[go: up one dir, main page]

JPH05222525A - Production of tungsten target for semiconductor - Google Patents

Production of tungsten target for semiconductor

Info

Publication number
JPH05222525A
JPH05222525A JP4023724A JP2372492A JPH05222525A JP H05222525 A JPH05222525 A JP H05222525A JP 4023724 A JP4023724 A JP 4023724A JP 2372492 A JP2372492 A JP 2372492A JP H05222525 A JPH05222525 A JP H05222525A
Authority
JP
Japan
Prior art keywords
density
tungsten
target
sintered body
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4023724A
Other languages
Japanese (ja)
Other versions
JP3280054B2 (en
Inventor
Shunichiro Matsumoto
俊一郎 松本
Akitoshi Hiraki
明敏 平木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP02372492A priority Critical patent/JP3280054B2/en
Publication of JPH05222525A publication Critical patent/JPH05222525A/en
Application granted granted Critical
Publication of JP3280054B2 publication Critical patent/JP3280054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To provide the process for production of the tungsten target for semiconductors which contains impurities at an extremely low ratio and has high density. CONSTITUTION:This process for production of the tungsten target for semiconductors consists in pressurizing tungsten powder to form a molding having >=60% relative density, then heating the molding to >=1400 deg.C, more preferably >=1600 deg.C in an atmosphere contg. hydrogen to form a sintered body having >=90% relative density and further, hot working the sintered body at >=1400 deg.C, more preferably >=1600 deg.C working initiation temp. to obtain >=99% relative density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスの電
極、配線形成等に使用される高純度タングステンターゲ
ットの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-purity tungsten target used for forming electrodes and wiring of semiconductor devices.

【0002】[0002]

【従来の技術】近年の超LSIの高集積化の要求によ
り、LSIに形成するゲ−ト電極数が増加するととも
に、配線が微細化されている。そして、ゲート電極の増
加および配線の微細化は配線抵抗を増加する原因とな
る。このような配線抵抗の増大は電気的信号遅延の要因
となる。このため、より抵抗値が低い材料を電極材や配
線材として使用しようとする検討が盛んに行なわれてい
る。そのなかにあって、純タングステンは低抵抗でか
つ、半導体デバイス製造上で行なわれる種々の熱処理を
施しても特性の変動が小さいことから、電極、配線用材
料として非常に有望視されている
2. Description of the Related Art Due to the recent demand for higher integration of VLSI, the number of gate electrodes formed on the LSI is increasing and the wiring is miniaturized. The increase in the gate electrode and the miniaturization of the wiring cause the wiring resistance to increase. Such an increase in wiring resistance causes an electrical signal delay. For this reason, studies have been actively conducted to use a material having a lower resistance value as an electrode material or a wiring material. Among them, pure tungsten is highly promising as a material for electrodes and wirings because it has low resistance and its characteristics do not fluctuate even after various heat treatments are carried out in the manufacture of semiconductor devices.

【0003】現在、LSIのタングステンの電極用ある
いは配線用の薄膜は、スパッタリング法とCVD(化学
気相蒸着)法を用いて製造されている。このうち、スパ
ッタリング法は、タングステンターゲットを用いて、こ
れをArガスでスパッタリングを行ってタングステン膜
を形成するものであって、CVD法に比べて、簡単な装
置でスパッタリングでき、成膜速度が早く、しかも取扱
いが簡単であるという利点がある。そして、LSI等の
半導体用途に使用されるタングステンターゲットの寸法
は、処理基板(Siウエハ)寸法の大型化に比例して大
きくなる傾向があり、従来直径φ200〜254mmが
標準であったターゲット寸法は最近ではφ300mm以
上の直径が求められるようになり、将来的にはφ350
〜400mmが純タングステンターゲットの標準的な寸
法になるものと考えられている。
At present, thin films of tungsten electrodes or wirings for LSI are manufactured by using a sputtering method and a CVD (chemical vapor deposition) method. Among them, the sputtering method is a method in which a tungsten target is used and is sputtered with Ar gas to form a tungsten film. As compared with the CVD method, sputtering can be performed with a simpler device and the film formation rate is faster. Moreover, there is an advantage that it is easy to handle. The size of the tungsten target used for semiconductor applications such as LSI tends to increase in proportion to the increase in the size of the processing substrate (Si wafer). Conventionally, the target size of φ200 to 254 mm is standard. Recently, a diameter of φ300 mm or more is required, and in the future φ350
~ 400 mm is believed to be the standard size for pure tungsten targets.

