JPH05231242A - Hydrogen storage alloy having compound thermoelectric element - Google Patents
Hydrogen storage alloy having compound thermoelectric elementInfo
- Publication number
- JPH05231242A JPH05231242A JP4029638A JP2963892A JPH05231242A JP H05231242 A JPH05231242 A JP H05231242A JP 4029638 A JP4029638 A JP 4029638A JP 2963892 A JP2963892 A JP 2963892A JP H05231242 A JPH05231242 A JP H05231242A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- storage alloy
- hydrogen storage
- thermoelectric element
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 219
- 239000001257 hydrogen Substances 0.000 title claims abstract description 219
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 172
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 135
- 239000000956 alloy Substances 0.000 title claims abstract description 135
- 150000001875 compounds Chemical class 0.000 title abstract 2
- 239000004065 semiconductor Substances 0.000 claims abstract description 22
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 230000006837 decompression Effects 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 150000002431 hydrogen Chemical class 0.000 abstract description 49
- 239000012212 insulator Substances 0.000 abstract description 14
- 239000013589 supplement Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000002828 fuel tank Substances 0.000 description 9
- 150000004678 hydrides Chemical class 0.000 description 9
- 239000000446 fuel Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 4
- 229910052805 deuterium Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005338 heat storage Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 230000005679 Peltier effect Effects 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000005372 isotope separation Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910005438 FeTi Inorganic materials 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 229910005329 FeSi 2 Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は熱電素子を複合化した水
素吸蔵合金に係り、特にエンジン,蓄熱装置,コンプレ
ッサ,冷却・冷凍装置及び水素アイソトープ分離装置等
に適用できる熱電素子を複合化した水素吸蔵合金に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy having a composite thermoelectric element, and more particularly to a hydrogen having a composite thermoelectric element applicable to an engine, a heat storage device, a compressor, a cooling / refrigerating device, a hydrogen isotope separation device and the like. Regarding storage alloys.
【0002】[0002]
【従来の技術】近年、水素吸蔵合金の各種装置への応用
が注目されている。多くの金属は水素化物を生成する
が、この水素化物の状態で安定化するため、加熱した
り、圧力を下げても解離せず、水素を放出しない。しか
し、ある種の合金は、比較的容易に水素化物を形成して
多量の水素を吸蔵し、又、わずかな加熱や減圧で水素化
物が解離し多量の水素を放出する。この種の合金が水素
吸蔵合金と称されており、例えば、稀土類系合金(La
Ni5 等),チタン系系合金(FeTi等)及びマグネ
シウム系合金(Mg2 Ni等)が実用化されている。2. Description of the Related Art In recent years, attention has been paid to the application of hydrogen storage alloys to various devices. Many metals produce hydrides, but since they stabilize in the hydride state, they do not dissociate and do not release hydrogen even when heated or the pressure is lowered. However, some alloys relatively easily form hydrides and occlude a large amount of hydrogen, and the hydrides are dissociated and a large amount of hydrogen is released by slight heating or reduced pressure. This type of alloy is called a hydrogen storage alloy. For example, rare earth alloys (La
Ni 5 ), titanium-based alloys (FeTi, etc.), and magnesium-based alloys (Mg 2 Ni, etc.) have been put to practical use.
【0003】すなわち、水素吸蔵合金は、図11に示す
ようなメカニズムで水素を吸蔵・放出する。図示されて
いるように、水素吸蔵合金Mを冷却すると、水素H2 を
吸蔵し、該水素吸蔵合金Mが発熱する方向に反応が進
み、水素を吸蔵した水素吸蔵合金MH2 となる。逆に、
水素を吸蔵した水素吸蔵合金MH2 を加熱すると、該水
素吸蔵合金Mが吸熱する方向に反応が進み、水素H2 を
放出することになる。That is, the hydrogen storage alloy stores and releases hydrogen by the mechanism shown in FIG. As shown in the figure, when the hydrogen storage alloy M is cooled, hydrogen H 2 is stored, the reaction proceeds in a direction in which the hydrogen storage alloy M generates heat, and the hydrogen storage alloy MH 2 stores hydrogen. vice versa,
When the hydrogen storage alloy MH 2 that has stored hydrogen is heated, the reaction proceeds in a direction in which the hydrogen storage alloy M absorbs heat, and hydrogen H 2 is released.
【0004】このように水素吸蔵合金は加熱等を施さな
ければ水素を放出しないので、水素を吸蔵した金属状態
で安全に移送することができる。また、水素を燃焼させ
ても水が生成されるだけであるので、二酸化炭素の発生
がなく、地球環境に優しい燃料である。これらの点に着
目して、現在、車両用水素エンジンの燃料タンクの他、
水素吸蔵合金の水素吸蔵・放出メカニズムを利用した各
種装置の開発が進められている。As described above, the hydrogen storage alloy does not release hydrogen unless it is heated, so that it can be safely transferred in a metal state in which hydrogen is stored. In addition, even if hydrogen is burned, only water is produced, so no carbon dioxide is generated and it is a fuel that is friendly to the global environment. Focusing on these points, in addition to fuel tanks for hydrogen engines for vehicles,
Development of various devices utilizing the hydrogen storage / release mechanism of hydrogen storage alloys is underway.
【0005】例えば、上記車両用水素エンジンの燃料タ
ンクには、比較的軽量なマグネシウム系合金が採用され
ており、エンジン冷却水の排熱により水素吸蔵合金を加
熱して該合金に吸蔵した水素を放出させるようになって
いる。そして、水素吸蔵合金から放出された水素の燃焼
により発生する圧力で、水素エンジンのピストンやロー
タを駆動させれば、ガソリンエンジンに匹敵する動力を
発生するというものである。For example, a relatively lightweight magnesium alloy is used in the fuel tank of the hydrogen engine for vehicles, and the hydrogen storage alloy is heated by the exhaust heat of the engine cooling water to store the hydrogen stored in the alloy. It is designed to be released. When the piston and rotor of the hydrogen engine are driven by the pressure generated by the combustion of hydrogen released from the hydrogen storage alloy, the power equivalent to that of a gasoline engine is generated.
【0006】[0006]
【発明が解決しようとする課題】ところで、従来の水素
吸蔵合を応用した各種技術にあっては、以下のような課
題があった。The various techniques to which the conventional hydrogen storage and storage is applied have the following problems.
【0007】上述のように車両用水素エンジンの燃料タ
ンクに水素吸蔵合を適用した場合、水素エンジンにおい
て水素は消耗されるため、水素スタンドから燃料タンク
としての水素吸蔵合に水素を補給する必要があるが、そ
の際、該水素吸蔵合を冷却してこれに水素を吸蔵させる
ための水冷等の冷却設備を備える必要がある。しかし、
従来の燃料タンクには、このような冷却設備は具備され
ていないという問題があった。When hydrogen storage / storage is applied to the fuel tank of the vehicle hydrogen engine as described above, hydrogen is consumed in the hydrogen engine, so it is necessary to supply hydrogen from the hydrogen station to the hydrogen storage / storage as the fuel tank. However, at that time, it is necessary to provide a cooling facility such as water cooling for cooling the hydrogen storage and storing hydrogen therein. But,
The conventional fuel tank has a problem that such a cooling facility is not provided.
【0008】また、エンジン冷却水の排熱により水素吸
蔵合金を加熱して該合金に吸蔵した水素を放出させるよ
うに構成されているので、エンジン始動時はこの排熱を
利用できない。従って、約250℃で水素を放出するマ
グネシウム系合金とは別個に、常温で水素を放出する水
素吸蔵合金をサブ燃料タンクとして備えなければならな
いという問題があった。Further, since the hydrogen storage alloy is heated by the exhaust heat of the engine cooling water to release the absorbed hydrogen in the alloy, this exhaust heat cannot be utilized at the time of starting the engine. Therefore, there is a problem that a hydrogen storage alloy that releases hydrogen at room temperature must be provided as a sub-fuel tank separately from a magnesium-based alloy that releases hydrogen at about 250 ° C.
【0009】さらに、他の各種装置に適用する場合に
も、水素吸蔵合金に大規模な加熱・減圧装置或いは冷却
・加圧装置を必要とするという問題があった。Further, when it is applied to various other devices, there is a problem that the hydrogen storage alloy requires a large-scale heating / decompression device or cooling / pressurization device.
【0010】上記課題に鑑み、本発明の目的は、大規模
な加熱・減圧装置或いは冷却・加圧装置を必要とせず、
各種装置の始動・運転・水素補給を一貫して行うことが
できる熱電素子を複合化した水素吸蔵合金を提供するに
ある。In view of the above problems, an object of the present invention is to eliminate the need for a large-scale heating / decompression device or cooling / pressurization device,
It is an object of the present invention to provide a hydrogen storage alloy which is a composite of thermoelectric elements capable of consistently starting, operating, and supplying hydrogen to various devices.
【0011】[0011]
【課題を解決するための手段】上記目的は、本発明に係
る熱電素子を複合化した水素吸蔵合金によれば、冷却・
加圧により水素を吸蔵すると共に、加熱・減圧により水
素を放出する水素吸蔵合金において、この水素吸蔵合金
にp型半導体とn型半導体とから形成された熱電素子を
絶縁体を介して固定し、この熱電素子に所定電圧を負荷
したことを特徴とする。According to the hydrogen storage alloy compounding the thermoelectric element according to the present invention, the above-mentioned object is to achieve cooling and
In a hydrogen storage alloy that absorbs hydrogen by pressurization and releases hydrogen by heating / decompression, a thermoelectric element formed of a p-type semiconductor and an n-type semiconductor is fixed to the hydrogen storage alloy via an insulator, The thermoelectric element is characterized by being loaded with a predetermined voltage.
【0012】また、上記構成において、上記熱電素子に
所定電圧が正逆電極変換自在に負荷されたことを特徴と
する。Further, in the above structure, a predetermined voltage is applied to the thermoelectric element so that the forward and reverse electrodes can be freely converted.
【0013】さらに、上記水素吸蔵合金に流体を通過さ
せるための配管が設けられたことを特徴とする。Further, the hydrogen storage alloy is characterized in that a pipe is provided for allowing a fluid to pass therethrough.
【0014】[0014]
【作用】上記構成によれば、上記水素吸蔵合金にp型半
導体とn型半導体とから形成された熱電素子が絶縁体を
介して固定されている。この熱電素子には、所定電圧が
負荷されている。従って、熱電素子により水素吸蔵合金
が加熱または冷却される。According to the above structure, the thermoelectric element formed of the p-type semiconductor and the n-type semiconductor is fixed to the hydrogen storage alloy via the insulator. A predetermined voltage is applied to this thermoelectric element. Therefore, the thermoelectric element heats or cools the hydrogen storage alloy.
【0015】特に、上記熱電素子に所定電圧が正逆電極
変換自在に負荷された場合、次のような加熱・冷却操作
が可能になる。In particular, when a predetermined voltage is applied to the thermoelectric element so that the forward and reverse electrodes can be freely converted, the following heating / cooling operation becomes possible.
【0016】まず、水素吸蔵合金に水素H2 を吸蔵させ
たい場合には、上記所定電圧を電極変換調整して上記熱
電素子の一方向へ電流を流すと、例えば、電子及び正孔
が上記水素吸蔵合金から熱を奪い、上記熱電素子側へと
運ぶ。これにより、上記水素吸蔵合金の温度が上記熱電
素子の温度より低くなる。従って、水素吸蔵合金が冷却
されて、水素を吸蔵した水素吸蔵合金になる。これは、
各種装置の水素補給技術として適用される。First, when it is desired to occlude hydrogen H 2 in the hydrogen occluding alloy, when the predetermined voltage is electrode-adjusted and a current is passed in one direction of the thermoelectric element, for example, electrons and holes are converted into the hydrogen. Heat is taken from the storage alloy and carried to the thermoelectric element side. As a result, the temperature of the hydrogen storage alloy becomes lower than the temperature of the thermoelectric element. Therefore, the hydrogen storage alloy is cooled and becomes a hydrogen storage alloy that has stored hydrogen. this is,
It is applied as a hydrogen supply technology for various devices.
【0017】一方、この水素吸蔵合金から水素H2 を放
出させたい場合には、上記所定電圧を電極変換調整して
上記熱電素子の他方向へ電流を流すと、例えば、電子及
び正孔が上記熱電素子側から熱を奪い、上記水素吸蔵合
金へと運ぶ。これにより、上記水素吸蔵合金の温度が上
記熱電素子の温度より高くなる。従って、水素吸蔵合金
が冷却されて、これから水素H2 が放出されることにな
る。これは、各種装置の動力始動技術として適用され
る。On the other hand, when it is desired to release hydrogen H 2 from this hydrogen storage alloy, if the predetermined voltage is electrode-adjusted and a current is passed in the other direction of the thermoelectric element, for example, electrons and holes will become Heat is taken from the thermoelectric element side and carried to the hydrogen storage alloy. As a result, the temperature of the hydrogen storage alloy becomes higher than the temperature of the thermoelectric element. Therefore, the hydrogen storage alloy is cooled and hydrogen H 2 is released therefrom. This is applied as a power starting technique for various devices.
【0018】また、上記水素吸蔵合金に流体を通過させ
るための配管が設けられたことにより、これにエンジン
排熱等により昇温された冷却水等を通過させることがで
き、動力運転時における排熱利用を積極的に行うことが
できるものである。Further, since the hydrogen storage alloy is provided with a pipe for allowing a fluid to pass therethrough, cooling water or the like heated by engine exhaust heat or the like can be passed therethrough, and the exhaust gas during power operation can be passed. It is possible to actively utilize heat.
