JPH05251097A - Solid polymer electrolyte fuel cell - Google Patents
Solid polymer electrolyte fuel cellInfo
- Publication number
- JPH05251097A JPH05251097A JP4044993A JP4499392A JPH05251097A JP H05251097 A JPH05251097 A JP H05251097A JP 4044993 A JP4044993 A JP 4044993A JP 4499392 A JP4499392 A JP 4499392A JP H05251097 A JPH05251097 A JP H05251097A
- Authority
- JP
- Japan
- Prior art keywords
- polymer electrolyte
- solid polymer
- fuel cell
- gas
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】
【目的】ガス通流溝内の凝結水の滞留、閉塞を防止して
出力の安定性に優れる固体高分子電解質型燃料電池を得
る。
【構成】セパレータ板に反応ガスの通るガス通流溝15
を設けるとともに、ガス通流溝15の少なくとも下流部
につき、その幅員を1.5mm以上にする。
(57) [Abstract] [Purpose] To obtain a solid polymer electrolyte fuel cell having excellent output stability by preventing retention and clogging of condensed water in gas flow channels. [Structure] Gas flow groove 15 through which a reaction gas passes through a separator plate
In addition, the width of the gas flow groove 15 is at least 1.5 mm at least at the downstream portion.
Description
【0001】[0001]
【産業上の利用分野】この発明は固体高分子電解質型燃
料電池に係り、特に電極に反応ガスを供給するセパレー
タ板のガス通流溝に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell, and more particularly to a gas passage groove of a separator plate for supplying a reaction gas to electrodes.
【0002】[0002]
【従来の技術】固体高分子電解質型燃料電池は固体高分
子電解質膜の二つの主面にそれぞれアノードとカソード
を配して形成される。アノードまたはカソードの各電極
は電極基材上に電極触媒を設けている。固体高分子電解
質膜はスルホン酸基を持つポリスチレン系の陽イオン交
換膜をカチオン導電性膜として使用したもの、フロロカ
ーボンスルホン酸とポリビニリデンフロライドの混合
膜、あるいはフロロカーボンマトリックスにトリフロロ
エチレンをグラフト化したものなどが知られているが最
近ではパーフロロカーボンスルホン酸膜を用いて燃料電
池の長寿命化を図ったものが知られるに至った。2. Description of the Related Art A solid polymer electrolyte fuel cell is formed by disposing an anode and a cathode on two main surfaces of a solid polymer electrolyte membrane. Each electrode of the anode or the cathode has an electrode catalyst provided on an electrode base material. The solid polymer electrolyte membrane uses a polystyrene cation exchange membrane with sulfonic acid groups as the cation conductive membrane, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or trifluoroethylene grafted to the fluorocarbon matrix. However, recently, a perfluorocarbon sulfonic acid membrane has been used to extend the life of a fuel cell.
【0003】固体高分子電解質膜は分子中にプロトン
(水素イオン)交換基を有し、飽和に含水させることに
より常温で20Ω・cm以下の比抵抗を示しプロトン導
電性電解質として機能する。飽和含水量は温度によって
可逆的に変化する。電極基材は多孔質体で燃料電池の反
応ガス供給手段または反応ガス排出手段および集電体と
して機能する。アノードまたはカソードの電極において
は三相界面が形成され電気化学反応が起こる。The solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in the molecule, and when it is saturated to contain water, it exhibits a specific resistance of 20 Ω · cm or less at room temperature and functions as a proton conductive electrolyte. The saturated water content changes reversibly with temperature. The electrode base material is a porous body and functions as a reaction gas supply means or a reaction gas discharge means of the fuel cell and a current collector. At the anode or cathode electrode, a three-phase interface is formed and an electrochemical reaction occurs.