【0004】半導体用タングステンターゲットとして
は、上述したように比較的大きな寸法であって、高純度
でしかも高密度を有するものでなければならない。大き
な寸法のターゲットを粉末冶金法で製造しようとすると
高い密度が得にくく、密度の低い状態でスパッタリング
ターゲットとして加工すると、ターゲット形状を得るた
めの研削等の機械加工工程および洗浄工程中に、焼結体
内にNaイオン等の汚染物質が浸透し、ターゲットの純
度を低下させると言う問題がある。また、密度が低い焼
結体をスパッタリングターゲットとして用いた場合、ス
パッタ放電は非常に不安定で、異常放電を生じやすい。
異常放電を生ずると、ターゲット表面の異常放電発生部
分で局部的に溶融し、溶融した箇所からスプラシュが発
生する。このため低密度のターゲットを用いて成膜した
純タングステン膜の表面には、このようなスプラッシュ
を原因とする通常パ−ティクルと呼ばれている粒状の付
着物が多数発生する。
As described above, the tungsten target for semiconductor must have a relatively large size, a high purity and a high density. If you try to manufacture a target with a large size by powder metallurgy, it is difficult to obtain a high density, and if you process it as a sputtering target in a low density state, it will be sintered during the machining process such as grinding to obtain the target shape and the cleaning process. There is a problem that contaminants such as Na ions penetrate into the body and reduce the purity of the target. Further, when a sintered body having a low density is used as a sputtering target, sputter discharge is very unstable and abnormal discharge is likely to occur.
When the abnormal discharge is generated, the target surface is locally melted at the abnormal discharge generation portion, and a splash is generated from the melted portion. For this reason, on the surface of the pure tungsten film formed by using the low-density target, a large number of granular deposits, which are usually called particles, are generated due to such splash.

【0005】このパーティクルの粒径は1〜10μm程
度のものが最も多い。特に超LSIの場合、配線幅は通
常1μm以下(サブミクロン)と非常に狭いものである
ため、パーティクル付着が起こると、シャドウイングに
よって、所定の配線幅より狭い部分が生じる場合があ
る。この部分は抵抗値が増加するため、半導体素子の動
作不良の原因となる。また半導体素子の作動時に発生す
る熱応力がこの部分に集中するため配線切れが発生しや
すくなる。このため、半導体用途のターゲットの場合、
スパッタ膜表面のパ−ティクル発生が少ないターゲッ
ト、すなわち高密度を有するターゲットを使用すること
が望ましい。このようなタングステンターゲットの製造
方法としては、CVD法により積層させる方法が実用化
されているが、その他には特開昭61−107728号
に記載されているような電子ビ−ム溶解を用いてインゴ
ットを作製し、このインゴットを熱間で圧延する溶解−
熱間圧延法が提案されている。これに対して本発明者等
は、特開平3−150356号に記載されるようなホッ
トプレスあるいは熱間静水圧プレス(以下HIPとい
う)等で加圧焼結し熱間で圧延する加圧焼結−熱間圧延
法を開発した。
Most of the particles have a particle size of about 1 to 10 μm. In particular, in the case of a VLSI, the wiring width is usually as narrow as 1 μm or less (submicron), so if particles adhere, shadowing may cause a portion narrower than a predetermined wiring width. Since the resistance value increases in this portion, it causes malfunction of the semiconductor element. Further, the thermal stress generated during the operation of the semiconductor element concentrates on this portion, so that the wiring breakage easily occurs. Therefore, in the case of targets for semiconductor applications,
It is desirable to use a target with less generation of particles on the sputtered film surface, that is, a target having a high density. As a method of manufacturing such a tungsten target, a method of stacking by a CVD method has been put into practical use, but in addition, an electron beam melting method as described in JP-A-61-107728 is used. Melt by making ingot and rolling this ingot hot
A hot rolling method has been proposed. On the other hand, the inventors of the present invention pressure-sintered by hot pressing or hot isostatic pressing (hereinafter referred to as HIP) and hot rolling as described in JP-A-3-150356. A binding-hot rolling method was developed.

【0006】[0006]

【発明が解決しようとする課題】前記の特開昭61−1
07728に記載のような、電子ビ−ム溶解による純タ
ングステンインゴットは結晶粒が粗大化し易く、半導体
用ターゲット用途のように大きなインゴットを必要とす
る場合は、特に結晶粒の粗大化が著しい。純タングステ
ンの場合、結晶粒が粗大化すると機械的に脆くなり、熱
間加工性についても極度に悪くなる。このため電子ビ−
ムで溶解した純タングステンインゴットを熱間圧延材用
素材として用いた場合、加工中に容易に割れを生じてし
まう結果となる。特にこの傾向はタングステンインゴッ
ト径が大きくなるほど著しくなる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
As described in No. 07728, the crystal grain of the pure tungsten ingot by the electron beam melting is likely to be coarsened, and the coarseness of the crystal grain is particularly remarkable when a large ingot is required as in the case of target application for semiconductors. In the case of pure tungsten, if the crystal grains become coarse, it becomes mechanically brittle, and the hot workability becomes extremely poor. Therefore, the electronic
When a pure tungsten ingot melted in the aluminum is used as a material for a hot-rolled material, it easily cracks during processing. In particular, this tendency becomes remarkable as the diameter of the tungsten ingot increases.

【0007】またホットプレスを用いる加圧焼結法の場
合、黒鉛型に純タングステン粉末を充填し真空中、ある
いは不活性ガス雰囲気中で加圧焼結を行うのが一般的で
ある。この時の加圧圧力は黒鉛型の強度上の問題から2
00〜300kgf/cmに制約される。そのため、
高密度のタングステンターゲットを得ようとすると、ホ
ットプレスの温度を上げる必要があるが、純タングステ
ンは温度1200℃を超えると、炭化物形成傾向が著い
ため、黒鉛型を使用しなければならないホットプレスで
は得られる焼結体の炭素含有量は数百ppmオ−ダ−と
なり、不純物をできるだけ減らす必要がある半導体用途
には好ましくない。他方、HIPを用いた加圧焼結では
メタルカプセルに純タングステン粉末を充填した後、カ
プセル中を真空脱気し、HIP装置のなかに設置しその
後加圧焼結を行うのが一般的である。HIPによる加圧
焼結条件は、圧力2000kg/cm,温度2000
℃まで可能であるが、メタルカプセルを使用する場合そ
の材質の制約を受ける。すなわち、高温ではタングステ
ンとメタルカプセルが反応して焼結体を汚染してしまう
という問題がある。さらに上記の粉末を単純に焼結する
という手段では、粉末中に3〜4ppm程度不可避に含
有している、Na,K等のアルカリ金属およびCa等のア
ルカリ土類金属がターゲット中にそのまま残留すること
になり好ましくない。本発明の目的は、極めて不純物含
有量が少なく、しかも密度が高い半導体用タングステン
ターゲットの製造方法を提供することである。
Further, in the case of the pressure sintering method using hot pressing, it is general to fill a graphite mold with pure tungsten powder and perform pressure sintering in a vacuum or in an inert gas atmosphere. The pressurizing pressure at this time is 2 because of the strength problem of the graphite type.
It is limited to 00 to 300 kgf / cm 2 . for that reason,
In order to obtain a high-density tungsten target, it is necessary to raise the temperature of hot pressing, but pure tungsten has a tendency to form carbides when the temperature exceeds 1200 ° C. Therefore, it is necessary to use a graphite mold in hot pressing. The carbon content of the obtained sintered body is on the order of several hundred ppm, which is not preferable for semiconductor applications in which it is necessary to reduce impurities as much as possible. On the other hand, in pressure sintering using HIP, it is general that after filling a metal capsule with pure tungsten powder, the inside of the capsule is degassed in vacuum, placed in a HIP device, and then pressure sintering is performed. .. The pressure sintering condition by HIP is as follows: pressure 2000 kg / cm 2 , temperature 2000.
It is possible up to ℃, but when using metal capsules, the material is restricted. That is, at a high temperature, there is a problem that the tungsten and the metal capsule react to contaminate the sintered body. Further, by simply sintering the above powder, alkali metals such as Na and K and alkaline earth metals such as Ca, which are unavoidably contained in the powder in an amount of about 3 to 4 ppm, remain in the target as they are. This is not desirable. An object of the present invention is to provide a method for manufacturing a tungsten target for semiconductors, which has extremely low impurity content and high density.

【0008】[0008]

【課題を解決するための手段】本発明者は高純度かつ高
密度タングステンターゲットの製造を種々検討した結
果、タングステン粉末を加圧して圧粉成形を行い、特定
の密度以上に調整した成形体を水素を含む雰囲気中で焼
結した後、熱間加工を行うことにより、極めて高純度で
あって、しかも密度の高いタングステンターゲットが得
られることを見出した。すなわち、本発明の製造方法は
タングステン粉末を加圧して60%以上の相対密度を有
する成形体を作成した後、該成形体を水素を含む雰囲気
中で温度1400℃以上、好ましくは1600℃以上に
加熱して相対密度90%以上の焼結体とし、さらに前記
焼結体を加工開始温度1400℃以上、好ましくは16
00℃以上で熱間加工し99%以上の相対密度を得るこ
とを特徴とする半導体用タングステンターゲットの製造
方法である。
As a result of various studies on the production of a high-purity and high-density tungsten target, the present inventor has carried out compaction molding by pressurizing tungsten powder to obtain a compact body adjusted to a specific density or more. It has been found that by performing hot working after sintering in an atmosphere containing hydrogen, a tungsten target having an extremely high purity and a high density can be obtained. That is, in the manufacturing method of the present invention, after pressing a tungsten powder to form a molded body having a relative density of 60% or more, the molded body is heated to 1400 ° C. or higher, preferably 1600 ° C. or higher in an atmosphere containing hydrogen. It is heated to a sintered body having a relative density of 90% or more, and further the processing start temperature of the sintered body is 1400 ° C. or more, preferably 16
It is a method for manufacturing a tungsten target for a semiconductor, which is characterized by obtaining a relative density of 99% or more by hot working at 00 ° C or more.

【0009】タングステン粉末を加圧する工程は、特に
温度や雰囲気は限定されないが、汚染を少なくして次工
程である水素を含む雰囲気中での加熱焼結を効率良く行
なうためには、冷間ないし温間で行なうのが良い。ま
た、タングステン粉末を加圧して焼結前の成形体を得る
工程では、その相対密度を60〜90%に留めるのが望
ましいようである。すなわち、真密度よりやや小さい密
度にしておくことにより、次工程での水素の透過性が良
くなり、より効率の良い水素との反応が期待できるから
である。水素を含む雰囲気とは、純水素雰囲気の他、水
素と中性ガスの混合体、水素と還元性ガスの混合体など
種々の組合せが考えられるが、要は水素による還元作用
が生じれば十分である。
In the step of pressurizing the tungsten powder, the temperature and atmosphere are not particularly limited, but in order to reduce contamination and to efficiently perform the next step of heating and sintering in an atmosphere containing hydrogen, it is necessary to cool the step. It is good to do it in warm weather. Further, in the step of pressurizing the tungsten powder to obtain a green body before sintering, it seems desirable to keep the relative density at 60 to 90%. That is, when the density is set to be slightly lower than the true density, hydrogen permeability in the next step is improved, and a more efficient reaction with hydrogen can be expected. As the atmosphere containing hydrogen, various combinations such as a pure hydrogen atmosphere, a mixture of hydrogen and a neutral gas, a mixture of hydrogen and a reducing gas, and the like can be considered. Is.

【0010】[0010]

【作用】本発明では、60%以上の相対密度を有する成
形体を、熱間加工の前に水素を含む雰囲気中で温度14
00℃以上に加熱して、酸素や他の不純物を除去し、焼
結表面を活性化して焼結を促進させる点に大きな特徴が
ある。さらに本発明の他の大きな特徴は加圧成形体を水
素を含む雰囲気中で加熱することすること、および水素
を含む雰囲気中の加熱のみでは不十分であった密度を熱
間加工を追加することにより相対密度を99%以上を得
ることを可能にしたことである。この水素を含む雰囲気
中での加熱により、第1に雰囲気中の水素による還元作
用により、タングステン粒の主に酸素が除去されるとと
もに、表面が活性化され焼結が進行し、熱間圧延可能な
90%以上の相対密度を有する焼結体を得ることがで
き、第2に半導体用途にとって好ましくない原料粉末に
不可避に含まれる酸素や、Na,K,Ca等のアルカリ
金属およびアルカリ土類金属を低減することが可能にな
る。このときの加熱温度は1400℃以上、好ましくは
1600℃以上とすることによって、得られる焼結体の
密度は急激に上昇し熱間加工が可能な相対密度で90%
以上に達するとともに、酸素含有量は30ppm以下、
Na,K,Caは合計の含有量で1ppm以下に低減す
ることが可能になる。
In the present invention, the molded body having a relative density of 60% or more is heated at a temperature of 14% in an atmosphere containing hydrogen before hot working.
A major feature is that it is heated to 00 ° C. or higher to remove oxygen and other impurities and activate the sintered surface to accelerate sintering. Another major feature of the present invention is to heat the pressure-molded body in an atmosphere containing hydrogen, and to add hot working to a density which was not sufficient only by heating in an atmosphere containing hydrogen. This makes it possible to obtain a relative density of 99% or more. By heating in an atmosphere containing hydrogen, firstly oxygen is mainly removed from the tungsten grains due to the reducing action of hydrogen in the atmosphere, the surface is activated and sintering proceeds, and hot rolling is possible. It is possible to obtain a sintered body having a relative density of 90% or more, and secondly, oxygen which is inevitably contained in the raw material powder unfavorable for semiconductor use, and alkali metals and alkaline earth metals such as Na, K and Ca. Can be reduced. By setting the heating temperature at this time to 1400 ° C. or higher, preferably 1600 ° C. or higher, the density of the obtained sintered body rises rapidly and the relative density at which hot working is possible is 90%.
With reaching the above, the oxygen content is 30 ppm or less,
The total content of Na, K, and Ca can be reduced to 1 ppm or less.