【0019】すなわち、上記水素吸蔵合金に熱電素子を
具備したことにより、大規模な加熱・減圧装置或いは冷
却・加圧装置を必要としない。また、これに加えて排熱
利用を積極的に行うことにより、各種装置の始動・運転
・水素補給を一貫して行うことができるものである。That is, since the hydrogen storage alloy is provided with the thermoelectric element, a large-scale heating / decompression device or cooling / pressurization device is not required. Moreover, in addition to this, by positively utilizing the exhaust heat, it is possible to consistently perform the start-up / operation / hydrogen supply of various devices.
【0020】[0020]
【実施例】以下、本発明に係る熱電素子を複合化した水
素吸蔵合金の好適実施例を添付図面に基づいて詳述す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a hydrogen storage alloy compounding a thermoelectric element according to the present invention will be described in detail below with reference to the accompanying drawings.
【0021】図1(a)は、本発明に係る熱電素子を複
合化した水素吸蔵合金の第1の実施例を示す概略図であ
る。図示されているように、本実施例の熱電素子を複合
化した水素吸蔵合金1を構成する水素吸蔵合金Mは、例
えば、直方体状の外形を呈している。この水素吸蔵合金
Mは、水素化物を容易に形成する金属と、水素化物を形
成し難い金属とを適宜の組成比で調整して形成される。
この水素化物を容易に形成する金属としては、例えば、
ランタン(La),チタン(Ti),ジルコニウム(Z
v)等の単体金属のときに水素を多量に吸収して安定な
水素化物を形成する金属がある。一方、水素化物を形成
し難い金属としては、鉄(Fe),ニッケル(Ni),
コバルト(Co)等の単体金属のときに通常の条件下で
は殆ど水素を吸収しない金属がある。そして、水素吸蔵
合金Mは、これらの単体金属を適宜の組成比で調整し、
粉砕した合金を真空脱気した後、数十気圧の水素中で徐
冷して、水素を吸収させて作製する。具体的には、この
水素吸蔵合金Mの材質には、例えば、稀土類系合金(L
aNi5 等),チタン系系合金(FeTi等)及びマグ
ネシウム系合金(Mg2 Ni等)等が採用される。尚、
本実施例にあっては、水素吸蔵合金Mを直方体状の外形
を呈するように成形したが、これに限らず、適用する装
置に応じて適宜の形状に成形するものである。FIG. 1 (a) is a schematic view showing a first embodiment of a hydrogen storage alloy in which a thermoelectric element according to the present invention is combined. As shown in the figure, the hydrogen storage alloy M constituting the hydrogen storage alloy 1 in which the thermoelectric elements of this embodiment are combined has, for example, a rectangular parallelepiped outer shape. The hydrogen storage alloy M is formed by adjusting a metal that easily forms a hydride and a metal that hardly forms a hydride at an appropriate composition ratio.
As a metal that easily forms this hydride, for example,
Lanthanum (La), titanium (Ti), zirconium (Z
In the case of a simple metal such as v), there is a metal that absorbs a large amount of hydrogen and forms a stable hydride. On the other hand, as a metal that hardly forms a hydride, iron (Fe), nickel (Ni),
There is a metal that hardly absorbs hydrogen under normal conditions when it is a simple metal such as cobalt (Co). The hydrogen storage alloy M is prepared by adjusting these elemental metals at an appropriate composition ratio,
The crushed alloy is degassed in vacuum, and then gradually cooled in hydrogen at several tens of atmospheric pressure to absorb hydrogen to produce the alloy. Specifically, the material of the hydrogen storage alloy M is, for example, a rare earth alloy (L
aNi 5, etc.), titanium-based alloys (FeTi, etc.), magnesium-based alloys (Mg 2 Ni, etc.), etc. are adopted. still,
In the present embodiment, the hydrogen storage alloy M is molded so as to have a rectangular parallelepiped outer shape, but the shape is not limited to this, and the hydrogen storage alloy M is molded into an appropriate shape according to the applied device.
【0022】また、上記水素吸蔵合金Mの一面には、例
えば、耐熱性合成樹脂もしくはセラミックス等によって
形成された絶縁体2の平板がクラッド状に重合されてい
る。この絶縁体2は、必ずしも板材である必要はなく、
例えば、絶縁塗料を上記水素吸蔵合金Mの一面に塗布し
ても良い。Further, on one surface of the hydrogen storage alloy M, a flat plate of the insulator 2 formed of, for example, a heat resistant synthetic resin or ceramics is polymerized in a clad shape. This insulator 2 does not necessarily have to be a plate material,
For example, an insulating paint may be applied to one surface of the hydrogen storage alloy M.
【0023】さらに、上記水素吸蔵合金Mの絶縁体2側
には、該絶縁体2と適宜間隔を隔てて、別の平板状の絶
縁体3が設けられている。Further, on the side of the insulator 2 of the hydrogen storage alloy M, another plate-like insulator 3 is provided at an appropriate interval from the insulator 2.
【0024】そして、これら絶縁体2,3の間には、複
数の熱電素子4が介設されている。具体的には、これら
熱電素子4は、p型半導体4aとn型半導体4bとを上
記絶縁体2,3の面に沿って、同数ずつ交互に設けたも
のである。相隣接するp型半導体4aとn型半導体4b
とは、ろう材等の耐熱性・導電性を有する接着剤5によ
ってU字状の熱電素子4を形成するように接合されてい
る。また、上記接着剤5によるp型半導体4aとn型半
導体4bとの接合は、絶縁体2の面と絶縁体3の面とで
互い違いになされており、熱電素子4全体として波形状
を呈するように、直列接続されている。ここで、上記p
型半導体4aとしては、例えば、FeSi2 等を、上記
n型半導体4bとしては、例えば、CoSi等が採用さ
れる。A plurality of thermoelectric elements 4 are provided between the insulators 2 and 3. Specifically, in these thermoelectric elements 4, the same number of p-type semiconductors 4a and n-type semiconductors 4b are alternately provided along the surfaces of the insulators 2 and 3. Adjacent p-type semiconductor 4a and n-type semiconductor 4b
Are joined so as to form a U-shaped thermoelectric element 4 by an adhesive 5 having heat resistance and conductivity such as a brazing material. Further, the bonding between the p-type semiconductor 4a and the n-type semiconductor 4b by the adhesive 5 is alternated between the surface of the insulator 2 and the surface of the insulator 3, so that the thermoelectric element 4 as a whole has a wavy shape. Are connected in series. Where p
For example, FeSi 2 or the like is used as the type semiconductor 4a, and CoSi or the like is used as the n-type semiconductor 4b.
【0025】また、上記熱電素子4の両端部に位置され
たp型半導体4aとn型半導体4bとには、上記接着剤
5をそれぞれ介して、所定の電圧を有する定電圧電源6
が電気配線7により接続・負荷されている。この定電圧
電源6は、電極方向の異なる第1の電源6aと第2の電
源6bとから成っている。そして、これら第1の電源6
aと第2の電源6bとは、上記電気配線7に設けられた
スイッチ8a,8bを介して接続されており、該スイッ
チ8a,8bの切替えにより上記熱電素子4に与える負
荷を正逆電極変換自在にしている。尚、上記スイッチ8
a,8bを図1(b)に示すように構成すれば、一つの
定電圧電源6で上記熱電素子4に与える負荷を正逆電極
変換することができる。A constant voltage power source 6 having a predetermined voltage is applied to the p-type semiconductor 4a and the n-type semiconductor 4b located at both ends of the thermoelectric element 4 via the adhesive 5, respectively.
Are connected and loaded by the electric wiring 7. The constant voltage power source 6 is composed of a first power source 6a and a second power source 6b having different electrode directions. Then, these first power source 6
a and the second power source 6b are connected via switches 8a and 8b provided on the electric wiring 7, and by switching the switches 8a and 8b, a load applied to the thermoelectric element 4 is converted into a forward and reverse electrode. I'm free. The above switch 8
If a and 8b are configured as shown in FIG. 1 (b), the load applied to the thermoelectric element 4 can be converted into the positive and negative electrodes by one constant voltage power source 6.
【0026】具体的に、本実施例の熱電素子を複合化し
た水素吸蔵合金1を車両に適用する場合には、以下の二
例が考えられる。まず、図2に示すように、上記水素吸
蔵合金Mを冷却しながら水素スタンド9から水素H2 を
補給し、水素を吸蔵した水素吸蔵合金MH2 とし、これ
を加熱して水素H2 を放出させる。そして、この放出さ
れた水素H2 を燃焼させてピストン(図示せず)等を作
動させることが考えられる。また、図3に示すように、
このピストン等の作動で余った水素H2 を車両に搭載し
た燃料電池10へ供給することが考えられる。Specifically, when the hydrogen storage alloy 1 in which the thermoelectric elements of this embodiment are combined is applied to a vehicle, the following two examples can be considered. First, as shown in FIG. 2, while the hydrogen storage alloy M is being cooled, hydrogen H 2 is replenished from the hydrogen stand 9 to obtain hydrogen storage alloy MH 2 that has stored hydrogen, and this is heated to release hydrogen H 2 . Let Then, it is conceivable that the released hydrogen H 2 is burned to operate a piston (not shown) or the like. Also, as shown in FIG.
It is conceivable to supply hydrogen H 2 surplus from the operation of the piston or the like to the fuel cell 10 mounted on the vehicle.
【0027】次に、第1の実施例の熱電素子を複合化し
た水素吸蔵合金1における作用を、車両用水素エンジン
の燃料タンクとして使用する場合を例に採って説明す
る。Next, the operation of the hydrogen storage alloy 1 in which the thermoelectric elements of the first embodiment are combined will be described by taking as an example the case of using it as a fuel tank of a hydrogen engine for a vehicle.
【0028】まず、燃料タンクとしての水素吸蔵合金1
に水素H2 を吸蔵させたい場合、すなわち、水素スタン
ドから水素H2 を補給する場合には、図1に示されてい
るように、上記スイッチ8a,8bにより第1の電源6
aを接続して、a方向の電流を流すと、電子及び正孔が
上記水素吸蔵合金Mから熱を奪い、上記熱電素子4側へ
と運ぶ。これにより、上記水素吸蔵合金Mの温度T
1 (℃)と、上記熱電素子4の温度T2 (℃)とは、T
1 <T2 の関係になる。従って、水素吸蔵合金Mが冷却
されて、水素H2 を吸蔵した水素吸蔵合金MH2 にな
る。First, the hydrogen storage alloy 1 as a fuel tank
When it is desired to store hydrogen H 2 in the fuel cell, that is, when replenishing hydrogen H 2 from the hydrogen stand, as shown in FIG. 1, the first power source 6 is operated by the switches 8a and 8b.
When a is connected and a current flows in the a direction, electrons and holes take heat from the hydrogen storage alloy M and carry it to the thermoelectric element 4 side. As a result, the temperature T of the hydrogen storage alloy M is
1 (° C.) and the temperature T 2 (° C.) of the thermoelectric element 4 are T
The relationship is 1 <T 2 . Therefore, the hydrogen storage alloy M is cooled and becomes hydrogen storage alloy MH 2 which has stored hydrogen H 2 .
【0029】また、この水素吸蔵合金MH2 から水素H
2 を放出させたい場合、すなわち、水素エンジンを始動
する場合には、上記スイッチ8a,8bにより第2の電
源6bを接続して、b方向の電流を流すと、電子及び正
孔が上記熱電素子4側から熱を奪い、上記水素吸蔵合金
Mへと運ぶ。これにより、上記水素吸蔵合金Mの温度T
1 (℃)と、上記熱電素子4の温度T2 (℃)とは、T
1 >T2 の関係になる。従って、水素吸蔵合金MH2 が
加熱されて、これから水素H2 が放出され、この水素H
2 を燃焼させて発生する圧力でピストン等を駆動させれ
ば、水素エンジンを始動することができる。この場合、
水素エンジンが始動してエンジン排熱が利用できる温度
まで上昇したら、この排熱により水素吸蔵合金MH2 を
加熱すれば良く、その際、上記スイッチ8a,8bによ
り上記熱電素子4への負荷を解除する。Further, hydrogen H is obtained from this hydrogen storage alloy MH 2.
When 2 is to be released, that is, when the hydrogen engine is started, when the second power source 6b is connected by the switches 8a and 8b and a current in the b direction is passed, electrons and holes are generated in the thermoelectric element. Heat is taken from the 4 side and carried to the above hydrogen storage alloy M. As a result, the temperature T of the hydrogen storage alloy M is
1 (° C.) and the temperature T 2 (° C.) of the thermoelectric element 4 are T
The relationship is 1 > T 2 . Therefore, the hydrogen storage alloy MH 2 is heated, and hydrogen H 2 is released from this, and this hydrogen H
The hydrogen engine can be started by driving the piston or the like with the pressure generated by burning the 2 . in this case,
When the hydrogen engine is started and the temperature rises to the level at which engine exhaust heat can be used, the exhaust heat can heat the hydrogen storage alloy MH 2 , and at that time, the load on the thermoelectric element 4 is released by the switches 8a and 8b. To do.
【0030】さらに、図4及び図5は、上述した水素補
給時とエンジン始動時とにおける運転操作状況を示す説
明図である。まず、水素補給時は、図4に示されている
ように、上記スイッチ8a,8bにより第1の電源6a
の通電をスタート11した後、水素を吸蔵した水素吸蔵
合金MH2 の温度を測定12する。この水素吸蔵合金M
H2 の温度が所定の温度まで冷却されていない場合に
は、通電を続行11aする。一方、上記水素吸蔵合金M
H2 の温度が所定の温度まで冷却されている場合には、
水素スタンドから水素H2 の注入をスタート13する。
そして、水素スタンドのガスメータで所定の注入量にな
るのを確認14した後、上記スイッチ8a,8bにより
第1の電源6aの通電をオフ15する。Further, FIGS. 4 and 5 are explanatory views showing the driving operation states at the time of hydrogen replenishment and at the time of engine start described above. First, when replenishing hydrogen, as shown in FIG. 4, the first power source 6a is turned on by the switches 8a and 8b.
After starting 11 of the energization, the temperature of the hydrogen storage alloy MH 2 which has stored hydrogen is measured 12. This hydrogen storage alloy M
When the temperature of H 2 is not cooled to the predetermined temperature, the energization is continued 11a. On the other hand, the above hydrogen storage alloy M
If the temperature of H 2 has been cooled to the specified temperature,
The injection of hydrogen H 2 is started 13 from the hydrogen station.
Then, after confirming 14 that the predetermined injection amount has been reached by the gas meter of the hydrogen station, the energization of the first power source 6a is turned off 15 by the switches 8a and 8b.
【0031】一方、エンジン始動時は、図5に示されて
いるように、上記スイッチ8a,8bにより第2の電源
6bの通電をスタート16した後、水素を吸蔵した水素
吸蔵合金MH2 の温度と水素H2 の圧力を測定17す
る。この水素吸蔵合金MH2 の温度が所定の温度まで加
熱されていない場合、または水素H2 の圧力が所定の値
でない場合には、通電を続行16aする。一方、上記水
素吸蔵合金MH2 の温度が所定の温度まで加熱され、か
つ水素H2 の圧力が所定の値である場合には、水素エン
ジンを始動18する。このエンジンを始動後、水素を吸
蔵した水素吸蔵合金MH2 の温度と水素H2 の圧力を測
定19する。この水素吸蔵合金MH2 の温度が所定の温
度まで加熱されていない場合、または水素H2 の圧力が
所定の値でない場合には、上記スイッチ8a,8bによ
り第2の電源6bの通電はオン20aの状態である。一
方、上記水素吸蔵合金MH2 の温度が所定の温度まで加
熱され、かつ水素H2 の圧力が所定の値である場合に
は、上記スイッチ8a,8bにより第2の電源6bの通
電をオフ20bするものである。尚、上記エンジンの始
動18後に、水素を吸蔵した水素吸蔵合金MH2 の温度
と水素H2 の圧力との測定19は継続され、上記スイッ
チ8a,8bの通電オン・オフ20a,20bの制御が
繰り返される。On the other hand, when the engine is started, as shown in FIG. 5, after the energization 16 of the second power source 6b is started 16 by the switches 8a and 8b, the temperature of the hydrogen storage alloy MH 2 which has stored hydrogen is And measure the pressure of hydrogen H 2 . When the temperature of the hydrogen storage alloy MH 2 is not heated to a predetermined temperature, or when the pressure of the hydrogen H 2 is not a predetermined value, energization is continued 16a. On the other hand, when the temperature of the hydrogen storage alloy MH 2 is heated to a predetermined temperature and the pressure of the hydrogen H 2 has a predetermined value, the hydrogen engine is started 18. After starting this engine, the temperature of the hydrogen storage alloy MH 2 which has stored hydrogen and the pressure of hydrogen H 2 are measured 19. When the temperature of the hydrogen storage alloy MH 2 is not heated to a predetermined temperature or when the pressure of the hydrogen H 2 is not a predetermined value, the second power source 6b is turned on by the switches 8a and 8b. It is the state of. On the other hand, when the temperature of the hydrogen storage alloy MH 2 is heated to a predetermined temperature and the pressure of the hydrogen H 2 is a predetermined value, the second power source 6b is turned off by the switches 8a and 8b 20b. To do. After starting the engine 18, the measurement 19 of the temperature of the hydrogen storage alloy MH 2 which has stored hydrogen and the pressure of the hydrogen H 2 is continued, and the energization ON / OFF 20a, 20b of the switches 8a, 8b is controlled. Repeated.
【0032】また図6は、本発明に係る熱電素子を複合
化した水素吸蔵合金の第2の実施例を示す概略図であ
る。図示されているように、本実施例の熱電素子を複合
化した水素吸蔵合金21は、上記熱電素子4を構成する
p型半導体4aとn型半導体4bとの間に位置された各
空間に、流体を通過させるための配管22をそれぞれ介
設したものである。これら配管22は、例えば、合成樹
脂等の絶縁性被覆層23でそれぞれ覆われている。そし
て、これら絶縁性被覆層23で覆われた配管22は、上
記絶縁体2にそれぞれ接触するように設けられている。FIG. 6 is a schematic view showing a second embodiment of the hydrogen storage alloy compounding the thermoelectric element according to the present invention. As shown in the drawing, the hydrogen storage alloy 21 in which the thermoelectric element of this example is composited is provided in each space located between the p-type semiconductor 4a and the n-type semiconductor 4b constituting the thermoelectric element 4, Pipes 22 for passing a fluid are respectively provided. Each of the pipes 22 is covered with an insulating coating layer 23 such as synthetic resin. The pipes 22 covered with the insulating coating layer 23 are provided so as to be in contact with the insulators 2, respectively.
【0033】第2の実施例は基本的には上記第1の実施
例と同様の作用効果を奏するが、特に第2の実施例にあ
っては、上記配管22を設けたことにより、これにエン
ジン冷却水を積極的に通過させることができる。水素エ
ンジンが始動後は、このエンジン冷却水の排熱により水
素吸蔵合金MH2 を加熱して該合金MH2 に吸蔵した水
素H2 を放出させることができる。The second embodiment basically has the same operation and effect as the first embodiment, but in the second embodiment in particular, the provision of the pipe 22 makes it possible to The engine cooling water can be positively passed. After the hydrogen engine is started, the hydrogen storage alloy MH 2 can be heated by the exhaust heat of the engine cooling water to release the stored hydrogen H 2 in the alloy MH 2 .
【0034】さらに、上記第1及び第2の実施例の熱電
素子を複合化した水素吸蔵合金1,21は車両以外の各
種装置に応用できるが、その簡単な概念を公知文献を例
示して述べる。Further, the hydrogen storage alloys 1 and 21 in which the thermoelectric elements of the first and second embodiments are combined can be applied to various devices other than vehicles, but the simple concept thereof will be described with reference to known documents. ..
【0035】まず、図7に示すように、水素吸蔵合金M
H2 から放出される水素H2 は、電気エネルギーと機械
的エネルギーとに変換できる。これらのエネルギー変換
により以下の各種装置に応用することができる。First, as shown in FIG. 7, the hydrogen storage alloy M
Hydrogen H 2 released from H 2 can be converted into electric energy and mechanical energy. These energy conversions can be applied to the following various devices.
【0036】図8は、蓄熱装置への応用例を示すもので
ある。図示されているように、蓄熱装置30において、
昼間は太陽熱で水素吸蔵合金MH2 を加熱し、これから
放出される水素H2 をボンベ31に貯える。一方、夜間
はボンベ31から水素H2 を水素吸蔵合金MH2 に戻し
て吸蔵させ、発熱させる。この放熱を利用し温水を造
り、風呂等に使用するように構成されている。FIG. 8 shows an example of application to a heat storage device. As shown, in the heat storage device 30,
During the daytime, the hydrogen storage alloy MH 2 is heated by solar heat, and the hydrogen H 2 released therefrom is stored in the cylinder 31. On the other hand, at night, hydrogen H 2 is returned from the cylinder 31 to the hydrogen storage alloy MH 2 so as to store it and generate heat. It is configured to make hot water by using this heat dissipation and use it in a bath or the like.
【0037】また、コンプレッサへの応用例は、低温・
低圧で水素吸蔵合金MH2 に水素H2 を吸蔵させ、高温
・高圧で水素吸蔵合金MH2 から水素H2 を放出させよ
うに構成されており、エアーコンプレッサのエアーの代
わりに水素H2 を使用することができる。An example of application to a compressor is low temperature /
It is configured to store hydrogen H 2 in the hydrogen storage alloy MH 2 at low pressure, and release hydrogen H 2 from the hydrogen storage alloy MH 2 at high temperature and high pressure. Use hydrogen H 2 instead of air in the air compressor. can do.
【0038】さらに、図9は、化学エンジンへの応用例
を示すものである。図示されているように、化学エンジ
ン41は水素吸蔵合金MH2 を温水で加熱し水素H2 を
放出させ、ピストン42を作動させる。その後、冷水に
より水素吸蔵合金MH2 を冷却し、これに水素H2 を吸
蔵させる。これを複数の水素吸蔵合金MH2 のユニット
で交互にサイクルさせてピストン42の動作を連動させ
るように構成されている。Further, FIG. 9 shows an application example to a chemical engine. As shown, the chemical engine 41 heats the hydrogen storage alloy MH 2 with hot water to release hydrogen H 2 and actuate the piston 42. After that, the hydrogen storage alloy MH 2 is cooled with cold water and hydrogen H 2 is stored therein. The unit of a plurality of hydrogen storage alloys MH 2 is alternately cycled to interlock the operation of the piston 42.
【0039】そして、図10は、冷却・冷凍装置への応
用例を示すものである。図示されているように、冷却・
冷凍装置51は、水素吸蔵合金MH2 としてCaNi5
合金51aとLaNi5 合金51bとを備えている。同
じ温度であれば、CaNi5 合金51aよりLaNi5
合金51bの方が水素H2 の放出圧力が高い。まず、C
aNi5 合金51aのみを太陽熱で加熱してLaNi5
合金51bよりも水素H2 の放出圧力を高くすると、水
素H2 はLaNi5 合金51bの方へ全て移る。その
後、CaNi5 合金51aの温度をLaNi5 合金51
bの温度以下にすると、LaNi5 合金51bから水素
H2 の放出が始まる。これは吸熱反応であるため、室内
が熱交換器52を通して冷却されるように構成されてい
る。尚、LaNi5 合金51bに水素H2 が移って吸蔵
されたときの発熱は屋外へ捨てる。FIG. 10 shows an example of application to a cooling / refrigerating device. As shown, cooling
The refrigerating apparatus 51 uses CaNi 5 as the hydrogen storage alloy MH 2.
The alloy 51a and the LaNi 5 alloy 51b are provided. At the same temperature, LaNi 5 is better than CaNi 5 alloy 51a.
The release pressure of hydrogen H 2 is higher in the alloy 51b. First, C
Only the aNi 5 alloy 51a is heated by solar heat to obtain the LaNi 5 alloy.
Higher release pressure of hydrogen H 2 than alloy 51b, hydrogen H 2 moves all towards the LaNi 5 alloy 51b. After that, the temperature of the CaNi 5 alloy 51a is changed to the LaNi 5 alloy 51a.
When the temperature is lower than the temperature of b, release of hydrogen H 2 from the LaNi 5 alloy 51b starts. Since this is an endothermic reaction, the inside of the room is configured to be cooled through the heat exchanger 52. The heat generated when hydrogen H 2 is transferred to and stored in the LaNi 5 alloy 51b is discarded outdoors.
【0040】最後に、水素アイソトープ分離装置への応
用例を説明する。水素アイソトープ分離とは、水素と水
素同位体,重水素,三重水素が各温度において母体の金
属や合金によって放出される圧力が異なることを利用
し、それぞれを分離する技術である。例えば、水素と重
水素との混合気体を水素吸蔵合金MH2 に吸蔵させた
後、圧を重水素は放出しないけれども、水素H2 の放出
させる圧力まで降圧すれば、水素のみがガスとして分離
され、重水素は水素吸蔵合金MH2 に残留することにな
る。Finally, an application example to a hydrogen isotope separation device will be described. Hydrogen isotope separation is a technique for separating hydrogen and hydrogen isotopes, deuterium, and tritium by utilizing the fact that the pressures released by the host metal or alloy differ at each temperature. For example, after the mixed gas of hydrogen and deuterium is stored in the hydrogen storage alloy MH 2 , the pressure is not released for deuterium, but if the pressure is reduced to the pressure for releasing hydrogen H 2 , only hydrogen is separated as a gas. However, deuterium remains in the hydrogen storage alloy MH 2 .
【0041】以上のような各種装置における水素吸蔵合
金MH2 として上記第1及び第2の実施例の熱電素子を
複合化した水素吸蔵合金1,21を使用して適宜構成を
変更すれば、各種装置をより小形化させることが期待で
きる。If the hydrogen storage alloys MH 2 in the above-mentioned various devices are hydrogen storage alloys 1 and 21 in which the thermoelectric elements of the first and second embodiments are combined, the structure can be changed as appropriate. It can be expected to make the device more compact.
【0042】次に、本発明を明確にするために、本発明
に関係する公知文献を挙げ、これらとの相違点を簡単に
述べる。Next, in order to clarify the present invention, publicly known documents relating to the present invention will be cited, and differences from these will be briefly described.
【0043】まず、特開昭63−246458号公報に
は、「金属水素化物利用エンジンにおける燃料タンクの
暖機法」が提案されている。この提案は、水素吸蔵合金
MH2 をエンジン排熱を利用して加熱するだけの技術で
あり、本発明が解決しているエンジン始動時の問題につ
いては触れていない。First, Japanese Patent Laid-Open No. 63-246458 proposes "a method for warming up a fuel tank in an engine utilizing metal hydride". This proposal is a technique that only heats the hydrogen storage alloy MH 2 by utilizing engine exhaust heat, and does not touch on the problem at the time of engine start, which is solved by the present invention.
【0044】また、特開昭62−113859号公報に
は、「水素自動車における予熱装置」が提案されてい
る。この提案においても、エンジン始動時の問題につい
ては触れていない。Further, Japanese Patent Application Laid-Open No. 62-113859 proposes "a preheating device for a hydrogen vehicle". Even in this proposal, the problem of starting the engine is not mentioned.
【0045】さらに、特開昭63−36659号公報に
は、「自動車燃料系冷却装置」が提案されている。この
提案は、ガソリン等の一般燃料のエバポレーション(ガ
ス化)を防止するために、熱電素子を使用して冷却する
技術であり、本発明のように水素吸蔵合金MH2 の加熱
または冷却を行って、水素H2 の吸蔵・放出を制御する
技術とは目的及び作用効果において相違する。Further, Japanese Patent Application Laid-Open No. 63-36659 proposes an "automotive fuel system cooling device". This proposal is a technique for cooling a general fuel such as gasoline by using a thermoelectric element in order to prevent evaporation (gasification), and heats or cools the hydrogen storage alloy MH 2 as in the present invention. Therefore, it is different from the technique of controlling the storage / release of hydrogen H 2 in the purpose and the effect.
【0046】そして、特開昭63−111269号公報
には、「エンジンの排熱利用装置」が提案されている。
この提案は、熱電素子を使用して燃焼室を加熱(ペルチ
ェ効果)し、排熱で発電(ゼーベック効果)している。
これに対し、本発明は排熱利用は副次的なもので、一つ
の熱電素子4でペルチェ効果により加熱及び冷却を行う
ものである。しかも、エンジン始動をペルチェ効果だけ
で行う技術である。In Japanese Patent Laid-Open No. 63-111269, there is proposed an "engine exhaust heat utilization device".
In this proposal, a thermoelectric element is used to heat the combustion chamber (Peltier effect), and waste heat is used to generate electricity (Seebeck effect).
On the other hand, in the present invention, the use of exhaust heat is secondary, and one thermoelectric element 4 performs heating and cooling by the Peltier effect. Moreover, it is a technology that starts the engine only by the Peltier effect.
【0047】このように本発明は公知技術以上の予測で
きない優れた作用効果を奏し、これらの技術とは全く構
成を異にする技術である。As described above, the present invention has an unpredictable and superior effect over the known techniques, and is a technique having a completely different configuration from those techniques.
【0048】[0048]
【発明の効果】以上述べたように、本発明に係る熱電素
子を複合化した水素吸蔵合金によれば、大規模な加熱・
減圧装置或いは冷却・加圧装置を必要とせず、各種装置
の始動・運転・水素補給を一貫して行うことができると
いう優れた効果を発揮する。As described above, according to the hydrogen storage alloy in which the thermoelectric element according to the present invention is combined, a large-scale heating / heating
It does not require a decompression device or a cooling / pressurizing device, and has the excellent effect that it is possible to consistently perform start-up / operation / hydrogen supply of various devices.
【図1】本発明に係る熱電素子を複合化した水素吸蔵合
金の第1の実施例を示す概略図である。FIG. 1 is a schematic view showing a first embodiment of a hydrogen storage alloy compounding a thermoelectric element according to the present invention.
【図2】第1の実施例の熱電素子を複合化した水素吸蔵
合金の車両への適用を示す説明図である。FIG. 2 is an explanatory diagram showing application of a hydrogen storage alloy, which is a composite of the thermoelectric elements of the first embodiment, to a vehicle.
【図3】第1の実施例の熱電素子を複合化した水素吸蔵
合金の車載燃料電池への適用を示す説明図である。FIG. 3 is an explanatory diagram showing application of a hydrogen storage alloy compounding the thermoelectric elements of the first embodiment to an on-vehicle fuel cell.
【図4】水素補給時における運転操作状況を示す説明図
である。FIG. 4 is an explanatory diagram showing a driving operation situation at the time of hydrogen supply.
【図5】エンジン始動時とにおける運転操作状況を示す
説明図である。FIG. 5 is an explanatory diagram showing a driving operation situation at the time of starting the engine.
【図6】本発明に係る熱電素子を複合化した水素吸蔵合
金の第2の実施例を示す概略図である。FIG. 6 is a schematic view showing a second embodiment of the hydrogen storage alloy in which the thermoelectric element according to the present invention is combined.
【図7】水素吸蔵合金から放出される水素のエネルギー
変換を示す説明図である。FIG. 7 is an explanatory diagram showing energy conversion of hydrogen released from a hydrogen storage alloy.
【図8】蓄熱装置への応用例を示す概略図である。FIG. 8 is a schematic diagram showing an application example to a heat storage device.
【図9】化学エンジンへの応用例を示す概略図である。FIG. 9 is a schematic diagram showing an application example to a chemical engine.
【図10】冷却・冷凍装置への応用例を示す概略図であ
る。FIG. 10 is a schematic diagram showing an application example to a cooling / refrigerating apparatus.
【図11】水素吸蔵合金の水素吸蔵・放出のメカニズム
を示す説明図である。FIG. 11 is an explanatory diagram showing a mechanism of hydrogen storage / release of a hydrogen storage alloy.
M 水素吸蔵合金 2 絶縁体 4 熱電素子 4a p型半導体 4b n型半導体 6 定電圧電源 M hydrogen storage alloy 2 insulator 4 thermoelectric element 4a p-type semiconductor 4b n-type semiconductor 6 constant voltage power supply
Claims (3)
に、加熱・減圧により水素を放出する水素吸蔵合金にお
いて、該水素吸蔵合金にp型半導体とn型半導体とから
形成された熱電素子を絶縁体を介して固定し、該熱電素
子に所定電圧を負荷したことを特徴とする熱電素子を複
合化した水素吸蔵合金。1. A hydrogen storage alloy that occludes hydrogen by cooling and pressurization and releases hydrogen by heating and decompression, and insulates a thermoelectric element formed of a p-type semiconductor and an n-type semiconductor in the hydrogen storage alloy. A hydrogen storage alloy having a composite thermoelectric element, wherein the thermoelectric element is fixed through a body and a predetermined voltage is applied to the thermoelectric element.
自在に負荷されたことを特徴とする請求項1に記載の熱
電素子を複合化した水素吸蔵合金。2. The hydrogen storage alloy according to claim 1, wherein a predetermined voltage is applied to the thermoelectric element so that the forward and reverse electrodes can be freely converted.
めの配管が設けられたことを特徴とする請求項1または
請求項2のいずれかに記載の熱電素子を複合化した水素
吸蔵合金。3. The hydrogen storage alloy in which the thermoelectric element according to claim 1 is combined with a pipe for allowing a fluid to pass through the hydrogen storage alloy.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP02963892A JP3331607B2 (en) | 1992-02-17 | 1992-02-17 | Hydrogen storage and release method for hydrogen storage alloy with composite thermoelectric element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP02963892A JP3331607B2 (en) | 1992-02-17 | 1992-02-17 | Hydrogen storage and release method for hydrogen storage alloy with composite thermoelectric element |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH05231242A true JPH05231242A (en) | 1993-09-07 |
| JP3331607B2 JP3331607B2 (en) | 2002-10-07 |
Family
ID=12281627
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP02963892A Expired - Fee Related JP3331607B2 (en) | 1992-02-17 | 1992-02-17 | Hydrogen storage and release method for hydrogen storage alloy with composite thermoelectric element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3331607B2 (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07101316A (en) * | 1993-09-30 | 1995-04-18 | Mazda Motor Corp | Hydrogen filling station |
| WO2000028653A1 (en) * | 1998-11-11 | 2000-05-18 | Techno Bank Co., Ltd. | Thermoelectric conversion device |
| WO2003023205A1 (en) * | 2001-09-10 | 2003-03-20 | Arvin Technologies, Inc. | Plasmatron-internal combustion engine system having an independent electrical power source |
| US6651597B2 (en) | 2002-04-23 | 2003-11-25 | Arvin Technologies, Inc. | Plasmatron having an air jacket and method for operating the same |
| US6843054B2 (en) | 2003-01-16 | 2005-01-18 | Arvin Technologies, Inc. | Method and apparatus for removing NOx and soot from engine exhaust gas |
| US6851398B2 (en) | 2003-02-13 | 2005-02-08 | Arvin Technologies, Inc. | Method and apparatus for controlling a fuel reformer by use of existing vehicle control signals |
| US6903259B2 (en) | 2002-12-06 | 2005-06-07 | Arvin Technologies, Inc. | Thermoelectric device for use with fuel reformer and associated method |
| US6976353B2 (en) | 2002-01-25 | 2005-12-20 | Arvin Technologies, Inc. | Apparatus and method for operating a fuel reformer to provide reformate gas to both a fuel cell and an emission abatement device |
| US7014930B2 (en) | 2002-01-25 | 2006-03-21 | Arvin Technologies, Inc. | Apparatus and method for operating a fuel reformer to generate multiple reformate gases |
| US7021048B2 (en) | 2002-01-25 | 2006-04-04 | Arvin Technologies, Inc. | Combination emission abatement assembly and method of operating the same |
| JP2006147600A (en) * | 2004-10-18 | 2006-06-08 | Yamaguchi Univ | Thermoelectric conversion module |
-
1992
- 1992-02-17 JP JP02963892A patent/JP3331607B2/en not_active Expired - Fee Related
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07101316A (en) * | 1993-09-30 | 1995-04-18 | Mazda Motor Corp | Hydrogen filling station |
| WO2000028653A1 (en) * | 1998-11-11 | 2000-05-18 | Techno Bank Co., Ltd. | Thermoelectric conversion device |
| WO2003023205A1 (en) * | 2001-09-10 | 2003-03-20 | Arvin Technologies, Inc. | Plasmatron-internal combustion engine system having an independent electrical power source |
| US6976353B2 (en) | 2002-01-25 | 2005-12-20 | Arvin Technologies, Inc. | Apparatus and method for operating a fuel reformer to provide reformate gas to both a fuel cell and an emission abatement device |
| US7014930B2 (en) | 2002-01-25 | 2006-03-21 | Arvin Technologies, Inc. | Apparatus and method for operating a fuel reformer to generate multiple reformate gases |
| US7021048B2 (en) | 2002-01-25 | 2006-04-04 | Arvin Technologies, Inc. | Combination emission abatement assembly and method of operating the same |
| US6651597B2 (en) | 2002-04-23 | 2003-11-25 | Arvin Technologies, Inc. | Plasmatron having an air jacket and method for operating the same |
| US6903259B2 (en) | 2002-12-06 | 2005-06-07 | Arvin Technologies, Inc. | Thermoelectric device for use with fuel reformer and associated method |
| US6843054B2 (en) | 2003-01-16 | 2005-01-18 | Arvin Technologies, Inc. | Method and apparatus for removing NOx and soot from engine exhaust gas |
| US6851398B2 (en) | 2003-02-13 | 2005-02-08 | Arvin Technologies, Inc. | Method and apparatus for controlling a fuel reformer by use of existing vehicle control signals |
| JP2006147600A (en) * | 2004-10-18 | 2006-06-08 | Yamaguchi Univ | Thermoelectric conversion module |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3331607B2 (en) | 2002-10-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Han et al. | Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell | |
| US7405013B2 (en) | Thermoelectric conversion of heat released during use of a power-plant or hydrogen storage material | |
| US7781109B2 (en) | Hydrogen storage and integrated fuel cell assembly | |
| CN100359279C (en) | On-board hydrogen storage unit with heat transfer system for use in hydrogen-powered vehicles | |
| JP3850752B2 (en) | Supply device for hydrogen source | |
| US6878353B2 (en) | Hydrogen storage bed system including an integrated thermal management system | |
| US6833118B2 (en) | Hydrogen storage bed system including an integrated thermal management system | |
| US20060266043A1 (en) | Power generation system | |
| US6737180B2 (en) | Electrochemical conversion system | |
| JPH05231242A (en) | Hydrogen storage alloy having compound thermoelectric element | |
| CN100459268C (en) | Hydrogen storage-based rechargeable fuel cell system | |
| JP2003288911A (en) | Fuel cell and method of cold start-up of fuel cell | |
| KR20170089344A (en) | Solid state hydrogen storage device and solid state hydrogen storage system | |
| US6536487B2 (en) | Atomically engineered hydrogen storage alloys having extended storage capacity at high pressures and high pressure hydrogen storage units containing variable amounts thereof | |
| JP2007521619A (en) | Metal hydride heating element | |
| KR102169149B1 (en) | Low pressure metal hybrid type hydrogen storage and emitting system for fuel cell | |
| CN110416568A (en) | Air-cooled (list) battery pile of heat pipe metal double polar plates, the vehicles and electronic equipment | |
| JP7645070B2 (en) | Apparatus with a hydrogen storage alloy reservoir for operating a heat-generating hydrogen consumer - Patent application | |
| JP2007273470A (en) | Fuel cell system | |
| JPH11111322A (en) | Fuel cell and operating method thereof | |
| JP2009054474A (en) | Hydrogen supply device and fuel cell vehicle | |
| JP4663845B2 (en) | Quick-release hydrogen storage alloy storage container | |
| JPH05106792A (en) | Hydrogen storage device | |
| JP2006104000A (en) | Hydrogen gas generator | |
| US12347899B2 (en) | Metal hydride-hydrogen tank system with a frost-start capability |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |