JPH05247641A - Target member and manufacture therefor - Google Patents
Target member and manufacture thereforInfo
- Publication number
- JPH05247641A JPH05247641A JP8141792A JP8141792A JPH05247641A JP H05247641 A JPH05247641 A JP H05247641A JP 8141792 A JP8141792 A JP 8141792A JP 8141792 A JP8141792 A JP 8141792A JP H05247641 A JPH05247641 A JP H05247641A
- Authority
- JP
- Japan
- Prior art keywords
- target member
- alloy
- composition
- relative density
- balance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 23
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 20
- 239000000956 alloy Substances 0.000 claims abstract description 20
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 11
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 10
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 9
- 238000004544 sputter deposition Methods 0.000 claims abstract description 8
- 238000007712 rapid solidification Methods 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- -1 0.1 to 8% Inorganic materials 0.000 claims 1
- 238000005477 sputtering target Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 4
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000009689 gas atomisation Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000001513 hot isostatic pressing Methods 0.000 description 3
- 229910020630 Co Ni Inorganic materials 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 2
- 229910002440 Co–Ni Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000010952 cobalt-chrome Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 229910001149 41xx steel Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910018979 CoPt Inorganic materials 0.000 description 1
- 229910020707 Co—Pt Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910018106 Ni—C Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気記録用のCoを主
体とする磁性膜をスパッタ法により作成するためのター
ゲット部材、およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a target member for forming a magnetic film mainly composed of Co for magnetic recording by a sputtering method, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】スパッタ法による磁性膜にCo−Ni、
Co−CrあるいはCo−Ni−Crが従来から工業的
に使用されてきた。そして近年、磁性膜に起因するノイ
ズの低減、スパッタ膜(磁性膜)の高保磁力化の要求に
より、Co−Ni、Co−CrあるいはCo−Ni−C
rにTaやPtを添加した合金が磁性膜に使用されるよ
うになり、現在では記録媒体の主流となっている(特開
平1−133217号参照)。一方、含有されるTa量
は初期には1原子%であったが、最近では2原子%以上
と、高保磁力化のため増加しつつある。またPt量は、
高保磁力化のために5〜15原子%含有されている。こ
のスパッタ膜形成に使用するターゲット部材は、従来、
溶解、鋳造後そのまま、あるいは熱間や冷間加工して薄
板に形成し、それから加工採取されていた。2. Description of the Related Art Co-Ni,
Co-Cr or Co-Ni-Cr has been conventionally used industrially. In recent years, Co-Ni, Co-Cr, or Co-Ni-C has been demanded due to the demand for reducing noise caused by the magnetic film and increasing the coercive force of the sputtered film (magnetic film).
Alloys obtained by adding Ta or Pt to r have come to be used for magnetic films, and are now the mainstream of recording media (see Japanese Patent Laid-Open No. 1-133217). On the other hand, the amount of Ta contained was 1 atom% in the initial stage, but recently, it has been increasing to 2 atom% or more to increase the coercive force. Also, the Pt amount is
It is contained in an amount of 5 to 15 atom% for increasing the coercive force. The target member used for forming this sputtered film is conventionally
After melting and casting, it was formed as it is, or hot or cold worked into a thin plate, and then processed and sampled.
