JPH05231362A - Screw fluid machinery - Google Patents
Screw fluid machineryInfo
- Publication number
- JPH05231362A JPH05231362A JP3752392A JP3752392A JPH05231362A JP H05231362 A JPH05231362 A JP H05231362A JP 3752392 A JP3752392 A JP 3752392A JP 3752392 A JP3752392 A JP 3752392A JP H05231362 A JPH05231362 A JP H05231362A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- pressure side
- clearance
- male
- wall surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
(57)【要約】
【目的】スクリュ流体機械における、ケーシングの熱変
形及びロータのたわみによる運転時の内部すきまの増加
を補償し、漏れ損失を低減するとともに吐出温度を下
げ、エネルギ効率を向上する。
【構成】高圧口と高圧側軸受との間に冷却用のジャケッ
ト35,36を置いた無給油式スクリュ流体機械におい
て、常温静止時にロータ軸に直角な面内で両ボアの高圧
側交線から低圧側交線の方向にボア壁面33,34をた
どるとき、雌雄ボア壁面17,18とロータ1,2の外
周との間のすきまが始めは徐々に減少し、最小値を経た
後に再び増加するように構成する。
(57) [Abstract] [Purpose] In screw fluid machinery, compensates for increase in internal clearance during operation due to thermal deformation of casing and deflection of rotor, reduces leakage loss and lowers discharge temperature, and improves energy efficiency. .. [Structure] In an oil-free screw fluid machine in which cooling jackets 35 and 36 are placed between the high pressure port and the high pressure side bearing, the high pressure side intersection line of both bores in the plane perpendicular to the rotor axis when stationary at normal temperature When the bore wall surfaces 33, 34 are traced in the direction of the low-pressure side intersection line, the clearance between the male and female bore wall surfaces 17, 18 and the outer circumferences of the rotors 1, 2 gradually decreases at first and then increases again after reaching the minimum value. To configure.
Description
【0001】[0001]
【産業上の利用分野】本発明は、空気,冷媒及びその他
のガスを取り扱うスクリュ流体機械に係り、特に、高性
能及び高信頼性を得るに好適なケーシング構造に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw fluid machine for handling air, refrigerant and other gases, and more particularly to a casing structure suitable for high performance and high reliability.
【0002】[0002]
【従来の技術】スクリュ流体機械の基本的な構造は、特
公昭56−17559 号公報に詳細に記載されている。この種
の流体機械ではロータ間のすきま及びロータケーシング
間のすきまが性能に支配的な影響を及ぼす。これらのす
きまが小さいほど内部漏れが減少して流体機械の性能は
向上するが、一方で、すきまを小さくし過ぎると、運動
部品間の接触が起こり機械を焼損するおそれがあるの
で、安全上適切な大きさのすきまを確保する必要があ
る。2. Description of the Related Art The basic structure of a screw fluid machine is described in detail in Japanese Patent Publication No. 56-17559. In this type of fluid machine, the clearance between the rotors and the clearance between the rotor casings dominates the performance. The smaller these clearances, the less internal leakage and the better the performance of the fluid machine.On the other hand, if the clearance is too small, contact between moving parts may occur and the machine may burn out. It is necessary to secure a large gap.
【0003】スクリュ流体機械の運転時のすきまは、常
温で静止しているときと比べてかなり違ったものとな
る。その原因は主としてケーシング及びロータの熱変形
による。The operating clearance of the screw fluid machine is considerably different from that when it is stationary at room temperature. The cause is mainly due to thermal deformation of the casing and the rotor.
【0004】熱変形の影響は特に無給油式の場合に著し
い。例えば、圧縮比8で空気を圧縮する無給油式スクリ
ュ圧縮機の場合、運転時には高圧側の空気温度が300
℃を超えることもあり、ロータやケーシングも部分的に
はこれに近い温度まで上昇する。そのため、これら部品
が熱変形し、内部すきまに影響を与える。The effect of thermal deformation is remarkable especially in the case of oilless type. For example, in the case of an oil-free screw compressor that compresses air at a compression ratio of 8, the high temperature side air temperature is 300 when operating.
In some cases, the temperature may exceed ℃, and the temperature of the rotor and casing partially rises to a temperature close to this. Therefore, these parts are thermally deformed, which affects the internal clearance.
