6日間保持し、水熱合成を行った。得られた結晶体を水
洗・乾燥し、550 ℃にて残留有機分を除去し、目的のゼ
オライトβを得た。この時のSi/Al比は20であっ
た。
Example 1 and Comparative Example 1 Method for Producing Zeolite β 17.4 g of sodium aluminate, silica sol (Snowtex N SiO 2 manufactured by Nissan Kagaku KK, 40% by weight) 581.0
g, TEAOH (made by Aldrich tetraethylammonium hydroxide, 40% by weight) and a mixed gel body consisting of 48.0 g of water were prepared, and the mixed gel body was placed in a Teflon-lined stainless steel autoclave and kept at 150 ° C for 6 days. , Hydrothermal synthesis was performed. The obtained crystal was washed with water and dried, and the residual organic components were removed at 550 ° C to obtain the target zeolite β. The Si / Al ratio at this time was 20.

【0025】得られたゼオライトβを触媒種としての酢
酸銅水溶液(アンモニア添加により、pH=11とする)に
浸漬させ、銅イオン交換を行った。イオン交換率は 107
%であった。イオン交換後、粉末を乾燥(100℃) し、 5
00℃で焼成し、Cu/ゼオライトβ触媒(実施例1)を
得た。比較触媒として銅イオン交換(イオン交換法は上
記と同様)により、Cu/ZSM-5(比較例1)を得た。
イオン交換率は 109%であった。
The obtained zeolite β was immersed in an aqueous solution of copper acetate (pH = 11 by adding ammonia) as a catalyst species to carry out copper ion exchange. Ion exchange rate is 107
%Met. After ion exchange, dry the powder (100 ° C) and
It was calcined at 00 ° C to obtain a Cu / zeolite β catalyst (Example 1). As a comparative catalyst, Cu / ZSM-5 (Comparative Example 1) was obtained by copper ion exchange (the ion exchange method was the same as above).
The ion exchange rate was 109%.

【0026】上で調製した実施例1の触媒と比較例1の
触媒を、自動車の排気ガスを模擬した以下の組成並びに
条件のガスに接触させて浄化性能を比較した。
The catalyst prepared in Example 1 and the catalyst prepared in Comparative Example 1 were brought into contact with a gas having the following composition and conditions simulating automobile exhaust gas to compare purification performances.

【0027】モデルガスのガス組成(容積%):CO;
0.1%、H2 ;0.03%、C3H6;0.08%、O2 ; 4.3%、N
O; 0.1%、CO2 ;11.9%、H2O ; 2.3%及びN2 ;残
量SV=42万hr-1
Gas composition (volume%) of model gas: CO;
0.1%, H 2 ; 0.03%, C 3 H 6 ; 0.08%, O 2 ; 4.3%, N
O; 0.1%, CO 2 ; 11.9%, H 2 O; 2.3% and N 2 ; residual amount SV = 420,000 hr -1

【0028】触媒層の温度を 350℃、 400℃及び 450℃
として求めたHC、CO及びNOxの浄化率(初期浄化
率)を表1に示す。次に各触媒を水10容積%を含む空気
流通下に 600℃で20時間の耐久処理を施し、この触媒に
ついて上と同様にして浄化性能を評価した。得られた浄
化率(耐久後浄化率)を表2に示す。
The temperature of the catalyst layer is set to 350 ° C., 400 ° C. and 450 ° C.
Table 1 shows the purification rates (initial purification rates) of HC, CO, and NOx obtained as Next, each catalyst was subjected to a durability treatment at 600 ° C. for 20 hours in an air flow containing 10% by volume of water, and the purification performance of this catalyst was evaluated in the same manner as above. Table 2 shows the obtained purification rate (purification rate after endurance).

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】実施例2及び比較例2 本発明に係る触媒を調製し、これらの触媒について酸素
過剰のリーン状態のモデルガスを用いてNOに対する浄
化性能評価を行った。また、比較触媒に付いても同様の
評価を行った。本発明に係る触媒担体であるゼオライト
βは実施例1と同じようにして調製した。このゼオライ
トβに対し、酢酸銅水溶液(アンモニアを添加しpH=
11に調整) にてイオン交換を一昼夜攪拌下で行い、ろ過
し、洗浄し、 110℃で乾燥した。ここまででできた触媒
を比較触媒C−1とする。その後Cuを担持した上記触
媒をLa、Ce、Y、Mg、Ca、Sr又はBaの酢酸
塩からなる水溶液に浸漬し(アンモニアを添加しpH=
11に調整)、希土類又はアルカリ土類元素を担持し、ろ
過し、洗浄し、 110℃で乾燥し、その後、 500℃で3時
間空気中にて焼成して目的の実施例触媒2−1〜2−8
を得た。なお比較触媒C−2はゼオライトβに代えて従
来のゼオライトZSM-5にCuを同様にしてイオン交換し
た比較例である。実施例2及び比較例2の触媒組成及び
担持量(ゼオライト中のAlに対するモル比%)を表3
に示す。
Example 2 and Comparative Example 2 Catalysts according to the present invention were prepared, and the purification performance for NO was evaluated using a lean model gas with excess oxygen. The same evaluation was performed for the comparative catalyst. Zeolite β, which is the catalyst carrier according to the present invention, was prepared in the same manner as in Example 1. An aqueous solution of copper acetate (pH =
Ion exchange was performed under stirring for 24 hours, filtered, washed, and dried at 110 ° C. The catalyst prepared up to this point is referred to as comparative catalyst C-1. After that, the above-mentioned catalyst supporting Cu is immersed in an aqueous solution of La, Ce, Y, Mg, Ca, Sr or Ba acetate (ammonia is added to adjust pH =
11)), carrying a rare earth or alkaline earth element, filtering, washing, drying at 110 ° C., and then calcining in air at 500 ° C. for 3 hours to obtain the target Example catalysts 2-1 to 2-1. 2-8
Got Comparative catalyst C-2 is a comparative example in which Cu was similarly ion-exchanged with conventional zeolite ZSM-5 instead of zeolite β. Table 3 shows the catalyst compositions and loading amounts (molar ratio to Al in zeolite) of Example 2 and Comparative Example 2.
Shown in.

【0032】 表3 ──────────────────────────────── 触媒No. 触媒組成と担持量(ゼオライト中のAlに対するモル比/%) ──────────────────────────────── 2−1 Cu(50) + La(30) 2−2 Cu(50) + Ce(30) 2−3 Cu(50) + Y(30) 2−4 Cu(50) + Ca(30) 2−5 Cu(50) + Mg(30) 2−6 Cu(50) + Sr(30) 2−7 Cu(50) + Ba(30) 2−8 Cu(50) + Mg(30) + La(20) ──────────────────────────────── C−1 Cu(50) (ゼオライトβ) C−2 Cu(50) (ZSM−5) ──────────────────────────────── Table 3 ──────────────────────────────── Catalyst No. Catalyst composition and loading amount (Al in zeolite) To mol ratio /%) ──────────────────────────────── 2-1 Cu (50) + La (30) 2-2 Cu (50) + Ce (30) 2-3 Cu (50) + Y (30) 2-4 Cu (50) + Ca (30) 2-5 Cu (50) + Mg (30) 2- 6 Cu (50) + Sr (30) 2-7 Cu (50) + Ba (30) 2-8 Cu (50) + Mg (30) + La (20) ──────────── ───────────────────── C-1 Cu (50) (Zeolite β) C-2 Cu (50) (ZSM-5) ────── ───────────────────────────

【0033】上で調製したペレット状の実施例2(2−
1〜2−8)及び比較例2(C−1及びC−2)を自動
車の排気ガスを模擬した以下の組成並びに条件のガスに
接触させて、浄化性能を評価した。
The pellet-form Example 2 (2-
1-2-8) and Comparative Example 2 (C-1 and C-2) were brought into contact with a gas having the following composition and conditions simulating exhaust gas of an automobile to evaluate the purification performance.

【0034】モデルガスのガス組成(容積%):CO:
0.1%、H2:0.03%、C3H6:0.08%、O2: 4.3%、NO:
0.1%、CO2 :11.9%、H2O :10%(耐久処理)、3%
(活性評価)及びN2:残量 空間速度(SV)=42万hr-1 触媒活性評価:上記モデルガス中で 700℃×5時間保持
し、耐久処理し、その後前記モデルガス中で 400℃にお
いてNOx 浄化率を測定した。結果を表4に示す。
Gas composition of the model gas (volume%): CO:
0.1%, H 2 : 0.03%, C 3 H 6 : 0.08%, O 2 : 4.3%, NO:
0.1%, CO 2 : 11.9%, H 2 O: 10% (durability treatment), 3%
(Activity evaluation) and N 2 : Remaining amount space velocity (SV) = 420,000 hr -1 Catalyst activity evaluation: 700 ° C x 5 hours in the above model gas, durable treatment, and then 400 ° C in the above model gas The NOx purification rate was measured at. The results are shown in Table 4.

【0035】 表4 ─────────────── 触媒No. NOx浄化率(%) ─────────────── 2−1 46 2−2 44 2−3 42 2−4 48 2−5 50 2−6 45 2−7 41 2−8 51 ─────────────── C−1 30 C−2 12 ─────────────── (注)初期活性は耐久処理後の活性 と実質的に変化がなかった。 Table 4 ─────────────── Catalyst No. NOx purification rate (%) ─────────────── 2-1 46 2- 2 44 2-3 42 2-4 48 2-5 50 2-6 45 2-7 41 2-8 51 ─────────────── C-1 30 C-2 12 ─ ────────────── (Note) The initial activity was virtually unchanged from that after endurance treatment.

【0036】[0036]

【発明の効果】本発明の第一の態様に従えば、例えば表
1及び表2の結果から明らかなように、初期活性は比較
例触媒より特に 400℃及び 450℃において若干劣るもの
の、耐久処理後においては比較例触媒を上回る性能を有
している。本発明の第二の態様に従えば、表4の結果か
ら明らかなように比較例触媒に比して著しく耐久性に優
れており、その値は実施例1のものより優れている。
According to the first aspect of the present invention, as is clear from the results of Tables 1 and 2, for example, the initial activity is slightly inferior to that of the comparative catalyst, especially at 400 ° C. and 450 ° C. Later, it has better performance than the comparative catalyst. According to the second aspect of the present invention, as is clear from the results in Table 4, the durability is remarkably superior to that of the comparative catalyst, and the value thereof is superior to that of Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゼオライトβに、銅、コバルト、ニッケ
ル、鉄及び白金の中から選ばれた少なくとも一種の金属
を担持せしめてなる排気ガス浄化用触媒。
1. An exhaust gas purification catalyst comprising zeolite β carrying at least one metal selected from copper, cobalt, nickel, iron and platinum.
【請求項2】 ゼオライトβに、銅と、アルカリ土類金
属及び希土類金属の中から選ばれた少なくとも一種の金
属とを共存担持せしめてなる請求項1に記載の排気ガス
浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein copper and at least one metal selected from alkaline earth metals and rare earth metals are co-loaded on zeolite β.
JP4130936A 1991-12-16 1992-05-22 Exhaust gas purifying catalyst Pending JPH05220403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4130936A JPH05220403A (en) 1991-12-16 1992-05-22 Exhaust gas purifying catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33179091 1991-12-16
JP3-331790 1991-12-16
JP4130936A JPH05220403A (en) 1991-12-16 1992-05-22 Exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
JPH05220403A true JPH05220403A (en) 1993-08-31

Family

ID=26465918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130936A Pending JPH05220403A (en) 1991-12-16 1992-05-22 Exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JPH05220403A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652040A1 (en) * 1993-11-04 1995-05-10 ENIRICERCHE S.p.A. Process and catalyst for reducing NOx in combustion exhaust gases
EP0766992A1 (en) * 1995-10-06 1997-04-09 ENIRICERCHE S.p.A. Nitrogen oxides reduction catalyst and process for reducing nitrogen oxides in exhaust gas
WO1998030325A1 (en) * 1997-01-08 1998-07-16 Ngk Insulators, Ltd. Adsorbent
US5869013A (en) * 1993-11-04 1999-02-09 Osaka Gas Company Limited Process and catalyst for reducing Nox in exhaust combustion gases
US5993764A (en) * 1995-04-17 1999-11-30 Osaka Gas Company Limited Nitrogen oxide-reducing catalyst and process for reducing nitrogen oxides in exhaust gas
WO2004045765A1 (en) * 2002-11-18 2004-06-03 Ict Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
KR100453380B1 (en) * 2001-12-27 2004-10-15 한국가스공사 Cocation exchange ferrierite catalyst for and mothod of removing nitrogen oxide
JP2007076990A (en) * 2005-09-16 2007-03-29 Tosoh Corp β-type zeolite and method for purifying nitrogen oxides using the same
JP2008030003A (en) * 2006-07-31 2008-02-14 Honda Motor Co Ltd NOx purification catalyst
US7393804B2 (en) 2002-11-18 2008-07-01 Ict Co., Ltd. Exhaust gas purifying catalyst and process for purification of exhaust gas
WO2009011236A1 (en) * 2007-07-17 2009-01-22 Honda Motor Co., Ltd. NOx PURIFYING CATALYST
WO2009011237A1 (en) * 2007-07-17 2009-01-22 Honda Motor Co., Ltd. NOx PURIFYING CATALYST
JP2010502418A (en) * 2006-08-30 2010-01-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Low temperature hydrocarbon SCR
WO2013118063A1 (en) * 2012-02-06 2013-08-15 Basf Se Iron- and copper-containing zeolite beta from organotemplate-free synthesis and use thereof in the selective catalytic reduction of nox

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074976A (en) * 1993-11-04 2000-06-13 Osaka Gas Company Limited Process and catalyst for reducing NOx in exhaust combustion gases
WO1995012447A1 (en) * 1993-11-04 1995-05-11 Osaka Gas Company Limited PROCESS AND CATALYST FOR REDUCING NOx IN EXHAUST COMBUSTION GASES
EP0652040A1 (en) * 1993-11-04 1995-05-10 ENIRICERCHE S.p.A. Process and catalyst for reducing NOx in combustion exhaust gases
US5869013A (en) * 1993-11-04 1999-02-09 Osaka Gas Company Limited Process and catalyst for reducing Nox in exhaust combustion gases
EP0945166A1 (en) * 1993-11-04 1999-09-29 ENITECNOLOGIE S.p.a. Catalyst for reducing NOx in combustion exhaust gases
US5993764A (en) * 1995-04-17 1999-11-30 Osaka Gas Company Limited Nitrogen oxide-reducing catalyst and process for reducing nitrogen oxides in exhaust gas
EP0766992A1 (en) * 1995-10-06 1997-04-09 ENIRICERCHE S.p.A. Nitrogen oxides reduction catalyst and process for reducing nitrogen oxides in exhaust gas
WO1997012663A1 (en) * 1995-10-06 1997-04-10 Osaka Gas Company Limited Nitrogen oxides reduction catalyst and process for reducing nitrogen oxides in exhaust gas
US5985225A (en) * 1995-10-06 1999-11-16 Osaka Gas Company Limited Nitrogen oxides reduction catalyst and process for reducing nitrogen oxides in exhaust gas
WO1998030325A1 (en) * 1997-01-08 1998-07-16 Ngk Insulators, Ltd. Adsorbent
US6207604B1 (en) 1997-01-08 2001-03-27 Ngk Insulators, Ltd. β-zeolite molecular sieve absorbent
KR100453380B1 (en) * 2001-12-27 2004-10-15 한국가스공사 Cocation exchange ferrierite catalyst for and mothod of removing nitrogen oxide
WO2004045765A1 (en) * 2002-11-18 2004-06-03 Ict Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
JPWO2004045765A1 (en) * 2002-11-18 2006-03-16 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
JP2009066596A (en) * 2002-11-18 2009-04-02 Ict:Kk Method for suppressing oxidization of sulfur dioxide in exhaust gas
KR100774576B1 (en) * 2002-11-18 2007-11-12 아이씨티 코., 엘티디. Exhaust gas purifying catalyst and method for purifying exhaust gas
JP4594097B2 (en) * 2002-11-18 2010-12-08 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
US7393804B2 (en) 2002-11-18 2008-07-01 Ict Co., Ltd. Exhaust gas purifying catalyst and process for purification of exhaust gas
US7396793B2 (en) 2002-11-18 2008-07-08 Ict Co., Ltd. Exhaust gas purifying catalyst and process for purifying exhaust gas
JP2007076990A (en) * 2005-09-16 2007-03-29 Tosoh Corp β-type zeolite and method for purifying nitrogen oxides using the same
US7662743B2 (en) 2006-07-31 2010-02-16 Honda Motor Co., Ltd. NOx purifying catalyst
JP2008030003A (en) * 2006-07-31 2008-02-14 Honda Motor Co Ltd NOx purification catalyst
JP2010502418A (en) * 2006-08-30 2010-01-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Low temperature hydrocarbon SCR
WO2009011237A1 (en) * 2007-07-17 2009-01-22 Honda Motor Co., Ltd. NOx PURIFYING CATALYST
JP2009022821A (en) * 2007-07-17 2009-02-05 Honda Motor Co Ltd NOx purification catalyst
JP2009022820A (en) * 2007-07-17 2009-02-05 Honda Motor Co Ltd NOx purification catalyst
WO2009011236A1 (en) * 2007-07-17 2009-01-22 Honda Motor Co., Ltd. NOx PURIFYING CATALYST
US8372366B2 (en) 2007-07-17 2013-02-12 Honda Motor Co., Ltd. NOx purifying catalyst
US8425869B2 (en) 2007-07-17 2013-04-23 Honda Motor Co., Ltd. NOx purifying catalyst
WO2013118063A1 (en) * 2012-02-06 2013-08-15 Basf Se Iron- and copper-containing zeolite beta from organotemplate-free synthesis and use thereof in the selective catalytic reduction of nox

Similar Documents

Publication Publication Date Title
JPH01130735A (en) Catalyst for purifying exhaust gas
JPH05220403A (en) Exhaust gas purifying catalyst
JP2973524B2 (en) Exhaust gas purification catalyst
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
JP2910278B2 (en) Exhaust gas purification method
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JP3506392B2 (en) Exhaust gas purification catalyst using only hydrocarbons as reducing agents
JP2605956B2 (en) Exhaust gas purification catalyst
JP2921130B2 (en) Exhaust gas purification catalyst
JP2562702B2 (en) Exhaust gas purification catalyst
JP2802335B2 (en) Method for producing exhaust purification catalyst
JP3493693B2 (en) Exhaust gas purification catalyst
JP3362401B2 (en) Exhaust gas purification catalyst
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
JP3323233B2 (en) Method for producing exhaust gas purifying catalyst
JP3114982B2 (en) Exhaust gas purification catalyst and method of using the same
JP3221706B2 (en) Nitrogen oxide removal catalyst and exhaust gas purification method using the same
JPH057778A (en) Manufacture of exhaust gas purification catalyst
JP2000024517A (en) Exhaust gas purification catalyst and method for producing the same
JP3361136B2 (en) Exhaust gas purification catalyst
JP2000015104A (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0557196A (en) Exhaust gas purification catalyst manufacturing method
JP3291316B2 (en) Exhaust gas purification catalyst
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3555148B2 (en) Exhaust gas purification catalyst