【0003】[0003]
【発明が解決しようとする課題】合金の工業的な溶解、
鋳造においては、鋳型に接して冷却され、凝固する鋼塊
の外周部と、中央部では、組成に差が生じる。CoCr
にTaを加えたCo−Cr−Ta3元合金では、鋼塊の
中央部はTaが合金全体の平均値より富化し、Co2 T
aがミクロ的に偏析する。また、Cr濃度が増加すると
Crの偏析が進み、鋼塊の外周部にCr富化CoCr層
が生じる。Co−Cr−Pt−B4元合金では、CoP
t、CoB等の異相が生じてしまう。Co−Cr−Mo
−Ta−Pt−B6元合金ではさらにTaB、CrMo
等の異相が生じる。このように、多元合金では種々の異
相が生じるため、これらの合金鋼塊を、圧延等の熱間加
工する際に、均一な圧延が困難であったり、圧延した薄
板にそりが生じることがあった。また、作成したターゲ
ット部材も組成が不均一となるため、これらのターゲッ
ト部材を用いて得られたスパッタ膜の磁気特性が均一な
ものとならないという問題点があった。本発明の目的
は、均一な磁気特性を有するスパッタ膜を生成するター
ゲット部材およびその製造方法を提供するものである。[Problems to be Solved by the Invention] Industrial melting of alloys,
In casting, there is a difference in composition between the outer peripheral portion and the central portion of the steel ingot which is solidified by contacting the mold. CoCr
In the Co-Cr-Ta ternary alloy in which Ta is added to Ta, Ta is enriched in the central portion of the ingot from the average value of the entire alloy, and Co 2 T
a segregates microscopically. Further, when the Cr concentration increases, the segregation of Cr proceeds, and a Cr-enriched CoCr layer is formed on the outer peripheral portion of the steel ingot. In a Co-Cr-Pt-B quaternary alloy, CoP
Different phases such as t and CoB will occur. Co-Cr-Mo
-Ta-Pt-B6 ternary alloy further has TaB and CrMo.
And so on. As described above, since various different phases occur in the multi-component alloy, uniform rolling may be difficult or warpage may occur in the rolled thin plate during hot working such as rolling of these steel ingots. It was In addition, since the composition of the prepared target members is also non-uniform, there is a problem that the sputtered film obtained by using these target members does not have uniform magnetic characteristics. An object of the present invention is to provide a target member that produces a sputtered film having uniform magnetic properties and a method for manufacturing the target member.
【0004】[0004]
【課題を解決するための手段】本発明のターゲット部材
は、Coを主体としてCr、MoおよびWのうち一種以
上を4〜18%、V、Nb、Ta、Ti、Zr、Hfお
よびRuのうち少なくとも一種以上を0.1〜8%、残
部実質的にCoと不可避的不純物からなる合金で、組成
が均一でかつ相対密度が98%以上ある焼結体で構成さ
れる。また、Coを主体としてPtを0.5〜16%、
Cr、MoおよびWのうち一種以上を4〜18%、V、
Nb、Ta、Ti、Zr、HfおよびRuのうち少なく
とも一種以上を0.1〜8%、残部実質的にCoと不可
避的不純物からなる合金、あるいは、Coを主体として
Ptを0.5〜16%、Cr、MoおよびWのうち一種
以上を4〜18%、V、Nb、Ta、Ti、Zr、Hf
およびRuのうち少なくとも一種以上を0.1〜8%、
B、C、SiおよびAlのうち一種以上を0.1〜10
%、残部実質的にCoと不可避的不純物からなる合金
で、組成が均一でかつ相対密度が98%以上ある焼結体
で構成される。本発明のターゲット部材の製造方法は、
上記記載の合金組成よりなる粒径32メッシュ以下の急
冷凝固法により製造された合金粉末を金属容器に充填し
た後、加圧焼結して組成が均一で、かつ相対密度が98
%以上あるターゲット部材を製造する。The target member of the present invention is mainly composed of Co and contains 4 to 18% of at least one of Cr, Mo and W, and among V, Nb, Ta, Ti, Zr, Hf and Ru. At least one of them is 0.1 to 8%, the balance is an alloy consisting essentially of Co and unavoidable impurities, and is composed of a sintered body having a uniform composition and a relative density of 98% or more. Further, Co is the main component and Pt is 0.5 to 16%,
4-18% of one or more of Cr, Mo and W, V,
0.1 to 8% of at least one or more of Nb, Ta, Ti, Zr, Hf, and Ru, the balance substantially consisting of Co and unavoidable impurities, or 0.5 to 16 Pt containing Co as a main component. %, One or more of Cr, Mo and W is 4 to 18%, V, Nb, Ta, Ti, Zr, Hf
And at least one or more of Ru is 0.1 to 8%,
0.1 to 10 of one or more of B, C, Si and Al
%, The balance consisting essentially of Co and inevitable impurities, and composed of a sintered body having a uniform composition and a relative density of 98% or more. The manufacturing method of the target member of the present invention,
An alloy powder having a particle size of 32 mesh or less, which is composed of the alloy composition described above, is filled in a metal container and then pressure-sintered to have a uniform composition and a relative density of 98.
A target member having a percentage of at least 100% is manufactured.
【0005】本発明のターゲット部材は、Coを主体と
し、原子%でCr、MoおよびWのうち一種以上を4〜
18%、V、Nb、Ta、Ti、Zr、Hf、およびR
uのうち少なくとも一種以上を0.1〜8%、Ptを
0.5〜16%、B、C、SiおよびAlのうち一種以
上を0.1〜10%、と限定したのは、Cr、Mo、お
よびWの総量が18%を越えると合金鋼塊を熱間加工す
る際に割れ易くなり、ターゲット部材の製造に適さなく
なるからである。また、Cr、MoおよびWの総量が4
%以下では、作製したスパッタ膜が十分な磁気特性を有
さないためである。V、Nb、Ta、Ti、Zr、Hf
およびRuの総量が8%を越えると鋼塊を圧延する際に
異相が析出してしまうからである。Ptの量が16%を
越えるとターゲット部材として表面の仕上げのための研
削加工においてターゲット部材にそりが発生するためで
ある。Ptの量が、0.5%以下では磁気特性に及ぼす
添加効果が認められないからである。B、C、Siおよ
びAlの総量が10%を越えると鋼塊を加工する際に割
れ易くなるためである。The target member of the present invention is mainly composed of Co, and at least 1% or more of Cr, Mo and W is 4 to 4 in atomic%.
18%, V, Nb, Ta, Ti, Zr, Hf, and R
At least one or more of u is 0.1 to 8%, Pt is 0.5 to 16%, and one or more of B, C, Si and Al is 0.1 to 10%. This is because if the total amount of Mo and W exceeds 18%, the alloy steel ingot is easily cracked during hot working and is not suitable for manufacturing a target member. Further, the total amount of Cr, Mo and W is 4
This is because the prepared sputtered film does not have sufficient magnetic characteristics when the content is less than%. V, Nb, Ta, Ti, Zr, Hf
If the total amount of Ru and Ru exceeds 8%, a different phase will precipitate during rolling of the steel ingot. This is because when the amount of Pt exceeds 16%, warpage occurs in the target member in the grinding process for finishing the surface of the target member. This is because when the amount of Pt is 0.5% or less, the effect of addition on the magnetic properties is not recognized. This is because if the total amount of B, C, Si and Al exceeds 10%, the steel ingot is likely to crack during processing.
【0006】上記製造方法の特徴は、ガスアトマイズ法
等の急冷凝固法により製造した所定組成の合金粉末を用
いることである。すなわち、この粉末は凝固に対する冷
却速度が大きいため、偏析を抑えて組成の均一な組織を
有する。この為、これを用いて得られるターゲット部材
は、ターゲット部材の表面、板厚中央部とも従来の溶
解、鋳造法によるものと異なり、均一な組成を有する。
急冷凝固法としては、前述のガスアトマイズ法の他に真
空アトマイズ法、回転ロール法、回転電極法等の公知の
粉末製造法が適用できる。回転ロール法、回転電極法等
においても合金の酸化防止のために、雰囲気は真空、不
活性ガス雰囲気とするのが望ましい。なお、急冷凝固法
のなかでは高いタップ密度が得られる球状粉を形成しや
すく、かつ生産コストの有利なガスアトマイズ法が望ま
しい。以上の急冷凝固法により得られた合金粉末のう
ち、粒径が32メッシュ以下のものを用いる。このよう
に粉末の粒径を32メッシュ以下としたのは、焼結時過
飽和固溶体の組成の均質性が劣ってくるためである。次
いで、この合金粉末を加圧焼結し、相対密度が98%以
上の焼結体を得る。相対密度を98%以上とするのは、
これ未満の密度で気泡が存在するとスパッタ作業中異常
放電を起こすためである。A feature of the above manufacturing method is to use an alloy powder having a predetermined composition manufactured by a rapid solidification method such as a gas atomizing method. That is, since this powder has a high cooling rate for solidification, it has a uniform composition with suppressed segregation. Therefore, the target member obtained by using this has a uniform composition on both the surface of the target member and the central portion of the plate thickness, unlike those obtained by the conventional melting or casting method.
As the rapid solidification method, a known powder manufacturing method such as a vacuum atomizing method, a rotating roll method, and a rotating electrode method can be applied in addition to the above-described gas atomizing method. In the rotating roll method, the rotating electrode method, etc., it is desirable that the atmosphere is a vacuum or an inert gas atmosphere in order to prevent the alloy from being oxidized. Among the rapid solidification methods, the gas atomization method is preferable because it is easy to form a spherical powder that can obtain a high tap density and is advantageous in production cost. Among the alloy powders obtained by the above rapid solidification method, those having a particle size of 32 mesh or less are used. The reason why the particle size of the powder is 32 mesh or less is that the homogeneity of the composition of the supersaturated solid solution becomes poor at the time of sintering. Next, this alloy powder is pressure-sintered to obtain a sintered body having a relative density of 98% or more. The relative density of 98% or more is
This is because if bubbles are present at a density lower than this, abnormal discharge will occur during the sputtering operation.
【0007】加圧焼結の方法としては、熱間静水圧プレ
ス(HIP)、ホットプレス、熱間パック圧延、鍛造等
が適用できるが、98%以上の高密度を得るためにはH
IPが最も望ましい。このHIPは、温度1000〜1
250℃、圧力500atm以上の条件で実施される必
要がある。ここで温度の上限を1250℃としたのは、
Co−Ptの共晶温度が1276℃であり、粉末内でミ
クロ的にPt豊化の部分に融液が生じる為である。一
方、温度の下限を1000℃としたのは、これ未満では
焼結密度が98%以上に上がらないためである。また、
圧力を500atm以上とするのは、やはりこれ未満で
は、焼結体の相対密度を98%以上にすることが困難だ
からである。さらに、熱間静水圧プレス等による加圧焼
結に続いて熱間加工を行なうと、相対密度が向上し、よ
りスパッタ特性の安定したターゲット部材が得られる。As a method of pressure sintering, hot isostatic pressing (HIP), hot pressing, hot pack rolling, forging, etc. can be applied, but in order to obtain a high density of 98% or more, H
IP is most desirable. This HIP has a temperature of 1000 to 1
It must be carried out under the conditions of 250 ° C. and a pressure of 500 atm or more. Here, the upper limit of the temperature is 1250 ° C.
This is because the Co—Pt eutectic temperature is 1276 ° C., and a melt is generated in the Pt-rich portion in the powder microscopically. On the other hand, the lower limit of the temperature is set to 1000 ° C., because the sintered density does not rise to 98% or more below this. Also,
The pressure is set to 500 atm or more because if the pressure is less than 500 atm, it is difficult to set the relative density of the sintered body to 98% or more. Furthermore, when hot working is performed after pressure sintering by hot isostatic pressing or the like, the relative density is improved, and a target member with more stable sputtering characteristics can be obtained.
【0008】[0008]
(実施例1)原子%で12Cr−4Pt−2V−3B、
残部Co組成の合成粉末をガスアトマイズで製作した。
続いて、この粉末を分級し32メッシュ以下の粉末を7
kg秤量した。この粉末を軟鋼製の缶に充填し、脱気、
封止した後、熱間静水圧プレスで1200℃、500a
tmで焼結を行なった。次ぎに、この箱体を熱間圧延に
より厚さ8mmに仕上げ、両側の鉄皮をはいで6mmの
板材を採取した。一方、原子%で12Cr−4Pt−2
V−3B、残部Co組成の合金を真空溶解した後、30
kg鋼塊を製造し、ハンマー分塊と熱間圧延により6m
mの板材を作製したところ、割れてしまい、200×2
00mm以上の大きさの板材を得ることができなかっ
た。次ぎに粉末法および従来の溶解法でそれぞれ製造し
た板材より、厚さ5mm、直径102mmのターゲット
部材を採取した。このターゲット部材を使用して、軟質
ガラス基板上に純Cr下地膜を0.1μm成膜した上
に、高周波出力300w、Ar操作圧力3×10- 3 t
orrの条件下で50nm成膜し、振動磁力計で膜の保
磁力を測定した。(Example 1) 12Cr-4Pt-2V-3B in atomic%,
A synthetic powder with the balance Co composition was produced by gas atomization.
Then, this powder is classified to obtain powder of 32 mesh or less.
kg was weighed. This powder was filled in a mild steel can and degassed,
After sealing, hot isostatic press at 1200 ° C, 500a
Sintering was performed at tm. Next, this box was finished by hot rolling to have a thickness of 8 mm, and iron sheets on both sides were peeled off to collect a 6 mm plate material. On the other hand, in atomic%, 12Cr-4Pt-2
After vacuum melting V-3B and the balance Co alloy, 30
6 kg of steel ingot is produced by hammer slab and hot rolling
When a plate material of m was produced, it cracked, and 200 × 2
It was not possible to obtain a plate material having a size of 00 mm or more. Next, a target member having a thickness of 5 mm and a diameter of 102 mm was sampled from each of the plate materials manufactured by the powder method and the conventional melting method. Using this target member, a pure Cr underlayer on soft glass substrate on which the 0.1μm deposited, high-frequency output 300w, Ar operating pressure 3 × 10 - 3 t
A film having a thickness of 50 nm was formed under the condition of orr, and the coercive force of the film was measured with a vibration magnetometer.
【0009】表1にターゲット部材表面層と中心部のE
PMAによる組成の分析値(at%)とターゲット部材
のその位置に対応するスパッタ膜の磁性値を示す。表1
からわかるように粉末法で作製したターゲット部材は表
面および板厚中心で組成に変動がなく、スパッタリング
により成膜した膜の磁性値もほとんど変動が認められな
い。一方、従来の溶解法で製造したターゲット部材は表
面層は平均値より若干Crが多く、Ptは少ない組成と
なっている。また、CoPtの異相が熱間加工により圧
延方向に線状に伸びた部分が存在している。また、スパ
ッタ膜の保磁力もターゲット部材表面と板厚中心部で値
が異なることが知られた。Table 1 shows E of the target member surface layer and the central portion.
The analysis value (at%) of the composition by PMA and the magnetic value of the sputtered film corresponding to the position of the target member are shown. Table 1
As can be seen, the target member produced by the powder method has no change in composition on the surface and the center of the plate thickness, and the magnetic value of the film formed by sputtering shows almost no change. On the other hand, the target member manufactured by the conventional melting method has a composition in which the surface layer contains slightly more Cr and less Pt than the average value. Further, there is a portion where the different phase of CoPt extends linearly in the rolling direction due to hot working. It was also known that the coercive force of the sputtered film was different between the surface of the target member and the center of the plate thickness.
【0010】[0010]
【表1】 [Table 1]
【0011】(実施例2)前記実施例1で作製したター
ゲットの材料合金として、CoCrPtVBにさらにM
oを2%添加したターゲットを前記実施例と同様に作製
して表1と同様の測定をしたところ、前記本発明の実施
例とほぼ同様の結果となった。またCr12at%、V
とNbのうち少なくとも1種以上を2at%、残部を実
質的にCoよりなるターゲットを前記実施例と同様に作
製し、実施例1と同様の測定をしたところ表2のように
なった。表2より、粉末法で作製したターゲット部材は
表面および板厚中心で組成に変動がなく、スパッタリン
グにより成膜した磁性膜の特性の変動も少ないことがわ
かる。(Example 2) CoCrPtVB was further added as a material alloy for the target produced in Example 1 above.
When a target to which 2% of o was added was prepared in the same manner as in the above-described example and the same measurement as in Table 1 was performed, the result was almost the same as that in the example of the present invention. Cr12at%, V
Table 2 shows a target made of 2 at% of at least one of Nb and 2 at%, and the balance of Co being substantially the same as in the above-mentioned Example and measured in the same manner as in Example 1. From Table 2, it can be seen that the target member manufactured by the powder method has no change in composition on the surface and in the center of plate thickness, and there is little change in the characteristics of the magnetic film formed by sputtering.
【0012】[0012]
【表2】 [Table 2]
【0013】[0013]
【発明の効果】以上説明したように、Coを主体とし
て、原子%でCr、MoおよびWのうち一種以上を4〜
18%、V、Nb、Ta、Ti、Zr、HfおよびRu
のうち少なくとも一種以上を0.1〜8%、残部Coの
ターゲット部材、さらにPtを0.5〜16%含むター
ゲット部材、および、さらにB、C、SiおよびAlの
うち一種以上を0.1〜10%含むターゲット部材を粉
末法で作製した場合、従来の溶解法で作製したターゲッ
ト部材に比較してターゲット部材内部での組成変動が少
なく、スパッタ生成膜の磁気特性の変動も小さい結果が
得られた。磁気特性が一定なスパッタ膜が得られること
は磁気記録媒体として極めて有利であり、粉末法による
本発明のターゲット部材およびその製造方法は、工業上
顕著な効果を有する。As described above, Co is the main constituent, and at least one of Cr, Mo and W is 4 to 4 atomic%.
18%, V, Nb, Ta, Ti, Zr, Hf and Ru
0.1 to 8% of at least one of them, the remaining Co target member, and a target member of 0.5 to 16% of Pt, and 0.1 to 0.1% of B, C, Si and Al. When the target member containing 10% of the powder is manufactured by the powder method, the composition change in the target member is smaller than that of the target member manufactured by the conventional melting method, and the fluctuation of the magnetic characteristics of the sputter-produced film is small. Was given. It is extremely advantageous for a magnetic recording medium to obtain a sputtered film having a constant magnetic characteristic, and the target member of the present invention by the powder method and the manufacturing method thereof have a remarkable industrial effect.
Claims (4)
いて、その組成が原子%で、Coを主体としてCr、M
oおよびWのうち一種以上を4〜18%、V、Nb、T
a、Ti、Zr、HfおよびRuのうち少なくとも一種
以上を0.1〜8%、残部実質的にCoと不可避的不純
物からなる合金で、組成が均一でかつ相対密度が98%
以上ある焼結体であることを特徴とするターゲット部
材。1. A target member for sputtering, the composition of which is at.
4-18% of one or more of o and W, V, Nb, T
0.1% to 8% of at least one of a, Ti, Zr, Hf, and Ru, the balance being an alloy essentially consisting of Co and inevitable impurities, having a uniform composition and a relative density of 98%.
A target member, which is a sintered body as described above.
いて、その組成が原子%で、Coを主体としてPtを
0.5〜16%、Cr、MoおよびWのうち一種以上を
4〜18%、V、Nb、Ta、Ti、Zr、Hfおよび
Ruのうち少なくとも一種以上を0.1〜8%、残部実
質的にCoと不可避的不純物からなる合金で、組成が均
一でかつ相対密度が98%以上ある焼結体であることを
特徴とするターゲット部材。2. In a sputtering target member, the composition is atomic%, Co is the main component, Pt is 0.5 to 16%, one or more of Cr, Mo and W is 4 to 18%, V and Nb. , Ta, Ti, Zr, Hf and Ru of 0.1 to 8%, and the balance consisting essentially of Co and inevitable impurities, and having a uniform composition and a relative density of 98% or more. A target member, which is a united body.
いて、その組成が原子%で、Coを主体としてPtを
0.5〜16%、Cr、MoおよびWのうち一種以上を
4〜18%、V、Nb、Ta、Ti、Zr、Hfおよび
Ruのうち少なくとも一種以上を0.1〜8%、B、
C、SiおよびAlのうち一種以上を0.1〜10%、
残部実質的にCoと不可避的不純物からなる合金で、組
成が均一でかつ相対密度が98%以上ある焼結体である
ことを特徴とするターゲット部材。3. A target member for sputtering, the composition of which is atomic%, 0.5 to 16% of Pt with Co as a main component, 4 to 18% of one or more of Cr, Mo and W, V and Nb. , Ta, Ti, Zr, Hf, and Ru, 0.1 to 8%, B,
0.1-10% of one or more of C, Si and Al,
A target member, characterized in that the balance is an alloy substantially composed of Co and inevitable impurities, and is a sintered body having a uniform composition and a relative density of 98% or more.
載のターゲット部材を製造する方法であって、請求項
1、請求項2および請求項3に記載の合金として粒径3
2メッシュ以下の急冷凝固法により製造された合金粉末
を使用し、その合金粉末を金属製容器に充填封入した
後、加圧焼結することを特徴とするターゲット部材の製
造方法。4. A method for manufacturing a target member according to claim 1, claim 2 or claim 3, wherein the alloy according to claim 1, claim 2 or claim 3 has a grain size of 3
A method for producing a target member, comprising using an alloy powder produced by a rapid solidification method of 2 mesh or less, filling the alloy powder in a metal container, and encapsulating the alloy powder, followed by pressure sintering.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8141792A JPH05247641A (en) | 1992-03-04 | 1992-03-04 | Target member and manufacture therefor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8141792A JPH05247641A (en) | 1992-03-04 | 1992-03-04 | Target member and manufacture therefor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05247641A true JPH05247641A (en) | 1993-09-24 |
Family
ID=13745779
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8141792A Abandoned JPH05247641A (en) | 1992-03-04 | 1992-03-04 | Target member and manufacture therefor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05247641A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2055793A1 (en) * | 2007-10-29 | 2009-05-06 | Heraeus, Inc. | Methodology for recycling RU and RU-alloy deposition targets & targets made of recycled RU and RU-based alloy powders |
-
1992
- 1992-03-04 JP JP8141792A patent/JPH05247641A/en not_active Abandoned
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2055793A1 (en) * | 2007-10-29 | 2009-05-06 | Heraeus, Inc. | Methodology for recycling RU and RU-alloy deposition targets & targets made of recycled RU and RU-based alloy powders |
| US8118906B2 (en) | 2007-10-29 | 2012-02-21 | Heraeus Inc. | Methodology for recycling Ru and Ru-alloy deposition targets and targets made of recycled Ru and Ru-based alloy powders |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5282946A (en) | Platinum-cobalt alloy sputtering target and method for manufacturing same | |
| US20020106297A1 (en) | Co-base target and method of producing the same | |
| JPH0336243A (en) | Amorphous alloy with excellent mechanical strength, corrosion resistance, and workability | |
| JP6312009B2 (en) | Cr-Ti alloy sputtering target material and method for producing the same | |
| JPH0768612B2 (en) | Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same | |
| JP5370917B2 (en) | Method for producing Fe-Co-Ni alloy sputtering target material | |
| US20080181810A1 (en) | Magnetic Film of Oxide-Containing Cobalt Base Alloy, Oxide-Containing Cobalt Base Alloy Target, and Manufacturing Method Thereof | |
| JPH1088333A (en) | Sputtering target and its production | |
| CN102766848B (en) | Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same | |
| TW201103999A (en) | Method for manufacturing nickel alloy target | |
| JP3525439B2 (en) | Target member and method of manufacturing the same | |
| TWI288784B (en) | Carbon containing sputter target alloy compositions | |
| JP3628575B2 (en) | Ni-P alloy sputtering target and method for producing the same | |
| JP3170412B2 (en) | Sputtering target member for forming non-magnetic underlayer of metal thin film type magnetic recording medium | |
| JP2909108B2 (en) | Target member and method of manufacturing the same | |
| JPH05247641A (en) | Target member and manufacture therefor | |
| JP2000096220A (en) | Cobalt-chromium sputtering target and its manufacture | |
| JP4002659B2 (en) | IrMn alloy target for film formation and antiferromagnetic film using the same | |
| JP2023529159A (en) | Aluminum-scandium composite, aluminum-scandium composite sputtering target and method of making | |
| JP2894695B2 (en) | Rare earth metal-iron group metal target and method for producing the same | |
| JP7274361B2 (en) | Alloy for seed layer of magnetic recording media | |
| JP2002226970A (en) | Co TARGET AND PRODUCTION METHOD THEREFOR | |
| JP2802850B2 (en) | Target material and method for producing the same | |
| JPS6160803A (en) | Production of highly brittle alloy sputtering target for thin soft magnetic film | |
| JPH0641734A (en) | Target member and its production |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20031211 |