【0004】アノードでは(1)式の反応が起きる。 H2 =2H+ +2e (1) カソードでは(2)式の反応が起こる。 1/2O2 +2H+ +2e=H2 O (2) つまりアノードにおいては系の外部より供給された水素
がプロトンと電子を生成する。生成したプロトンはイオ
ン交換膜中をカソードに向かって移動し電子は外部回路
を通ってカソードに移動する。一方カソードにおいては
系の外部より供給された酸素とイオン交換膜中をアノー
ドより移動してきたプロトンと外部回路より移動してき
た電子が反応し、水を生成する。At the anode, the reaction of the formula (1) occurs. H 2 = 2H + + 2e (1) At the cathode, the reaction of the formula (2) occurs. 1 / 2O 2 + 2H + + 2e = H 2 O (2) That is, at the anode, hydrogen supplied from the outside of the system produces protons and electrons. The generated protons move in the ion exchange membrane toward the cathode, and the electrons move to the cathode through an external circuit. On the other hand, in the cathode, oxygen supplied from the outside of the system reacts with protons moving from the anode in the ion exchange membrane and electrons moving from the external circuit to generate water.
【0005】図3は従来の固体高分子電解質型燃料電池
の単電池を示す平面図である。アノード2およびカソー
ド3は厚さ100μmの固体高分子電解質膜1の両主面
に接して積層される。電極の厚さは300μmである。
電極は前述のように電極基材上に電極触媒層を配して構
成されるがこの電極触媒層は一般に微小な粒子状の白金
触媒と水に対する撥水性を有するフッ素樹脂から構成さ
れており、三相界面と反応ガスの効率的な拡散を維持す
るための細孔とが十分形成される。電極基材は前記触媒
層を支持する。FIG. 3 is a plan view showing a unit cell of a conventional solid polymer electrolyte fuel cell. The anode 2 and the cathode 3 are laminated in contact with both main surfaces of the solid polymer electrolyte membrane 1 having a thickness of 100 μm. The thickness of the electrode is 300 μm.
As described above, the electrode is formed by disposing the electrode catalyst layer on the electrode base material, but this electrode catalyst layer is generally composed of a fine particulate platinum catalyst and a fluororesin having water repellency, The three-phase interface and pores for maintaining efficient diffusion of the reaction gas are sufficiently formed. The electrode base material supports the catalyst layer.
【0006】電極の配置された固体高分子電解質膜の外
側には反応ガスを外部から導いてアノードまたはカソー
ドに供給する一対のセパレータ板5が設けられる。セパ
レータ板はその一方の主面に反応ガスを導くガス通流溝
4を備えるガス不透過性板である。ガス通流溝の寸法は
深さ1mm,幅員1mmである。図4は従来の固体高分
子電解質型燃料電池のスタックを示す側面図である。A pair of separator plates 5 for guiding the reaction gas from the outside and supplying it to the anode or the cathode are provided outside the solid polymer electrolyte membrane where the electrodes are arranged. The separator plate is a gas impermeable plate having a gas flow groove 4 for guiding the reaction gas to one main surface thereof. The gas flow groove has a depth of 1 mm and a width of 1 mm. FIG. 4 is a side view showing a stack of a conventional solid polymer electrolyte fuel cell.
【0007】積層された単電池6はその3枚毎に冷却板
7により冷却される。集電板8は上記電池集合体の電流
を取り出す。電池集合体は締めつけ板10と締めつけボ
ルト11を用いて組み立てられる。絶縁板9が集電板8
と締めつけ板10との電気的絶縁を図る。単電池内では
反応ガスは鉛直方向に流れる。固体高分子電解質型燃料
電池の運転温度は固体高分子電解質膜の電気抵抗を小さ
くして発電効率を高めるために通常50ないし100℃
の温度で運転される。この単電池の発生する電圧は1V
以下であるので、実用上は電圧を高めるために前記単電
池を複数個直列に積層してスタックとして使用される。The stacked unit cells 6 are cooled by the cooling plate 7 every three sheets. The current collector plate 8 takes out the current of the battery assembly. The battery assembly is assembled using the tightening plate 10 and the tightening bolts 11. Insulation plate 9 is collector plate 8
And the tightening plate 10 is electrically insulated. The reaction gas flows vertically in the unit cell. The operating temperature of the solid polymer electrolyte fuel cell is usually 50 to 100 ° C. in order to reduce the electric resistance of the solid polymer electrolyte membrane and increase the power generation efficiency.
It is operated at the temperature of. The voltage generated by this unit cell is 1V
Because of the following, in practice, in order to increase the voltage, a plurality of the unit cells are stacked in series and used as a stack.
【0008】燃料電池では、一般に発生電力にほぼ相当
する熱量を熱として発生し、この熱により単電池を多数
積層したスタックにおいてはスタック内に温度の分布が
生じる。そこで、スタックでは、冷却板を内蔵してスタ
ックの温度を単電池の面方向,積層方向にできるだけ均
一になるようにする。ここで一般に冷却媒体としては
水、空気等が用いられる。冷却板は冷却媒体を供給する
ことで余剰熱を除去して冷却をする。In a fuel cell, a heat quantity generally equivalent to generated electric power is generated as heat, and this heat causes a temperature distribution in the stack in which a large number of unit cells are stacked. Therefore, in the stack, a cooling plate is built in so that the temperature of the stack becomes as uniform as possible in the plane direction and the stacking direction of the unit cells. Here, water, air or the like is generally used as the cooling medium. The cooling plate is cooled by supplying a cooling medium to remove excess heat.
【0009】前述のとおり固体高分子電解質型燃料電池
では、電解質保持層である固体高分子電解質膜1を飽和
に含水させることにより膜の比抵抗が小さくなり、膜は
プロトン導電性電解質として機能する。したがって、固
体高分子電解質型燃料電池の発電効率を高く維持するた
めには、膜の含水状態を飽和状態に維持することが必要
である。膜の乾燥を防いで発電効率を維持するために、
反応ガスには水蒸気が添加され、膜からガスへの水の蒸
発が抑えられる。As described above, in the solid polymer electrolyte fuel cell, the specific resistance of the membrane is reduced by saturating the solid polymer electrolyte membrane 1 which is the electrolyte holding layer, and the membrane functions as a proton conductive electrolyte. .. Therefore, in order to keep the power generation efficiency of the solid polymer electrolyte fuel cell high, it is necessary to keep the water content of the membrane saturated. In order to prevent the membrane from drying and maintain power generation efficiency,
Water vapor is added to the reaction gas to suppress evaporation of water from the membrane into the gas.
【0010】[0010]
【発明が解決しようとする課題】前述の通り、燃料電池
の発電では反応生成物として水を生成し、この生成水は
余剰の反応ガスとともに燃料電池の外へ排出される。こ
のため単電池内の酸化剤ガスの流れ方向で、ガス中に含
有される水の量に分布ができる。即ち、酸化剤ガスは、
単電池内でのガスの流れの上流部(入口側)に対してガ
スの流れの下流部(出口側)ではカソード反応で生成し
た水に相当する量だけ水量が増加する。したがって、供
給するガスを飽和状態に加湿して固体高分子電解質型燃
料電池に供給すると、出口側のガス中には過飽和な水蒸
気が含まれることになる。この結果ガスの出口側では過
飽和に相当する水は凝結する。この凝結水は、ガス通路
を塞いで、ガス通流溝のガスの流れを阻害する。この結
果、電極への反応ガスの供給が不足して、単電池出力の
低下を生ずる。これを防ぐために、凝結水を速やかに外
部に排出することが、運転上極めて重要となる。同様な
問題は燃料ガスについても起こる。燃料ガス中の水素ガ
スはアノードで電極反応の結果、消費されるから燃料ガ
ス中の加湿水蒸気は出口付近で過飽和の状態となり凝結
する。As described above, in the power generation of the fuel cell, water is produced as a reaction product, and this produced water is discharged out of the fuel cell together with the surplus reaction gas. Therefore, the amount of water contained in the gas can be distributed in the flow direction of the oxidizing gas in the unit cell. That is, the oxidant gas is
In the downstream portion (outlet side) of the gas flow with respect to the upstream portion (inlet side) of the gas flow in the unit cell, the amount of water increases by an amount corresponding to the water generated by the cathode reaction. Therefore, when the supplied gas is humidified to a saturated state and supplied to the solid polymer electrolyte fuel cell, the gas on the outlet side contains supersaturated water vapor. As a result, water corresponding to supersaturation condenses on the gas outlet side. The condensed water blocks the gas passage and hinders the gas flow in the gas flow groove. As a result, the supply of the reaction gas to the electrodes becomes insufficient, resulting in a decrease in the unit cell output. In order to prevent this, promptly discharging condensed water to the outside is extremely important in operation. Similar problems occur with fuel gas. The hydrogen gas in the fuel gas is consumed as a result of the electrode reaction at the anode, so that the humidified water vapor in the fuel gas becomes supersaturated and condensed near the outlet.
【0011】この発明は上述の点に鑑みてなされその目
的は、ガス通流溝内の凝結水の滞留閉塞を防止して出力
の安定性に優れる固体高分子電解質型燃料電池を提供す
ることにある。The present invention has been made in view of the above-mentioned points, and an object thereof is to provide a solid polymer electrolyte fuel cell which is excellent in output stability by preventing retention blockage of condensed water in a gas flow groove. is there.
【0012】[0012]
【課題を解決するための手段】上述の目的はこの発明に
よれば固体高分子電解質膜と、アノードおよびカソード
の両電極と、セパレータ板とを有し、固体高分子電解質
膜は水を包含して膜中をプロトンが拡散し、アノードと
カソードの両電極は、固体高分子電解質膜を介して対向
して配置され、セパレータ板は燃料ガスおよび酸化剤ガ
スの両反応ガスが流れる複数のガス通流溝をその一方の
主面に備えて、前記電極の配された固体高分子電解質膜
を挟持し、アノードとカソードにそれぞれ燃料ガスと酸
化剤ガスを供給するものであり、この際前記ガス通流溝
は少なくともその下流部が1.5mm以上の幅員を有す
るとすることにより達成される。According to the present invention, there is provided a solid polymer electrolyte membrane, both anode and cathode electrodes, and a separator plate. The solid polymer electrolyte membrane contains water. Protons are diffused through the membrane, the anode and cathode electrodes are arranged opposite to each other via the solid polymer electrolyte membrane, and the separator plate is provided with a plurality of gas passages through which both reaction gases of fuel gas and oxidant gas flow. A flow groove is provided on one of the main surfaces to sandwich the solid polymer electrolyte membrane on which the electrodes are arranged, and to supply the fuel gas and the oxidant gas to the anode and the cathode, respectively. At least the downstream portion of the flow groove has a width of 1.5 mm or more.
【0013】[0013]
【作用】本発明では、単電池内の凝結水を速やかに外部
へ排出するために必要なガス通流溝の寸法を規定する。
本発明で規定した溝寸法よりも大きな寸法の溝をガス通
流溝として用いれば、凝結水はガス通流溝を重力により
自然流下することが可能となる。In the present invention, the size of the gas flow groove required for promptly discharging the condensed water in the unit cell to the outside is defined.
When a groove having a size larger than the groove size defined in the present invention is used as the gas flow groove, condensed water can flow down the gas flow groove by gravity.
【0014】[0014]
【実施例】図1は、この発明の実施例に係る固体高分子
電解質型燃料電池のセパレータ板を示し、図1(a)は
セパレータ板の平面図、図1(b)はセパレータ板のA
A断面図、図1(c)はセパレータ板のBB断面図であ
る。外部より供給される反応ガスはマニホルド13よりセ
パレータ板に供給され、セパレータ板内マニホルド14よ
り複数個のガス通流溝15に分配供給される。さらに反応
ガスはセパレータ板内マニホルド16で集められ、マニホ
ルド17より外部へ排出される。ここで前記ガス通流溝15
は、その上流部が下流部よりも溝の幅員が狭くなってい
る。上流部の幅員は1mmであり、下流部の幅員は3m
mである。セパレータ板はカーボンを用いて製造され
た。セパレータ板内マニホルド14とセパレータ内マニホ
ルド16とは同一の深さであり、さらにこれらはガス通流
溝15の深さよりも深い。1 shows a separator plate of a solid polymer electrolyte fuel cell according to an embodiment of the present invention. FIG. 1 (a) is a plan view of the separator plate, and FIG. 1 (b) is a separator plate A.
A sectional view and FIG. 1C are BB sectional views of the separator plate. The reaction gas supplied from the outside is supplied from the manifold 13 to the separator plate, and is distributed and supplied from the manifold 14 inside the separator plate to the plurality of gas flow grooves 15. Further, the reaction gas is collected by the manifold 16 in the separator plate and discharged from the manifold 17 to the outside. Here, the gas flow groove 15
The groove width of the upstream part is narrower than that of the downstream part. The width of the upstream part is 1 mm and the width of the downstream part is 3 m
m. The separator plate was manufactured using carbon. The separator plate manifold 14 and the separator manifold 16 have the same depth, and they are deeper than the depth of the gas flow groove 15.