【0011】本発明においてまず加圧成形を行うのは、
それに続く工程である水素を含む雰囲気で焼結する際に
ハンドリング可能な成形体を作成するためである。この
ような加圧成形の方法としてはメカニカルプレスや冷間
静水圧プレスを使用したラバープレス法などが使用でき
る。特に加圧成形に冷間静水圧プレスを使用したラバー
プレス法を用いる場合には、等方性圧縮のため割れ等の
発生が少なく、均一な組織となり、しかも常温で成形す
るため、ホットプレスやHIPのように型やカプセルか
らの汚染がなく好ましい成形ができる。加圧成形後の成
形体の相対密度を60%以上と規定したのは第1に60
%以下の密度の低い成形体では、割れが発生しやすく、
次工程へのハンドリングがむずかしいため、第2に成形
体密度が低すぎると次工程の水素を含む雰囲気中での加
熱を行なっても90%以上という熱間加工可能な相対密
度が得にくいためである。また、純タングステンは温度
1200℃以下で急激に脆くなる傾向があるため、熱間
加工中に良好な加工性を維持するためには加工開始温度
を1400℃以上、好ましくは1600℃以上とする必
要がある。
In the present invention, the first step of pressure molding is
This is to create a molded body that can be handled during the subsequent step of sintering in an atmosphere containing hydrogen. As such a method of pressure molding, a mechanical press or a rubber press method using a cold isostatic press can be used. Especially when the rubber pressing method using a cold isostatic press is used for pressure molding, there is little cracking due to isotropic compression, and a uniform structure is obtained, and since it is molded at room temperature, hot pressing or Unlike HIP, preferable molding can be performed without contamination from molds or capsules. First, the relative density of the molded body after pressure molding was defined as 60% or more.
%, Low-density compacts are more likely to crack,
Secondly, it is difficult to handle in the next step. Secondly, if the compact density is too low, it is difficult to obtain a hot workable relative density of 90% or more even if heating is performed in an atmosphere containing hydrogen in the next step. is there. Further, since pure tungsten tends to become brittle rapidly at a temperature of 1200 ° C or lower, the processing start temperature must be 1400 ° C or higher, preferably 1600 ° C or higher in order to maintain good workability during hot working. There is.

【0012】[0012]

【実施例】【Example】

(実施例1)Na,K,Caの合計の含有量3.2pp
m、炭素含有量11ppm、酸素含有量260ppm、
平均粒径3.2μmであるタングステン粉末を、φ20
0mmのラバーに充填し冷間静水圧プレス装置により加
圧成形を行なった。冷間静水圧プレスの成形圧力と得ら
れた成形体密度(相対密度)の関係を表1に示す。
(Example 1) Total content of Na, K, Ca 3.2 pp
m, carbon content 11 ppm, oxygen content 260 ppm,
Tungsten powder with an average particle size of 3.2 μm was
It was filled in 0 mm rubber and pressure-molded by a cold isostatic pressing device. Table 1 shows the relationship between the molding pressure of the cold isostatic press and the density (relative density) of the obtained molded body.

【0013】[0013]

【表1】 [Table 1]

【0014】表1に示すように、成形圧力が1000k
gf/cm2の試料No.5では、成形体密度が50%
程度では成形体に割れが発生して、成形不良となった。
割れの発生しなかった密度の異なる成形体を100%水
素の還元雰囲気中で1800℃、30時間の加熱処理を
行い焼結体を得た。得られた焼結体密度(相対密度)を
表1に示す。1800℃、30時間の加熱条件において
も、成形体密度が60%以下の比較例である試料No.
6は、得られた焼結体密度も85%と低いものであり、
成形体密度は60%以上必要であることを確認できた。
また、加熱雰囲気を75%水素、25%窒素に変えて同
様の加熱処理を実施したが100%水素雰囲気の場合と
の差は認められなかった。
As shown in Table 1, the molding pressure is 1000 k.
Sample No. of gf / cm 2 In 5, the compact density is 50%
In some cases, the molded body was cracked, resulting in defective molding.
Molded bodies having different densities that did not crack were heat-treated in a 100% hydrogen reducing atmosphere at 1800 ° C. for 30 hours to obtain sintered bodies. The obtained sintered body density (relative density) is shown in Table 1. Even under heating conditions of 1800 ° C. and 30 hours, sample No. which is a comparative example having a compact density of 60% or less.
6, the obtained sintered body density is as low as 85%,
It was confirmed that the compact density was required to be 60% or more.
Also, the heating atmosphere was changed to 75% hydrogen and 25% nitrogen and the same heat treatment was performed, but no difference from the case of 100% hydrogen atmosphere was observed.