【0005】ロータ間のすきまについては、特公昭61−
47992 号公報に見られるように、雌,雄ロータの熱膨張
を予め補償したすきま設計が行われ、運転中、適切なす
きまが確保される。Regarding the clearance between the rotors, Japanese Patent Publication No. 61-
As can be seen in Japanese Patent No. 47992, a clearance design that compensates for thermal expansion of the female and male rotors in advance is performed to ensure an appropriate clearance during operation.
【0006】ケーシングも同様に熱変形を生じ、ロータ
の外周部とケーシングのボア壁面との間のすきま(以
下、ロータ外周すきまと称する)に影響を与える。ボア
壁面の半径方向膨張量は、ロータの外周と異なって周方
向に一様ではなく、高圧口に近いところで変形量が大き
く、低圧口に近いところでは小さいことが知られ、これ
を考慮して熱変形を補償し、運転時のロータ外周すきま
を小さく保つ発明が、特開昭63−106301号公報に開示さ
れている。Similarly, the casing also undergoes thermal deformation and affects the clearance between the outer peripheral portion of the rotor and the bore wall surface of the casing (hereinafter referred to as the rotor outer peripheral clearance). It is known that the radial expansion amount of the bore wall surface is not uniform in the circumferential direction unlike the outer circumference of the rotor, the deformation amount is large near the high pressure port and small near the low pressure port. Japanese Patent Laid-Open No. 63-106301 discloses an invention which compensates for thermal deformation and keeps the rotor outer peripheral clearance small during operation.
【0007】[0007]
【発明が解決しようとする課題】上記の公知例では、常
温での静止時におけるロータ外周すきまの周方向分布を
高圧口に近いところ程小さくすることが開示されてい
る。In the above-mentioned known example, it is disclosed that the circumferential distribution of the rotor outer peripheral clearance at the time of stationary at normal temperature is made smaller nearer the high pressure port.
【0008】しかし、種々の構造のケーシングについて
運転時の熱変形量を計算してみると、ロータ中心を基準
とするボア壁面の半径方向膨張量は必ずしも高圧口に近
いところ程大きくなるのではなく、構造によっては、ボ
アの交差部から離れたところで最大になることもあるこ
とがわかった。それは、特に、高圧側軸受付近のケーシ
ングが冷却水ジャケットなどにより十分冷されていて、
雌,雄ロータ間の中心距離が運転時にもあまり変化して
いないときに起きる。However, when calculating the amount of thermal deformation during operation of casings of various structures, the amount of radial expansion of the bore wall surface with respect to the rotor center does not necessarily become larger near the high pressure port. , It was found that, depending on the structure, it may be maximum at a distance from the intersection of the bores. In particular, the casing near the high-pressure side bearing is sufficiently cooled by a cooling water jacket,
This occurs when the center distance between the female and male rotors does not change much during operation.
【0009】すなわち、ボア壁面はガスの加熱により見
かけ上中心距離が離れるように変形するが、これに対し
てロータの中心距離変化が少ないときは、雌,雄ボアの
交差部付近では中心距離のずれた分だけ相対的にロータ
外周がボア壁面に近づく。この相対変位に熱変形変位が
加わって実際のすきまが構成される。このときの静止時
に対する運転時のロータ外周すきまの変化を計算してみ
ると、上記のように必ずしも高圧口近くで変位が最大に
なるのではなく、従来の熱変形補償法では、構造によっ
ては、ロータ外周とボア壁面との間で接触を起こすおそ
れがある。That is, the wall surface of the bore is deformed by the heating of the gas so that the center distance is separated. On the other hand, when the center distance of the rotor changes little, the center distance of the center distance near the intersection of the female and male bores is small. The rotor outer circumference relatively approaches the bore wall surface by the amount of deviation. The thermal clearance is added to this relative displacement to form the actual clearance. Calculating the change in the rotor outer peripheral clearance during operation compared to when stationary at this time, the displacement does not necessarily become maximum near the high pressure port as described above. , There is a possibility that contact may occur between the outer circumference of the rotor and the wall surface of the bore.
【0010】一方、高圧側軸受付近のケーシングを冷却
水ジャケットなどにより冷却する構造は、ロータ間中心
距離の拡大を押さえて、ロータ間すきまの増加を防ぐこ
とができ、性能向上のためにしばしば実施されている。On the other hand, the structure in which the casing near the high-pressure side bearing is cooled by a cooling water jacket or the like can suppress the expansion of the center distance between the rotors and prevent an increase in the clearance between the rotors. Has been done.
【0011】本発明の目的は、スクリュ流体機械の運転
時のロータ間及びロータ外周すきまを適切に保ち、高効
率で、信頼性の高いスクリュ流体機械を提供することに
ある。An object of the present invention is to provide a highly efficient and highly reliable screw fluid machine which maintains a proper clearance between rotors and a rotor outer peripheral clearance during operation of the screw fluid machine.
【0012】[0012]
【課題を解決するための手段】本発明は上記目的を達成
するため、高圧口と高圧側軸受との間に冷却用のジャケ
ットを置いた無給油式スクリュ流体機械において、常温
静止時にロータ軸に直角な面内で両ボアの高圧側交線か
ら低圧側交線の方向にボア壁面をたどるとき、ロータ外
周すきまが始めは徐々に減少し、最小値を経た後に再び
増加するように構成する。In order to achieve the above object, the present invention provides an oil-free screw fluid machine having a cooling jacket between a high-pressure port and a high-pressure side bearing. When the bore wall surface is traced in the direction from the high pressure side intersection line of both bores to the low pressure side intersection line in a right-angled plane, the rotor outer peripheral clearance is gradually reduced at the beginning and then increased again after reaching the minimum value.
【0013】さらに、上記構成が得られるように、常温
静止時にボアの中心に対してロータ中心を高圧口方向に
偏心させる。Further, in order to obtain the above structure, the center of the rotor is eccentric to the center of the bore in the direction of the high pressure port when stationary at room temperature.
【0014】さらに、上記構成が得られるように、ボア
壁面に周方向に厚さの変化する被覆層を形成する。Further, in order to obtain the above-mentioned structure, a coating layer having a thickness varying in the circumferential direction is formed on the wall surface of the bore.
【0015】[0015]
【作用】高圧側軸受付近のケーシングを冷却水ジャケッ
トなどにより冷やす構造は、ロータ間中心距離の増大を
押さえて、ロータ間すきまの増加を防ぐことができるの
で性能向上に効果的である。一方、この構造の圧縮機で
は、運転時には、前述のようにボア中心とロータ中心と
の間にずれを生じて、雌,雄ボアの交線付近でロータ外
周とボア壁面とが近づき、ロータ中心から見た実質的な
ボア壁面の半径方向伸びが、ボア交線から遠い部分と比
べて小さくなるが、本発明によれば、このような相対的
な中心のずれも考慮したボア壁面の熱変形補償を行うの
で、より均一で適切なすきま分布が得られ、性能の高い
スクリュ流体機械を得ることができる。The structure in which the casing near the high pressure side bearing is cooled by a cooling water jacket or the like is effective for improving the performance because the increase in the center distance between the rotors can be suppressed and the clearance between the rotors can be prevented from increasing. On the other hand, in the compressor of this structure, during operation, as described above, there is a gap between the center of the bore and the center of the rotor, and the outer circumference of the rotor and the wall surface of the rotor come close to each other near the intersection of the female and male bores. Although the substantial radial extension of the bore wall surface seen from above is smaller than that of the portion far from the bore intersection line, according to the present invention, the thermal deformation of the bore wall surface in consideration of such relative center deviation. Since compensation is performed, a more uniform and appropriate clearance distribution can be obtained, and a high-performance screw fluid machine can be obtained.
【0016】[0016]
【実施例】以下、本発明の一実施例として、図1ないし
図2に示すオイルフリースクリュ圧縮機について説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The oil-free screw compressor shown in FIGS. 1 and 2 will be described below as an embodiment of the present invention.
【0017】図1において、1は雄ロータ、3はケーシ
ング、4はロータの吸込側と接する吸込ケーシング、5
はロータ軸の吐出側端部をおおう吐出側カバーである。
圧縮機では吸込口及び吐出口がそれぞれ低圧口及び高圧
口となる。ロータには吸込側及び吐出側にそれぞれ軸6
及び軸7が取付けられ、吸込側の軸6は円筒コロ軸受8
で、また吐出側の軸7は円筒コロ軸受9及び組合わせア
ンギュラ玉軸受10でそれぞれ支持されている。また、
外部に対する圧縮空間の機密を保つために、吸込側の軸
6及び吐出側の軸7にはそれぞれ軸封11及び12が設
けられ、さらに、軸受の潤滑油が軸封部から漏れて圧縮
空間に入るのを防ぐために、油切り13及び14がそれ
ぞれ取り付けられている。In FIG. 1, 1 is a male rotor, 3 is a casing, 4 is a suction casing in contact with the suction side of the rotor, 5
Is a discharge side cover that covers the discharge side end of the rotor shaft.
In the compressor, the suction port and the discharge port are the low pressure port and the high pressure port, respectively. The rotor has a shaft 6 on each of the suction side and the discharge side.
And the shaft 7 are attached, and the shaft 6 on the suction side is a cylindrical roller bearing 8
Further, the discharge side shaft 7 is supported by a cylindrical roller bearing 9 and a combination angular contact ball bearing 10, respectively. Also,
In order to maintain the confidentiality of the compression space with respect to the outside, shafts 11 and 12 are provided on the suction side shaft 6 and the discharge side shaft 7, respectively, and further, lubricating oil of the bearing leaks from the shaft sealing portion to the compression space. Oil drainers 13 and 14 are attached respectively to prevent entry.
【0018】軸封11と油切り13との間、及び軸封1
2と油切り14との間には、万一油切りから油が漏れて
も軸封部に油が浸入しないようにそれぞれ孔15及び孔
16が設けられている。雌ロータについては図示してい
ないが、雄ロータについて述べた回転部要素及び機構は
雌ロータについても同様に装備されている。Between the shaft seal 11 and the oil drainer 13 and between the shaft seal 1
A hole 15 and a hole 16 are provided between the oil drainer 2 and the oil drainer 14 to prevent the oil from entering the shaft seal portion even if oil leaks from the oil drainer. Although not shown for the female rotor, the rotor elements and mechanisms described for the male rotor are similarly equipped for the female rotor.
【0019】図2は図1における切断線Ι−Ιに沿う断
面を示す。同図において、雄ロータ1は雌ロータ2とか
み合って、眼鏡型に交差した雄側ボア17及び雌側ボア
18の中でそれぞれ矢印19及び20のように回転す
る。21はボアの吐出側端部に開けられた吐出ポートの
輪郭線である。図1のように、雄ロータ1の軸端にはタ
イミングギヤ22が設けられ、図示されていない雌ロー
タ側のタイミングギヤとかみ合っている。これらのタイ
ミングギヤによって両ロータ1,2の回転角は互いに同
期し、両歯面間には常に狭いすきまが保たれ接触しない
状態で回転する。FIG. 2 shows a cross section taken along the cutting line I-I in FIG. In the figure, the male rotor 1 meshes with the female rotor 2 and rotates as shown by arrows 19 and 20 in the male-side bore 17 and the female-side bore 18 which intersect in a spectacle shape. Reference numeral 21 is a contour line of the discharge port opened at the discharge side end of the bore. As shown in FIG. 1, a timing gear 22 is provided at the shaft end of the male rotor 1 and meshes with a timing gear on the female rotor side (not shown). By these timing gears, the rotation angles of the rotors 1 and 2 are synchronized with each other, and a narrow clearance is always maintained between the tooth flanks so that the rotors 1 and 2 rotate without contact.
【0020】雄ロータ1は軸端に取り付けられたピニオ
ン23を介して外部の電動機等の駆動源から駆動され
る。The male rotor 1 is driven from an external drive source such as an electric motor via a pinion 23 attached to the shaft end.
【0021】吸込側の軸受8,吐出側の軸受9及び10
並びにタイミングギヤ23には、それぞれ給油孔24,
25及び26から潤滑油が供給され、軸受あるいはギヤ
を潤滑した後、排油孔27及び28から排出される。ガ
スは吸込室29から吸込口30を経て両ロータ1及び2
の溝、すなわち、圧縮空間に取り入れられ、圧縮された
後、吐出口31から吐出室32に吐出される。Bearing 8 on the suction side, bearings 9 and 10 on the discharge side
In addition, the timing gear 23 has oil filling holes 24,
Lubricating oil is supplied from 25 and 26, and after lubricating the bearing or the gear, it is discharged from the oil drain holes 27 and 28. Gas flows from the suction chamber 29 through the suction port 30 to both rotors 1 and 2
Is discharged into the discharge chamber 32 through the discharge port 31 after being taken into the groove, that is, the compression space and compressed.
【0022】図2における雄側ボアの壁面33及び雌側
ボアの壁面34の回りは水ジャケット35及び36に取
り囲まれ、両ボア壁面は冷却される。水ジャケット35
及び36は一つながりになっていて、さらに、吐出側の
軸及び軸受を収納するケーシング部にまで延び、図1の
37及び38で示す水ジャケット部分を形成する。Around the wall surface 33 of the male bore and the wall surface 34 of the female bore in FIG. 2 are surrounded by water jackets 35 and 36, and both wall surfaces are cooled. Water jacket 35
1 and 36 are connected in series and further extend to the casing portion that houses the shaft and the bearing on the discharge side, and form water jacket portions indicated by 37 and 38 in FIG.
【0023】図1の切断線II−IIによってこの圧縮機を
切断すると、図3のようにジャケット37及び38は一
つながりとなり、さらに雌側の部分39までを含めて、
ケーシングの軸及び軸受収納部分40の回りを取り囲ん
でいる。When this compressor is cut along the cutting line II-II in FIG. 1, the jackets 37 and 38 are connected as shown in FIG. 3, and further, including the female side portion 39,
It surrounds the shaft of the casing and the bearing housing portion 40.
【0024】冷却水は図2の入り口41から供給され、
水ジャケットの各部を通った後、出口42から機外に排
出される。Cooling water is supplied from the inlet 41 of FIG.
After passing through each part of the water jacket, the water is discharged from the outlet 42 to the outside of the machine.
【0025】本実施例では、常温静止時に雄ロータの中
心43及び雌ロータの中心44がそれぞれ雄,雌ボアの
中心45及び46に対して偏心している。偏心方向は、
両ロータの中心43及び44を結ぶ線分47に対して垂
直方向に吐出室32に寄った方向である。後の説明の便
宜のため、図2において、2点43及び45を通る直線
とボア壁面33との交点を48とする。In this embodiment, the center 43 of the male rotor and the center 44 of the female rotor are eccentric with respect to the centers 45 and 46 of the male and female bores, respectively, when stationary at room temperature. The eccentric direction is
The direction is closer to the discharge chamber 32 in the direction perpendicular to the line segment 47 connecting the centers 43 and 44 of both rotors. For convenience of later description, in FIG. 2, the intersection of the straight line passing through the two points 43 and 45 and the bore wall surface 33 is 48.
【0026】本実施例においては、例えば、雄側につい
てロータの外周円49とボア壁面33との間のすきまを
雌雄ボア壁面の吐出側交線50から吸込側の交線51に
向かってボア壁面上をたどるとき、50から48に向か
う間はすきまは徐々に狭くなり、48を過ぎた後は逆に
徐々に大きくなる。この特徴は雌側についても同様であ
る。なお、すきまが最小となるべき点48は必ずしも2
点43及び45を通る直線上にあるとは限らず、運転仕
様によってはこれよりいくらかずれることもある。In the present embodiment, for example, on the male side, the clearance between the outer circumferential circle 49 of the rotor and the bore wall surface 33 is changed from the discharge side intersection line 50 of the female and male bore wall surfaces toward the suction side intersection line 51. When going up, the clearance gradually narrows from 50 to 48 and, conversely, gradually increases after passing 48. This feature is the same for the female side. The point 48 where the clearance should be the minimum is not always 2
It is not always on the straight line passing through the points 43 and 45, and may be slightly deviated from this depending on the driving specifications.
【0027】圧縮機が運転状態に入るとガスの温度が上
がり、ロータやケーシングは徐々に加熱される。前述の
ように、単段で大気圧から8kg/cm2(abs)まで空気を
圧縮すると吐出される空気の温度は300℃近くにもな
り、ロータやケーシングの温度も一部の場所で吐出空気
温度に近い温度になる。ケーシングの温度は吐出口近く
で最も高いが、軸方向には吸込端面に向かうほど低くな
る。また、軸直角断面内でみると吐出側ボア交線付近が
最も高く、吐出ポートが開口していてボア交差部がない
軸直角断面では吐出口の境界縁上で最も温度が高くな
り、それぞれボア面に沿って吸込側ボア交線に向かうに
つれ温度が低くなる。When the compressor enters the operating state, the temperature of the gas rises and the rotor and casing are gradually heated. As mentioned above, if air is compressed from atmospheric pressure to 8 kg / cm 2 (abs) in a single stage, the temperature of the discharged air will be close to 300 ° C, and the temperature of the rotor and casing will also be at some locations. The temperature is close to the temperature. The temperature of the casing is highest near the discharge port, but decreases axially toward the suction end face. Also, when viewed in the cross section perpendicular to the axis, the area near the intersection of the discharge side bores is highest, and in the cross section perpendicular to the axis where the discharge port is open and there is no bore intersection, the temperature is highest on the boundary edge of the discharge port. The temperature becomes lower as it goes toward the suction side bore intersection line along the surface.
【0028】このような温度分布によってボア壁面の半
径は拡がり、両ボアの中心は互いに相手側から離れる方
向に移動する。一方、ロータもガスの加熱により膨張す
るが、高速で回転するためにロータ外周円の半径増加量
は同一軸直角断面内では実質的に一様である。Due to such temperature distribution, the radius of the bore wall surface expands, and the centers of both bores move away from each other. On the other hand, the rotor also expands due to the heating of the gas, but since it rotates at a high speed, the amount of increase in the radius of the rotor outer circle is substantially uniform in the cross section perpendicular to the same axis.
【0029】ロータの軸受部はケーシングが水ジャケッ
トに取り囲まれてよく冷却されているために中心距離の
伸びが少ない。従って、吐出端面近くのボア壁面は相対
的にロータに近づくので、熱変形による半径方向の膨張
が一部打ち消され、ロータ中心から見た実質的な半径方
向伸び量は、雄側でいえば点48付近よりは小さくな
る。Since the casing of the rotor bearing portion is surrounded by the water jacket and is well cooled, the extension of the center distance is small. Therefore, since the bore wall surface near the discharge end surface is relatively close to the rotor, the radial expansion due to thermal deformation is partially canceled out, and the substantial amount of radial expansion seen from the center of the rotor is It is smaller than around 48.
【0030】本実施例では、これらを考慮して常温静止
時に点50におけるロータ外周すきまが点48における
それよりも大きく作られているので、ボア壁の半径方向
変位が補償され、運転時に、より均一で適切なロータ外
周すきまが得られる。In the present embodiment, in consideration of these, the rotor outer peripheral clearance at the point 50 is made larger than that at the point 48 at the time of stationary at room temperature, so that the radial displacement of the bore wall is compensated, and during operation, A uniform and appropriate rotor outer clearance can be obtained.
【0031】もしこのような補償を行わないと、運転時
のロータ外周すきまが均一にならず、一部で必要以上に
大きなすきまを生じて圧縮機の漏れ損失が増えるか、あ
るいはロータとケーシングとの接触のおそれを生じる。If such compensation is not performed, the rotor outer peripheral clearance during operation will not be uniform, and an excessively large clearance will be generated in some parts to increase the leakage loss of the compressor, or the rotor and casing May cause contact with.
【0032】以上のように、本実施例によれば運転時に
適切なすきま分布が保たれ、高効率の圧縮機が得られ
る。As described above, according to this embodiment, a proper clearance distribution can be maintained during operation, and a highly efficient compressor can be obtained.
【0033】図4及び図5に本発明の別の実施例を示
す。4 and 5 show another embodiment of the present invention.
【0034】本実施例では、図4のように、吐出ポート
31に近い部分にはボア壁面17にケーシングとは異な
る材質からなる被覆層52が設けられている。被覆層の
厚さは、図のように吸込ポート30のある側から吐出ポ
ート31のある側に向かって次第に増加している。In this embodiment, as shown in FIG. 4, a coating layer 52 made of a material different from that of the casing is provided on the bore wall surface 17 near the discharge port 31. The thickness of the coating layer gradually increases from the side with the suction port 30 toward the side with the discharge port 31 as shown in the figure.
【0035】図5は、図4の圧縮機の切断線III−IIIに
沿う断面図で、ロータについては外周円49及び53の
みを示し、歯の形状は省略してある。この実施例では、
常温静止時において、雄,雌ロータの中心43及び44
に対して、ケーシングに加工されたボア17及び18の
中心はそれぞれ互いに一致している。しかし、雄側の被
覆層52及び雌側の被覆層54により、実質的なロータ
外周すきまは図2と同じような分布になっている。すな
わち、例えば、雄側において吐出側のボア交線50から
吸込側のボア交線51に向かってボア壁面をたどると
き、ロータ外周すきまは、始めは徐々に減少し、途中で
最小値を経た後、徐々に増加する。FIG. 5 is a sectional view taken along the section line III-III of the compressor of FIG. 4, showing only the outer circumference circles 49 and 53 of the rotor and omitting the tooth shape. In this example,
Centers 43 and 44 of the male and female rotors when stationary at room temperature
On the other hand, the centers of the bores 17 and 18 formed in the casing are coincident with each other. However, due to the coating layer 52 on the male side and the coating layer 54 on the female side, the substantial rotor outer peripheral clearance has a distribution similar to that shown in FIG. That is, for example, when tracing the bore wall surface from the bore crossing line 50 on the discharge side to the bore crossing line 51 on the suction side on the male side, the rotor outer peripheral clearance gradually decreases at the beginning and reaches a minimum value on the way. , Gradually increase.
【0036】本実施例によれば、ボア壁面の熱変形分布
に細かく合わせた熱変形補償ができるので、本発明の利
点がより効果的に得られる。According to this embodiment, since the thermal deformation compensation can be finely matched with the thermal deformation distribution of the bore wall surface, the advantages of the present invention can be obtained more effectively.
【0037】上記実施例では、滑らかな曲線でボア壁面
の熱変形補償をする方法を述べたが、必ずしも滑らかな
曲線でなくても、加工上の都合により、壁面形状を階段
的に変化させることでも、近似的に熱変形補償を行うこ
とができ、本発明の効果が得られる。In the above embodiment, the method of compensating the thermal deformation of the bore wall surface with a smooth curve is described. However, even if it is not always a smooth curve, the wall surface shape can be changed stepwise for the convenience of processing. However, thermal deformation compensation can be performed approximately, and the effect of the present invention can be obtained.
【0038】[0038]
【発明の効果】本発明によれば、スクリュ流体機械の、
運転中のボアの熱変形によって生じるロータケーシング
間すきまの増大を簡単な手段により補償し、小さく保つ
ことができる。従って、漏れ損失が減ってエネルギ効率
が向上する。According to the present invention, a screw fluid machine,
The increase in the clearance between the rotor casings caused by the thermal deformation of the bore during operation can be compensated and kept small by simple means. Therefore, leakage loss is reduced and energy efficiency is improved.
【0039】さらに、漏れ損失の低減により、損失に伴
うガスの温度上昇が押さえられ、信頼性の高いスクリュ
流体機械が得られる。Further, by reducing the leakage loss, the temperature rise of the gas due to the loss can be suppressed and a highly reliable screw fluid machine can be obtained.
【図1】本発明の一実施例のオイルフリースクリュ圧縮
機の縦断面図。FIG. 1 is a vertical sectional view of an oil-free screw compressor according to an embodiment of the present invention.
【図2】図1の圧縮機の切断線I−Iにおける横断面
図。2 is a cross-sectional view taken along the section line I-I of the compressor shown in FIG.
【図3】図1の圧縮機の切断線II−IIにおける横断面
図。3 is a cross-sectional view taken along the section line II-II of the compressor shown in FIG.
【図4】他の実施例のオイルフリースクリュ圧縮機の縦
断面図。FIG. 4 is a vertical sectional view of an oil-free screw compressor according to another embodiment.
【図5】図4の圧縮機の切断線III−IIIにおける横断面
図。5 is a transverse cross-sectional view taken along the section line III-III of the compressor shown in FIG.
1…雄ロータ、2…雌ロータ、17…雄側ボア壁面、1
8…雌側ボア、33,34…ボア壁面、35,36…水
ジャケット。1 ... Male rotor, 2 ... Female rotor, 17 ... Male side bore wall surface, 1
8 ... Female side bore, 33, 34 ... Bore wall surface, 35, 36 ... Water jacket.
Claims (1)
に反対方向にねじれた歯を持ってかみ合い、少なくとも
高圧側に接続した回転軸が軸受で支えられる雄ロータ及
び雌ロータを持ち、低圧口と高圧口とを有し、かつ少な
くとも互いに交差し、前記雄ロータ及び前記雌ロータを
それぞれ収容する二つのボアとを有し、前記高圧側に接
続した軸を支える軸受と前記高圧口との間が少なくとも
冷却媒体の流れるジャケットで熱的に遮断されているケ
ーシングを備えたスクリュ流体機械において、 常温静止時に、前記ロータ軸に垂直なある平面内で前記
雄ロータ側ボアの壁面及び前記雌ロータ側ボアの壁面と
それぞれのロータの外周面との間のすきまを前記二つの
ボアの高圧側の交線から低圧側の交線に向かってたどる
とき、始め高圧側の交線から離れるに従って徐々にまた
は階段的に減少し、最大値を経た後、低圧側の交線に向
かうに連れて徐々にまたは階段的に増加することを特徴
とするスクリュ流体機械。1. A low-pressure rotor having a male rotor and a female rotor, each of which rotates about two parallel axes, meshes with teeth twisted in opposite directions, and has at least a rotary shaft connected to a high-pressure side supported by bearings. A bearing for supporting a shaft connected to the high-pressure side, and the high-pressure port, which have two bores that respectively have the male rotor and the female rotor In a screw fluid machine including a casing thermally insulated from at least a jacket through which a cooling medium flows, a wall surface of the male rotor side bore and the female rotor in a plane perpendicular to the rotor axis when stationary at room temperature. When the clearance between the wall surface of the side bore and the outer peripheral surface of each rotor is traced from the line of intersection of the high pressure side of the two bores to the line of intersection of the low pressure side, the The screw fluid machine is characterized in that it gradually or stepwise decreases as the distance from the point increases, reaches a maximum value, and then gradually or stepwise increases toward the intersection line on the low pressure side.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3752392A JPH05231362A (en) | 1992-02-25 | 1992-02-25 | Screw fluid machinery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3752392A JPH05231362A (en) | 1992-02-25 | 1992-02-25 | Screw fluid machinery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05231362A true JPH05231362A (en) | 1993-09-07 |
Family
ID=12499907
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3752392A Pending JPH05231362A (en) | 1992-02-25 | 1992-02-25 | Screw fluid machinery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05231362A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6663366B2 (en) | 2001-05-16 | 2003-12-16 | Denso Corporation | Compressor having cooling passage integrally formed therein |
| WO2007065485A1 (en) * | 2005-12-08 | 2007-06-14 | Ghh Rand Schraubenkompressoren Gmbh | Helical screw compressor comprising a cooling jacket |
| US7287970B2 (en) | 2004-10-27 | 2007-10-30 | Kabushiki Kaisha Toyota Jidoshokki | Roots compressor |
| WO2024116433A1 (en) | 2022-11-30 | 2024-06-06 | 株式会社日立産機システム | Screw compressor |
-
1992
- 1992-02-25 JP JP3752392A patent/JPH05231362A/en active Pending
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6663366B2 (en) | 2001-05-16 | 2003-12-16 | Denso Corporation | Compressor having cooling passage integrally formed therein |
| US7287970B2 (en) | 2004-10-27 | 2007-10-30 | Kabushiki Kaisha Toyota Jidoshokki | Roots compressor |
| WO2007065485A1 (en) * | 2005-12-08 | 2007-06-14 | Ghh Rand Schraubenkompressoren Gmbh | Helical screw compressor comprising a cooling jacket |
| US7690901B2 (en) | 2005-12-08 | 2010-04-06 | Ghh Rand Schraubenkompressoren Gmbh | Helical screw compressor comprising a cooling jacket |
| US9091268B2 (en) | 2005-12-08 | 2015-07-28 | Ghh Rand Schraubenkompressoren Gmbh | Three-stage screw compressor |
| WO2024116433A1 (en) | 2022-11-30 | 2024-06-06 | 株式会社日立産機システム | Screw compressor |
| EP4628730A1 (en) | 2022-11-30 | 2025-10-08 | Hitachi Industrial Equipment Systems Co., Ltd. | Screw compressor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH07197891A (en) | Scroll type fluid machinery | |
| US20040086409A1 (en) | Screw compressor | |
| JP2619468B2 (en) | Oil-free screw fluid machine | |
| JPH0762477B2 (en) | Screen compressor | |
| US3209990A (en) | Two stage screw rotor machines | |
| KR930010240B1 (en) | Screw fluid machine | |
| JP3240851B2 (en) | Dry screw fluid machine | |
| JPH05231362A (en) | Screw fluid machinery | |
| CA1303579C (en) | Compressor with improved exposed outboard thrust plate and method ofassembly | |
| US8573956B2 (en) | Multiple stage dry pump | |
| JPH02277985A (en) | Scroll type fluid machine | |
| US6241490B1 (en) | Multirotor vacuum pump | |
| US11421689B2 (en) | Pump assembly with sealing protrusion on stator bore portion | |
| JPS61152990A (en) | Screw vacuum pump | |
| JP3270980B2 (en) | Screw compressor | |
| JPH0242190A (en) | screw fluid machinery | |
| CN107683372A (en) | Scroll Fluid Machinery | |
| JPH0431686A (en) | Screw rotor | |
| JP3403452B2 (en) | Oilless screw compressor | |
| JPH10159766A (en) | Oil-free screw fluid machine | |
| JP2013241862A (en) | Scroll compressor and design method of the same | |
| JP2860678B2 (en) | Liquid injection screw fluid machine | |
| JPS6123392B2 (en) | ||
| JP2010001816A (en) | Scroll fluid machine | |
| JP3904785B2 (en) | Swing piston type compressor |