【0015】図2は本発明の実施例に係る固体高分子電
解質型燃料電池の単電池出力につきその時間特性(特性
(イ))を従来の時間特性(特性(ロ))と対比して示
す線図である。固体高分子電解質型燃料電池は出力0.
3W/cm2 で運転された。酸化剤ガスの流量は50な
いし100 l/min.であり、ガスの線速度は50
ないし100cm/sであった。また燃料ガスの流量は
11ないし13 l/min.であり、その線速度は2
5ないし40cm/sであった。固体高分子電解質型燃
料電池の温度は70ないし80℃であった。このような
実験条件でガス通流溝内に凝結水の滞留ないしは閉塞は
発生せず、出力の安定した運転ができることがわかる。
ガス通流溝15の下流部の幅員が1.5mmのときも同様
な結果が得られた。FIG. 2 shows the time characteristic (characteristic (a)) of the output of the solid polymer electrolyte fuel cell according to the embodiment of the present invention in comparison with the conventional time characteristic (characteristic (b)). It is a diagram. The solid polymer electrolyte fuel cell has an output of 0.
It was operated at 3 W / cm 2 . The flow rate of the oxidizing gas is 50 to 100 l / min. And the linear velocity of gas is 50
Or 100 cm / s. The flow rate of the fuel gas is 11 to 13 l / min. And its linear velocity is 2
It was 5 to 40 cm / s. The temperature of the solid polymer electrolyte fuel cell was 70 to 80 ° C. Under these experimental conditions, it can be seen that the condensed water does not stay or block in the gas flow groove, and stable output operation is possible.
Similar results were obtained when the width of the downstream portion of the gas flow groove 15 was 1.5 mm.
【0016】ガス通流溝の下流部はガス通流溝内を流れ
る反応ガスが過飽和に達する領域である。この過飽和に
達する領域は反応ガスの供給量,反応ガスの加湿量,固
体高分子電解質型燃料電池の運転温度,供給ガスの全
圧,固体高分子電解質型燃料電池の負荷量等により容易
に決定することができる。従来の固体高分子電解質型燃
料電池においては、ガス通流溝の幅員が小さく、凝結水
がガス通流溝の内部に滞留して反応ガスの通過を妨げ電
池の出力の周期的な変化が起こっている。The downstream portion of the gas flow groove is a region where the reaction gas flowing in the gas flow groove reaches supersaturation. The region where this supersaturation is reached is easily determined by the supply amount of the reaction gas, the humidification amount of the reaction gas, the operating temperature of the solid polymer electrolyte fuel cell, the total pressure of the supply gas, the load amount of the solid polymer electrolyte fuel cell, etc. can do. In the conventional solid polymer electrolyte fuel cell, the width of the gas flow groove is small, and condensed water stays inside the gas flow groove, obstructing the passage of the reaction gas, and the output of the cell changes periodically. ing.
【0017】なお上記実施例においてはガス通流溝の上
流部と下流部でその幅員を異にするが同一にしてしかも
その幅員を1.5mm以上にしたときも同様な結果が得
られる。またその材料はカーボンに代えてチタン,タン
タル等の金属を用いることもできる。In the above embodiment, the width is different between the upstream portion and the downstream portion of the gas flow groove, but the same result is obtained when the width is 1.5 mm or more. Further, as the material, metal such as titanium or tantalum may be used instead of carbon.
【0018】[0018]
【発明の効果】この発明によれば固体高分子電解質膜
と、アノードおよびカソードの両電極と、セパレータ板
とを有し、固体高分子電解質膜は水を包含して膜中をプ
ロトンが拡散し、アノードとカソードの両電極は、固体
高分子電解質膜を介して対向して配置され、セパレータ
板は燃料ガスおよび酸化剤ガスの両反応ガスが流れる複
数のガス通流溝をその一方の主面に備えて、前記電極の
配された固体高分子電解質膜を挟持し、アノードとカソ
ードにそれぞれ燃料ガスと酸化剤ガスを供給するもので
あり、この際前記ガス通流溝は少なくともその下流部が
1.5mm以上の幅員を有するので、セパレータ板のガ
ス通流溝内に凝結水が滞留することがなく速やかに排出
され、この結果出力の安定した固体高分子電解質型燃料
電池が得られる。According to the present invention, a solid polymer electrolyte membrane, both anode and cathode electrodes, and a separator plate are provided. The solid polymer electrolyte membrane contains water so that protons diffuse in the membrane. Both the anode and cathode electrodes are arranged to face each other with a solid polymer electrolyte membrane in between, and the separator plate has a plurality of gas flow grooves through which both reaction gases of a fuel gas and an oxidant gas flow, and its main surface is one side. In preparation for this, the solid polymer electrolyte membrane having the electrodes is sandwiched, and the fuel gas and the oxidant gas are supplied to the anode and the cathode, respectively. At this time, at least the downstream portion of the gas flow groove is Since it has a width of 1.5 mm or more, the condensed water does not stay in the gas flow grooves of the separator plate and is quickly discharged. As a result, a solid polymer electrolyte fuel cell with stable output can be obtained.
【図1】この発明の実施例に係る固体高分子電解質型燃
料電池のセパレータ板を示し、図1(a)はセパレータ
板の平面図、図1(b)はセパレータ板のAA断面図、
図1(c)はセパレータ板のBB断面図1 shows a separator plate of a solid polymer electrolyte fuel cell according to an embodiment of the present invention, FIG. 1 (a) is a plan view of the separator plate, FIG. 1 (b) is a sectional view taken along the line AA of the separator plate,
FIG. 1C is a BB cross-sectional view of the separator plate.
【図2】本発明の実施例に係る固体高分子電解質型燃料
電池の単電池出力につきその時間特性(特性(イ))を
従来の時間特性(特性(ロ))と対比して示す線図FIG. 2 is a diagram showing the time characteristic (characteristic (a)) of the output of a single cell of the solid polymer electrolyte fuel cell according to the embodiment of the present invention in comparison with the conventional time characteristic (characteristic (b)).
【図3】従来の固体高分子電解質型燃料電池の単電池を
示す平面図FIG. 3 is a plan view showing a unit cell of a conventional solid polymer electrolyte fuel cell.
【図4】従来の固体高分子電解質型燃料電池のスタック
を示す側面図FIG. 4 is a side view showing a stack of a conventional solid polymer electrolyte fuel cell.
1 固体高分子電解質膜 2 アノード 3 カソード 4 ガス通流溝 5 セパレータ板 6 単電池 7 冷却板 8 集電板 9 絶縁板 10 締めつけ板 11 締めつけボルト 12 スタック 13 マニホルド 14 セパレータ板内マニホルド 15 ガス通流溝 16 セパレータ板内マニホルド 17 マニホルド 1 Solid Polymer Electrolyte Membrane 2 Anode 3 Cathode 4 Gas Flow Groove 5 Separator Plate 6 Single Cell 7 Cooling Plate 8 Current Collector 9 Insulating Plate 10 Clamping Plate 11 Clamping Bolt 12 Stack 13 Manifold 14 Manifold in Separator Plate 15 Gas Flowing Groove 16 Manifold in separator plate 17 Manifold
Claims (4)
ソードの両電極と、セパレータ板とを有し、 固体高分子電解質膜は水を包含して膜中をプロトンが拡
散し、 アノードとカソードの両電極は、固体高分子電解質膜を
介して対向して配置され、 セパレータ板は燃料ガスおよび酸化剤ガスの両反応ガス
が流れる複数のガス通流溝をその一方の主面に備えて、
前記電極の配された固体高分子電解質膜を挟持し、アノ
ードとカソードにそれぞれ燃料ガスと酸化剤ガスを供給
するものであり、この際前記ガス通流溝は少なくともそ
の下流部が1.5mm以上の幅員を有することを特徴と
する固体高分子電解質型燃料電池。1. A solid polymer electrolyte membrane, both anode and cathode electrodes, and a separator plate, wherein the solid polymer electrolyte membrane contains water so that protons diffuse in the membrane, Both electrodes are arranged so as to face each other with the solid polymer electrolyte membrane interposed therebetween, and the separator plate is provided with a plurality of gas flow grooves through which both reaction gases of the fuel gas and the oxidant gas flow, on one main surface thereof,
The solid polymer electrolyte membrane having the electrodes is sandwiched and fuel gas and oxidant gas are supplied to the anode and the cathode, respectively. At this time, at least the downstream portion of the gas flow groove is 1.5 mm or more. A solid polymer electrolyte fuel cell having a width of
ータ板はカーボンからなることを特徴とする固体高分子
電解質型燃料電池。2. The solid polymer electrolyte fuel cell according to claim 1, wherein the separator plate is made of carbon.
ータ板は金属からなることを特徴とする固体高分子電解
質型燃料電池。3. The solid polymer electrolyte fuel cell according to claim 1, wherein the separator plate is made of metal.
流溝は鉛直の方向に配置されるものであることを特徴と
する固体高分子電解質型燃料電池。4. The solid polymer electrolyte fuel cell according to claim 1, wherein the gas flow channels are arranged in a vertical direction.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4044993A JPH05251097A (en) | 1992-03-03 | 1992-03-03 | Solid polymer electrolyte fuel cell |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4044993A JPH05251097A (en) | 1992-03-03 | 1992-03-03 | Solid polymer electrolyte fuel cell |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05251097A true JPH05251097A (en) | 1993-09-28 |
Family
ID=12706964
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4044993A Pending JPH05251097A (en) | 1992-03-03 | 1992-03-03 | Solid polymer electrolyte fuel cell |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05251097A (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0716463A2 (en) | 1994-11-11 | 1996-06-12 | Toyota Jidosha Kabushiki Kaisha | A polyelectrolytic fuel cell and the method of controlling the operation thereof |
| FR2786027A1 (en) * | 1998-11-12 | 2000-05-19 | Commissariat Energie Atomique | BIPOLAR PLATES FOR FUEL CELL AND FUEL CELL COMPRISING SUCH PLATES |
| US6365295B1 (en) | 1999-01-29 | 2002-04-02 | Aisin Takaoka Co., Ltd. | Fuel cell and separator comprising contact lugs with specific widths |
| JP2004079245A (en) * | 2002-08-12 | 2004-03-11 | Honda Motor Co Ltd | Fuel cell |
| KR20040050612A (en) * | 2002-12-10 | 2004-06-16 | 엘지전자 주식회사 | Bipolar plate structure of fuel cell |
| US7138200B1 (en) * | 1997-12-18 | 2006-11-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and separator for the same |
| JP2007294327A (en) * | 2006-04-27 | 2007-11-08 | Hitachi Ltd | Polymer electrolyte fuel cell and separator |
| US7378177B2 (en) * | 2004-09-30 | 2008-05-27 | Proton Energy Systems, Inc. | Electrochemical cell bipolar plate |
| US7452623B2 (en) | 2004-11-11 | 2008-11-18 | Proton Energy Systems, Inc. | Electrochemical cell bipolar plate with sealing feature |
| JP2008287943A (en) * | 2007-05-15 | 2008-11-27 | Toyota Motor Corp | Gas flow path forming member for fuel cell and fuel cell |
| JP2009266828A (en) * | 2009-07-10 | 2009-11-12 | Honda Motor Co Ltd | Fuel cell |
| WO2012114432A1 (en) * | 2011-02-21 | 2012-08-30 | トヨタ自動車株式会社 | Fuel cell |
| WO2015045204A1 (en) * | 2013-09-30 | 2015-04-02 | Brother Kogyo Kabushiki Kaisha | Fuel cell and separator |
-
1992
- 1992-03-03 JP JP4044993A patent/JPH05251097A/en active Pending
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0716463A2 (en) | 1994-11-11 | 1996-06-12 | Toyota Jidosha Kabushiki Kaisha | A polyelectrolytic fuel cell and the method of controlling the operation thereof |
| US7138200B1 (en) * | 1997-12-18 | 2006-11-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and separator for the same |
| US7572537B2 (en) * | 1997-12-18 | 2009-08-11 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and separator for the same |
| FR2786027A1 (en) * | 1998-11-12 | 2000-05-19 | Commissariat Energie Atomique | BIPOLAR PLATES FOR FUEL CELL AND FUEL CELL COMPRISING SUCH PLATES |
| WO2000030199A1 (en) * | 1998-11-12 | 2000-05-25 | Commissariat A L'energie Atomique | Bipolar plates for fuel cell and fuel cell comprising same |
| US6365295B1 (en) | 1999-01-29 | 2002-04-02 | Aisin Takaoka Co., Ltd. | Fuel cell and separator comprising contact lugs with specific widths |
| DE10003682B4 (en) * | 1999-01-29 | 2005-06-30 | Aisin Takaoka Co., Ltd., Toyota | Fuel cell and separator |
| JP2004079245A (en) * | 2002-08-12 | 2004-03-11 | Honda Motor Co Ltd | Fuel cell |
| KR20040050612A (en) * | 2002-12-10 | 2004-06-16 | 엘지전자 주식회사 | Bipolar plate structure of fuel cell |
| US7378177B2 (en) * | 2004-09-30 | 2008-05-27 | Proton Energy Systems, Inc. | Electrochemical cell bipolar plate |
| US7452623B2 (en) | 2004-11-11 | 2008-11-18 | Proton Energy Systems, Inc. | Electrochemical cell bipolar plate with sealing feature |
| JP2007294327A (en) * | 2006-04-27 | 2007-11-08 | Hitachi Ltd | Polymer electrolyte fuel cell and separator |
| JP2008287943A (en) * | 2007-05-15 | 2008-11-27 | Toyota Motor Corp | Gas flow path forming member for fuel cell and fuel cell |
| JP2009266828A (en) * | 2009-07-10 | 2009-11-12 | Honda Motor Co Ltd | Fuel cell |
| WO2012114432A1 (en) * | 2011-02-21 | 2012-08-30 | トヨタ自動車株式会社 | Fuel cell |
| JP5408263B2 (en) * | 2011-02-21 | 2014-02-05 | トヨタ自動車株式会社 | Fuel cell |
| WO2015045204A1 (en) * | 2013-09-30 | 2015-04-02 | Brother Kogyo Kabushiki Kaisha | Fuel cell and separator |
| JP2015092446A (en) * | 2013-09-30 | 2015-05-14 | ブラザー工業株式会社 | Fuel cell and separator |
| US9614239B2 (en) | 2013-09-30 | 2017-04-04 | Brother Kogyo Kabushiki Kaisha | Fuel cell and separator |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5773160A (en) | Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams | |
| US5252410A (en) | Lightweight fuel cell membrane electrode assembly with integral reactant flow passages | |
| CA2490877C (en) | Humidity controlled solid polymer electrolyte fuel cell assembly | |
| US20100068599A1 (en) | Fuel cell stack | |
| US20020192530A1 (en) | Fuel cell that can stably generate electricity with excellent characteristics | |
| JP6745920B2 (en) | Bipolar plate with variable width in the reaction gas channel in the inlet region of the active region, fuel cell stack, fuel cell system with such bipolar plate, and vehicle | |
| JPH08273687A (en) | Supply gas humidifier of fuel cell | |
| JP4880836B2 (en) | Fuel cell stack and reaction gas supply method | |
| JPH05251097A (en) | Solid polymer electrolyte fuel cell | |
| JP2003282133A (en) | Fuel cell stack | |
| JP3111682B2 (en) | Solid polymer electrolyte fuel cell system | |
| JP3354550B2 (en) | Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack | |
| JP2005142001A (en) | Fuel cell having a stack structure | |
| JPH08203553A (en) | Solid polymer electrolyte fuel cell | |
| JPH05144451A (en) | Reactant gas / cooling medium flow structure for solid polymer electrolyte fuel cells | |
| JP2000277128A (en) | Solid polymer type fuel cell | |
| JP2006147425A (en) | Electrolyte membrane for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell | |
| JPH07288133A (en) | Fuel cell | |
| JP3673252B2 (en) | Fuel cell stack | |
| JP3350260B2 (en) | Solid polymer electrolyte fuel cell | |
| JP2004087190A (en) | Solid polymer cell assembly | |
| JPH05190193A (en) | Solid polymer electrolyte fuel cell | |
| JPH0963623A (en) | Solid polymer electrolyte fuel cell | |
| JP2004185904A (en) | Fuel cell | |
| JP2001015145A (en) | Solid polyelectrolyte fuel cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071004 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
| S303 | Written request for registration of pledge or change of pledge |
Free format text: JAPANESE INTERMEDIATE CODE: R316304 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20081004 |
|
| R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
| R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
| S303 | Written request for registration of pledge or change of pledge |
Free format text: JAPANESE INTERMEDIATE CODE: R316304 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20081004 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20091004 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091004 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091004 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20091004 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20091004 |
|
| LAPS | Cancellation because of no payment of annual fees |