【0015】次に、成形圧力3000kgf/cm2
表1の試料No.3と同様に製造した密度65%の成形
体を用いて、加熱処理温度と得られる焼結体の密度とN
a,K,Caの含有量の関係を調査した。なお、このと
きの加熱時間は30時間、雰囲気は、100%水素とし
た。図1に得られた焼結体密度とNa,K,Caの合計
の含有量を示す。図1に示すように、加熱温度を140
0℃以上とすることで90%以上の焼結体が得られ、し
かもNa,K,Caの含有量も著しく低下できた。しか
し、図1に示すように1400℃以上では加熱温度を高
くしても、著しい密度の増加は起こらなかった。そこで
焼結体の密度をさらに高めるために、熱間加工を検討し
た。図2に表1の試料No.5で得られた相対密度95
%の焼結体を用いて熱間引張試験装置により、純タング
ステン焼結体の加熱温度と引張強さの関係を調査した結
果を示す。これは適正な熱間加工温度の推定を行なうた
めである。図2に示すように純タングステン焼結体は1
200℃を越える高温領域で著しく引張強さが減少し、
これにともなって延性が増加することが推測された。
Next, with the molding pressure of 3000 kgf / cm 2 , the sample No. Using a compact having a density of 65% produced in the same manner as in No. 3, the heat treatment temperature, the density of the obtained sintered body and N
The relationship between the contents of a, K and Ca was investigated. The heating time was 30 hours and the atmosphere was 100% hydrogen. FIG. 1 shows the density of the obtained sintered body and the total content of Na, K, and Ca. As shown in FIG.
By setting the temperature to 0 ° C. or higher, 90% or more of the sintered body was obtained, and the contents of Na, K and Ca could be remarkably reduced. However, as shown in FIG. 1, even if the heating temperature was raised at 1400 ° C. or higher, the density did not significantly increase. Therefore, hot working was examined in order to further increase the density of the sintered body. The sample No. of Table 1 is shown in FIG. Relative density 95 obtained in 5
The results of investigating the relationship between the heating temperature and the tensile strength of the pure tungsten sintered body by the hot tensile test apparatus using the sintered body of 10% are shown. This is to estimate an appropriate hot working temperature. As shown in FIG. 2, the pure tungsten sintered body has 1
Tensile strength is remarkably reduced in the high temperature range over 200 ° C,
It was speculated that the ductility would increase with this.

【0016】そこでこの結果に基づいて表1に示す試料
No.1,2,3,4,6の相対密度85%から93%
までの焼結体に対して、熱間加工開始温度を1200℃
〜1800℃で変えて、それぞれ最終的な圧下率が60
%となるように熱間圧延を8回繰り返した。熱間圧延の
後、機械加工によりφ300mm×6mmの寸法のター
ゲットを製造した。得られたターゲットの相対密度、N
a,K,Caの合計の含有量、酸素含有量、炭素含有量
および熱間加工中の割れの発生の有無を表2に示す。
Therefore, based on this result, the sample No. Relative density of 1, 2, 3, 4, 6 from 85% to 93%
The hot working start temperature is 1200 ° C for the sintered products up to
~ 1800 ℃, the final rolling reduction is 60
The hot rolling was repeated 8 times so that it would be%. After hot rolling, a target of φ300 mm × 6 mm was manufactured by machining. Relative density of the obtained target, N
Table 2 shows the total content of a, K, and Ca, the oxygen content, the carbon content, and the presence or absence of cracking during hot working.

【0017】[0017]

【表2】 [Table 2]

【0018】表2より焼結体密度が90%以上あり、1
400℃以上の熱間圧延開始温度で熱間加工を行なうと
いう本発明の製造方法でターゲットを製造した試料N
o.1b,1c,2b,2c,3b,3c,4b,4c
ではターゲットを製造する工程での炭素含有量の増加も
なく、酸素含有量、Na,K,Caの含有量も原料粉末
よりも大幅に低減でき、しかも99.5%以上のほぼ理
論密度のターゲットとなった。一方、熱間圧延開始温度
が1400℃より低い試料No.1a,2a,3a,4
aおよび焼結体密度が90%未満である試料No.6
a,6b,6cは熱間圧延中に割れが発生しターゲット
として使用できるものは得られなかった。さらに本発明
の製造方法で製造したターゲットを用いて6インチウエ
ハにスパッタリングを行ない、100nmの薄膜を形成
した。6インチウエハ中の0.5μm以上のパーティク
ルの発生個数も表2に示す。表2のパーティクル発生数
より、本発明の方法で得られターゲットはパーティクル
の発生も25個以下と少ないことがわかる。
From Table 2, the density of the sintered body is 90% or more, and 1
Sample N manufactured as a target by the manufacturing method of the present invention in which hot working is performed at a hot rolling start temperature of 400 ° C. or higher.
o. 1b, 1c, 2b, 2c, 3b, 3c, 4b, 4c
Does not increase the carbon content in the process of manufacturing the target, the oxygen content, the content of Na, K, and Ca can be significantly reduced compared to the raw material powder, and the target has a theoretical density of 99.5% or more. Became. On the other hand, sample No. whose hot rolling start temperature is lower than 1400 ° C. 1a, 2a, 3a, 4
a and the sample No. having a sintered body density of less than 90%. 6
Nos. a, 6b, and 6c could be used as targets because cracking occurred during hot rolling. Further, a 6-inch wafer was sputtered using the target manufactured by the manufacturing method of the present invention to form a 100 nm thin film. Table 2 also shows the number of particles of 0.5 μm or more generated in the 6-inch wafer. From the number of particles generated in Table 2, it can be seen that the target obtained by the method of the present invention has a small particle generation of 25 particles or less.

【0019】[0019]

【発明の効果】本発明の方法で製造される半導体用タン
グステンターゲットは、酸素含有量、アルカリ金属およ
びアルカリ土類金属が少なく、密度も高いものとなる。
また製造工程中のターゲットの割れ事故もないので、安
定してタングステンターゲットを生産できる。本発明の
製造方法によるターゲットを用いてスパッタリングによ
る薄膜を形成すればパーティクルの発生が少なものとな
る。そのため半導体の電極、配線等を形成した場合に懸
念されていたパーティクルによる電気信号の遅延、配線
の断線等による不良の発生を極めて少ないものとするこ
とができる。
Industrial Applicability The tungsten target for semiconductors manufactured by the method of the present invention has a low oxygen content, a small amount of alkali metals and alkaline earth metals, and a high density.
Further, since there is no accident of cracking the target during the manufacturing process, it is possible to stably produce the tungsten target. When a thin film is formed by sputtering using the target produced by the manufacturing method of the present invention, the generation of particles is reduced. Therefore, it is possible to reduce the occurrence of defects such as delay of electrical signals due to particles and disconnection of wiring, which are a concern when semiconductor electrodes, wiring, etc. are formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】加圧成形体を水素を含む雰囲気中で加熱したと
きの焼結体密度およびNa,K,Caの含有量の加熱温
度との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a sintered body density and a heating temperature of Na, K, and Ca contents when a pressure-molded body is heated in an atmosphere containing hydrogen.

【図2】焼結体の加熱温度と引張強さの関係を示す図で
ある。
FIG. 2 is a diagram showing a relationship between a heating temperature and a tensile strength of a sintered body.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タングステン粉末を加圧して60%以上
の相対密度を有する成形体を作成した後、該成形体を水
素を含む雰囲気中で温度1400℃以上に加熱して相対
密度90%以上の焼結体とし、さらに前記焼結体を加工
開始温度1400℃以上で熱間加工し99%以上の相対
密度を得ることを特徴とする半導体用タングステンター
ゲットの製造方法。
1. A tungsten powder is pressed to form a compact having a relative density of 60% or more, and the compact is heated to a temperature of 1400 ° C. or higher in an atmosphere containing hydrogen to obtain a relative density of 90% or higher. A method of manufacturing a tungsten target for a semiconductor, comprising a sintered body, and further hot working the sintered body at a processing start temperature of 1400 ° C. or higher to obtain a relative density of 99% or higher.
【請求項2】 水素を含む雰囲気中での加熱は温度16
00℃以上とすることを特徴とする請求項1に記載の半
導体用タングステンターゲットの製造方法。
2. The heating in an atmosphere containing hydrogen has a temperature of 16
The method for manufacturing a tungsten target for semiconductor according to claim 1, wherein the temperature is set to 00 ° C. or higher.
【請求項3】 熱間加工開始温度は1600℃以上とす
ることを特徴とする請求項1に記載の半導体用タングス
テンターゲットの製造方法。
3. The method for manufacturing a tungsten target for semiconductor according to claim 1, wherein the hot working start temperature is 1600 ° C. or higher.
【請求項4】 タングステン粉末の加圧は冷間静水圧プ
レスで行うことを特徴とする請求項1に記載の半導体用
タングステンターゲットの製造方法。
4. The method for manufacturing a tungsten target for semiconductor according to claim 1, wherein the pressing of the tungsten powder is performed by a cold isostatic press.
JP02372492A 1992-02-10 1992-02-10 Method for manufacturing tungsten target for semiconductor Expired - Fee Related JP3280054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02372492A JP3280054B2 (en) 1992-02-10 1992-02-10 Method for manufacturing tungsten target for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02372492A JP3280054B2 (en) 1992-02-10 1992-02-10 Method for manufacturing tungsten target for semiconductor

Publications (2)

Publication Number Publication Date
JPH05222525A true JPH05222525A (en) 1993-08-31
JP3280054B2 JP3280054B2 (en) 2002-04-30

Family

ID=12118270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02372492A Expired - Fee Related JP3280054B2 (en) 1992-02-10 1992-02-10 Method for manufacturing tungsten target for semiconductor

Country Status (1)

Country Link
JP (1) JP3280054B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220625A (en) * 1993-01-29 1994-08-09 Tokyo Tungsten Co Ltd Sputtering target stock and its production
WO2001023635A1 (en) * 1999-09-28 2001-04-05 Nikko Materials Company, Limited Tungsten target for sputtering and method for preparing thereof
JP2001295036A (en) * 2000-04-17 2001-10-26 Toshiba Corp Tungsten sputtering target and method for manufacturing the same
JP2003049264A (en) * 2000-09-07 2003-02-21 Toshiba Corp Tungsten sputtering target and method for manufacturing the same
WO2003016585A1 (en) * 2001-08-10 2003-02-27 Nikko Materials Company, Limited Sintered tungsten target for sputtering and method for preparation thereof
KR100764325B1 (en) * 2000-09-07 2007-10-05 가부시끼가이샤 도시바 Tungsten Sputtering Target and Manufacturing Method Thereof
US8506882B2 (en) * 2004-06-15 2013-08-13 Tosoh Smd, Inc. High purity target manufacturing methods
WO2019092969A1 (en) * 2017-11-10 2019-05-16 Jx金属株式会社 Tungsten sputtering target and method for producing same
CN115740452A (en) * 2022-11-09 2023-03-07 有研亿金新材料(山东)有限公司 Preparation method of high-purity high-density fine-grain low-oxygen tungsten target material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220625A (en) * 1993-01-29 1994-08-09 Tokyo Tungsten Co Ltd Sputtering target stock and its production
US6582535B1 (en) 1999-09-28 2003-06-24 Nikko Materials Company, Limited Tungsten target for sputtering and method for preparing thereof
WO2001023635A1 (en) * 1999-09-28 2001-04-05 Nikko Materials Company, Limited Tungsten target for sputtering and method for preparing thereof
JP2001295036A (en) * 2000-04-17 2001-10-26 Toshiba Corp Tungsten sputtering target and method for manufacturing the same
KR100764325B1 (en) * 2000-09-07 2007-10-05 가부시끼가이샤 도시바 Tungsten Sputtering Target and Manufacturing Method Thereof
JP2003049264A (en) * 2000-09-07 2003-02-21 Toshiba Corp Tungsten sputtering target and method for manufacturing the same
JP2012092451A (en) * 2000-09-07 2012-05-17 Toshiba Corp Tungsten spattering target and method of manufacturing the target
JP2012117149A (en) * 2000-09-07 2012-06-21 Toshiba Corp Tungsten sputtering target and method for production thereof
JP2012122139A (en) * 2000-09-07 2012-06-28 Toshiba Corp Tungsten sputtering target and manufacturing method thereof
WO2003016585A1 (en) * 2001-08-10 2003-02-27 Nikko Materials Company, Limited Sintered tungsten target for sputtering and method for preparation thereof
US8506882B2 (en) * 2004-06-15 2013-08-13 Tosoh Smd, Inc. High purity target manufacturing methods
WO2019092969A1 (en) * 2017-11-10 2019-05-16 Jx金属株式会社 Tungsten sputtering target and method for producing same
US20200370167A1 (en) * 2017-11-10 2020-11-26 Jx Nippon Mining & Metals Corporation Tungsten Sputtering Target And Method For Producing Same
US11939661B2 (en) 2017-11-10 2024-03-26 Jx Metals Corporation Tungsten sputtering target and method for manufacturing the same
CN115740452A (en) * 2022-11-09 2023-03-07 有研亿金新材料(山东)有限公司 Preparation method of high-purity high-density fine-grain low-oxygen tungsten target material

Also Published As

Publication number Publication date
JP3280054B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US5618397A (en) Silicide targets for sputtering
EP1066899B1 (en) Method of making a sputtering target
US6328927B1 (en) Method of making high-density, high-purity tungsten sputter targets
US6582535B1 (en) Tungsten target for sputtering and method for preparing thereof
CN101687709B (en) Sintered silicon wafer
JP7654734B2 (en) Sputtering target and method for manufacturing sputtering target
JP2004100000A (en) Iron silicate sputtering target and production method therefor
JP2757287B2 (en) Manufacturing method of tungsten target
JP7701511B2 (en) Tungsten Sputtering Target
JP3244167B2 (en) Tungsten or molybdenum target
JP3280054B2 (en) Method for manufacturing tungsten target for semiconductor
TWI572725B (en) Method for producing moti target
JP3819863B2 (en) Silicon sintered body and manufacturing method thereof
CN101287858B (en) High-purity ru alloy target, process for producing the same and sputtered film
US6713391B2 (en) Physical vapor deposition targets
JP3974945B2 (en) Titanium sputtering target
JPH1150242A (en) Copper sputtering target for forming electrode coating, its production and copper series electrode coating
JP4634567B2 (en) Method for manufacturing tungsten sputtering target
CN115666820A (en) Metal-Si-based powder, method for producing same, and method for producing metal-Si-based sintered body, sputtering target, and metal-Si-based thin film
JPH0593267A (en) Tungstren target for semiconductor and its manufacture
JP2001295035A (en) Sputtering target and method for manufacturing the same
JP3998972B2 (en) Method for producing sputtering tungsten target
JP3086447B1 (en) Tungsten target for sputtering and method for producing the same
WO2014148424A1 (en) Ti-Al ALLOY SPUTTERING TARGET
JP3528980B2 (en) Tungsten silicide target material and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees