[go: up one dir, main page]

JPH05251206A - Ptc element - Google Patents

Ptc element

Info

Publication number
JPH05251206A
JPH05251206A JP4967192A JP4967192A JPH05251206A JP H05251206 A JPH05251206 A JP H05251206A JP 4967192 A JP4967192 A JP 4967192A JP 4967192 A JP4967192 A JP 4967192A JP H05251206 A JPH05251206 A JP H05251206A
Authority
JP
Japan
Prior art keywords
current
temperature coefficient
positive temperature
ptc
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4967192A
Other languages
Japanese (ja)
Other versions
JP2613343B2 (en
Inventor
Tetsuo Yamaguchi
哲生 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP4967192A priority Critical patent/JP2613343B2/en
Publication of JPH05251206A publication Critical patent/JPH05251206A/en
Application granted granted Critical
Publication of JP2613343B2 publication Critical patent/JP2613343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】 【構成】 それぞれ直径および特性の異なる円盤状ない
しドーナツ盤状に原料粉を成型した3種類のPTC1〜
3を同心状に配置し、かつ、互いに側面が接触しないよ
うに酸化ジルコニウムをドーナツ盤状に成型した成型品
6・7を介在させて多重した基体10を、1350℃で
2時間焼成する。 【効果】 電圧変動に対する電流安定化領域の幅、およ
び電流の変動率を最適に設定した電流安定化素子や印加
電圧に対して電流を減衰させる電流低減効果が増大した
電流低減素子等に応用可能なPTC素子を得ることがで
きる。セラミックスボンド等の接着剤、あるいはビス等
の治具を用いずに、複数個の正特性サーミスタを複合さ
せて1素子同様の工程によって電極を形成して一つの素
子にすることができる。複数個の正特性サーミスタを別
々に焼成する手間が省ける。
(57) [Summary] [Structure] Three types of PTC1 made by molding raw material powder into discs or donuts with different diameters and characteristics.
Substrates 10 in which 3 are arranged concentrically and in which zirconium oxide is molded in a donut disc shape so as to prevent the side surfaces from contacting each other and the multiple bodies are interposed, are baked at 1350 ° C. for 2 hours. [Effect] Applicable to the current stabilization element with the width of the current stabilization region and the fluctuation rate of the current to the voltage fluctuation optimized, and the current reduction element with the increased current reduction effect that attenuates the current with respect to the applied voltage. It is possible to obtain a different PTC element. Without using an adhesive such as a ceramics bond or a jig such as a screw, a plurality of positive temperature coefficient thermistors can be compounded to form an electrode in the same process as one device to form one device. It is possible to save the trouble of separately firing a plurality of positive temperature coefficient thermistors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、電流安定化素
子や電流低減素子等に応用可能なPTC素子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PTC element applicable to, for example, a current stabilizing element and a current reducing element.

【0002】[0002]

【従来の技術】純度の高いチタン酸バリウムの原料に、
例えばランタンのようなランタノイド等を添加して焼成
すると、温度上昇と共に抵抗値も増大する特性、いわゆ
るPTC(positive temperature coefficient)特性を
有するチタン酸バリウム半導体磁器が得られることは、
従来から広く知られている。また、チタン酸バリウム半
導体磁器が強誘電体から常誘電体へ相転移を起こすキュ
リー点近傍で、顕著なPTC特性が出現することもよく
知られている。
2. Description of the Related Art As a raw material for high-purity barium titanate,
For example, when a lanthanoid such as lanthanum is added and fired, a barium titanate semiconductor porcelain having a characteristic that a resistance value increases with temperature rise, that is, a so-called PTC (positive temperature coefficient) characteristic is obtained.
It has been widely known from the past. It is also well known that a remarkable PTC characteristic appears in the vicinity of the Curie point at which a barium titanate semiconductor porcelain causes a phase transition from a ferroelectric substance to a paraelectric substance.

【0003】このようなチタン酸バリウム半導体磁器等
のPTC特性を利用した装置として、例えばカラーTV
用自動消磁装置に用いられる正特性サーミスタ装置が提
案されている(特開昭61−23301号公報)。この
正特性サーミスタ装置では、消磁効果を増大させるため
に、2個のチタン酸バリウム半導体磁器等の正特性サー
ミスタを使用している。また、正特性サーミスタと通常
の抵抗とを並列接続することにより定電流回路を構成で
きることを紹介している文献(増補版チタバリ系半導
体:エレセラ出版委員会編……1980 7.10 増補初版) も
ある。
As a device utilizing the PTC characteristics of such barium titanate semiconductor porcelain, for example, a color TV
A positive temperature coefficient thermistor device used for an automatic degaussing device has been proposed (Japanese Patent Laid-Open No. 61-23301). In this positive temperature coefficient thermistor device, two positive temperature coefficient thermistors such as barium titanate semiconductor porcelain are used to increase the demagnetization effect. In addition, there is also a document (enlarged version of Chitavari-based semiconductor: Erasera Publishing Committee ed., 1980 7.10 expanded first edition) that introduces that a constant current circuit can be constructed by connecting a positive temperature coefficient thermistor and a normal resistor in parallel.

【0004】また、一般に正特性サーミスタでは、正特
性サーミスタの温度に対する抵抗率は、低温からキュリ
ー点近傍までの温度範囲で減少したのち、キュリー点近
傍から高温の温度範囲で急激に増大する。このため、正
特性サーミスタを流れる電流は、印加電圧に対して所定
の値まで単調増加したのち、所定の値以上では単調減少
するように推移する。尚、電流のピーク値に対応する電
圧の所定値は、キュリー点が高い正特性サーミスタほど
大きくなる。
Generally, in a PTC thermistor, the resistivity of the PTC thermistor with respect to temperature decreases in the temperature range from a low temperature to near the Curie point and then rapidly increases in the temperature range from near the Curie point to a high temperature. Therefore, the current flowing through the positive temperature coefficient thermistor monotonically increases to a predetermined value with respect to the applied voltage and then monotonically decreases above the predetermined value. It should be noted that the predetermined value of the voltage corresponding to the peak value of the current becomes larger in the positive characteristic thermistor having a higher Curie point.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
開昭61−23301号公報に開示された正特性サーミ
スタ装置は、内部に組み込まれる2個の正特性サーミス
タのそれぞれの両面(合計4面)に陽極・陰極の電極加
工を施す必要がある。即ち、一般に正特性サーミスタを
複数個使用した正特性サーミスタ装置等を作製する場合
には、電極加工の工程数は「サーミスタ数×2」工程だ
け必要となり、製造工程が非常に煩雑になり、部品点数
も多くなるためコスト高を招来するという問題点を有し
ている。
However, the positive temperature coefficient thermistor device disclosed in Japanese Patent Laid-Open No. 61-23301 described above has two positive temperature coefficient thermistors installed on both sides (a total of four sides). It is necessary to process the anode and cathode electrodes. That is, generally, when manufacturing a positive temperature coefficient thermistor device or the like using a plurality of positive temperature coefficient thermistors, the number of electrode processing steps is "the number of thermistors x 2", which makes the manufacturing process very complicated and Since the number of points increases, there is a problem that the cost increases.

【0006】従って、複数個の正特性サーミスタを用い
ながら、1素子同様に簡素化された電極加工が可能な、
電流安定化素子や電流低減素子等に応用可能なPTC素
子が望まれている。
Therefore, while using a plurality of positive temperature coefficient thermistors, it is possible to perform electrode processing as simple as one element.
A PTC element applicable to a current stabilizing element, a current reducing element, etc. is desired.

【0007】[0007]

【課題を解決するための手段】本発明のPTC素子は、
キュリー点がそれぞれ異なる複数個の正特性サーミスタ
を並列に接続し、電極板で挾持してなるPTC素子であ
って、上記複数個の正特性サーミスタが互いに接触しな
いように酸化ジルコニウムを介在させた後に焼成して、
この正特性サーミスタと酸化ジルコニウムとが融着した
複合体を上記PTC素子の基体に供することを特徴とし
ている。
The PTC element of the present invention comprises:
A PTC element in which a plurality of positive temperature coefficient thermistors having different Curie points are connected in parallel and sandwiched by an electrode plate, and zirconium oxide is interposed so that the plurality of positive temperature coefficient thermistors do not contact each other. Bake,
The composite of the positive temperature coefficient thermistor and zirconium oxide fused together is used as the substrate of the PTC element.

【0008】[0008]

【作用】キュリー点がそれぞれ異なる複数個の正特性サ
ーミスタを並列に接続し、1つの素子を形成すると、こ
の素子の電流−電圧特性は、各正特性サーミスタの電流
−電圧特性のピーク部分を単純に連続させたような特性
曲線となる。
When a plurality of positive characteristic thermistors each having a different Curie point are connected in parallel to form one element, the current-voltage characteristic of this element has a simple peak portion of the current-voltage characteristic of each positive characteristic thermistor. The characteristic curve is continuous.

【0009】そこで、上記構成により、異なる特性の正
特性サーミスタを複数個組み合わせることによって、電
圧変動に対する電流安定化領域の幅、および電流の変動
率を最適に設定した電流安定化素子や印加電圧に対して
電流を減衰させる電流低減効果が増大した電流低減素子
等に応用可能なPTC素子を得ることができる。
Therefore, by combining a plurality of positive temperature coefficient thermistors having different characteristics with the above configuration, the width of the current stabilization region with respect to voltage fluctuations and the current stabilization element or applied voltage with the fluctuation rate of the current set optimally can be obtained. On the other hand, it is possible to obtain a PTC element that can be applied to a current reducing element or the like with an increased current reducing effect of attenuating the current.

【0010】従って、例えばセラミックスボンド等の接
着剤、あるいはビス等の治具を用いずに、複数個の正特
性サーミスタを複合させて1素子同様の工程によって電
極を形成して一つの素子にすることができる。また、酸
化ジルコニウムを介在させて複数個の正特性サーミスタ
を複合した後に焼成するので、複数個の正特性サーミス
タを別々に焼成する手間が省ける。尚、例えばPTC素
子を電流安定化素子として用いた場合は、電圧が変動し
易い地域で使用される機器の保護、および電圧が不所望
に変動する事故に対する機器の保護等を行うことができ
る。
Therefore, without using an adhesive such as a ceramic bond or a jig such as a screw, a plurality of positive temperature coefficient thermistors are combined and electrodes are formed by the same process as one element to form one element. be able to. Further, since a plurality of PTC thermistors are compounded with zirconium oxide interposed therebetween and then the PTC thermistors are fired, it is possible to save the labor of firing the PTC thermistors separately. When a PTC element is used as a current stabilizing element, for example, it is possible to protect equipment used in an area where the voltage easily fluctuates, protect equipment against accidents where the voltage fluctuates undesirably, and the like.

【0011】[0011]

【実施例】本発明の一実施例について図1ないし図7に
基づいて説明すれば、以下の通りである。尚、本実施例
では、PTC素子を電流安定化素子として用いた場合に
ついて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following will describe one embodiment of the present invention with reference to FIGS. In this embodiment, the case where the PTC element is used as the current stabilizing element will be described.

【0012】本実施例では、正特性サーミスタとして、
後述する焼成プロファイルに従って焼成した場合に表1
に示す抵抗値Rおよびキュリー点Tcを示すような、4
種類の異なった組成のチタン酸バリウム半導体磁器(以
下、PTCと称する)1〜4を用いた。上記抵抗値Rは
25℃における値を示している。
In this embodiment, as a positive temperature coefficient thermistor,
Table 1 when fired according to the firing profile described below.
The resistance value R and the Curie point Tc shown in
Barium titanate semiconductor porcelains (hereinafter referred to as PTCs) 1 to 4 having different compositions were used. The resistance value R indicates a value at 25 ° C.

【0013】[0013]

【表1】 [Table 1]

【0014】組成中のチタン酸鉛はチタン酸バリウムの
キュリー点Tcを高温側にシフトさせるシフターであ
り、チタン酸ストロンチウムはチタン酸バリウムのキュ
リー点Tcを低温側にシフトさせるシフターである。
Lead titanate in the composition is a shifter for shifting the Curie point Tc of barium titanate to the high temperature side, and strontium titanate is a shifter for shifting the Curie point Tc of barium titanate to the low temperature side.

【0015】上記PTC1〜4のI−V特性、即ち、電
流−電圧特性を図3(ア)〜(エ)に示す(但し、電流
−電圧特性は両対数で表示している)。電流−電圧特性
は、各PTC1〜4に徐々に増大する電圧を印加しなが
ら、電流値を測定することによって得られる。図3か
ら、キュリー点Tcが高いものほど、ピーク電流に対応
する電圧値が大きくなり、また、電流−電圧特性曲線が
急峻になっていることがわかる。
The IV characteristics of the PTCs 1 to 4, that is, the current-voltage characteristics are shown in FIGS. 3A to 3D (however, the current-voltage characteristics are shown in logarithm). The current-voltage characteristic is obtained by measuring the current value while applying a gradually increasing voltage to each PTC1-4. It can be seen from FIG. 3 that the higher the Curie point Tc, the larger the voltage value corresponding to the peak current and the steeper the current-voltage characteristic curve.

【0016】次に、上記PTC1とPTC4とを、図4
に示すように並列に接続し、直流可変電源5を用いて同
様に電流−電圧特性を測定したところ、図5に示すよう
な電流−電圧特性曲線が得られた。図3(ア)、図3
(エ)および図5を比較すると、図5の特性曲線は、図
3(ア)の特性曲線と図3(エ)の特性曲線との算術的
な重ね合わせにはなっておらず、図3(ア)の特性曲線
のピーク部分と図3(エ)の特性曲線のピーク部分とを
単純に連続させたような形状となっていることがわか
る。つまり、数V程度の低電圧のときには、PTC1に
比べてPTC4の抵抗値が充分大きいので、PTC4は
ほとんど動作していないことになり、PTC1の電流−
電圧特性が支配的となると推論される。
Next, the above PTC1 and PTC4 are shown in FIG.
When the current-voltage characteristics were similarly measured using the variable DC power supply 5 connected in parallel as shown in FIG. 5, a current-voltage characteristic curve as shown in FIG. 5 was obtained. Fig. 3 (a) and Fig. 3
5D and FIG. 5 are compared, the characteristic curve of FIG. 5 is not an arithmetic superposition of the characteristic curve of FIG. 3A and the characteristic curve of FIG. It can be seen that the shape is such that the peak portion of the characteristic curve of (A) and the peak portion of the characteristic curve of FIG. That is, at a low voltage of about several volts, the resistance value of PTC4 is sufficiently larger than that of PTC1, so that PTC4 is almost not operating, and the current of PTC1
It is inferred that the voltage characteristic becomes dominant.

【0017】一方、印加電圧が10V程度を越えると、
PTC1の温度上昇は、PTC4の温度上昇によって加
速されるため、PTC1を流れる電流は、図3(ア)に
示された場合よりも速く減衰する。このため、印加電圧
が10V程度を越えると、PTC4の電流−電圧特性に
対して、PTC1はほとんど影響を与えなくなると推論
される。このことから、PTC1・4における最適な特
性の組合せを選択することによって、例えば2〜40V
程度の電圧変動範囲に対する電流安定化領域の幅、およ
び電流変動率を最適に設計することが可能であると考え
られる。また、キュリー点Tcがそれぞれ異なる3個以
上の複数個のPTCを並列に接続することにより、電圧
の変動に対して電流をより一層安定化させることができ
ると考えられる。
On the other hand, when the applied voltage exceeds about 10 V,
Since the temperature rise of PTC1 is accelerated by the temperature rise of PTC4, the current flowing through PTC1 decays faster than in the case shown in FIG. Therefore, it is inferred that when the applied voltage exceeds about 10 V, the PTC1 has almost no effect on the current-voltage characteristics of the PTC4. From this, by selecting the optimum combination of characteristics in PTC1.4, for example, 2-40V
It is considered possible to optimally design the width of the current stabilization region with respect to the voltage fluctuation range of a certain degree and the current fluctuation rate. Further, it is considered that the current can be further stabilized against the fluctuation of the voltage by connecting in parallel a plurality of three or more PTCs each having a different Curie point Tc.

【0018】そこで、キュリー点Tc等の特性がそれぞ
れ異なる表1に示した3種類のPTC1〜3を並列に接
続して、1個のPTC素子を作成する方法について鋭意
検討した結果、上記PTC1〜3を作成する原料粉を成
型後、この成型した原料粉同士が互いに接触しないよう
に酸化ジルコニウム(ZrO2 )を成型した成型品を介
在させた状態で組み合わせ、下記に示す焼成プロファイ
ルに従って焼成したPTC1〜3および酸化ジルコニウ
ムの複合体が、PTC1〜3をそれぞれ単独で焼成して
並列に接続した場合と同一の特性曲線を示し、かつ、1
素子同様に簡素化された電極加工が可能であるという事
実を究明した。尚、酸化ジルコニウムは、PTCと全く
反応しない絶縁体である。
Then, as a result of earnestly studying a method of connecting three types of PTC1 to 3 shown in Table 1 having different characteristics such as Curie point Tc in parallel to each other to produce one PTC element, as a result, the above PTC1 to After molding the raw material powders for producing No. 3, PTC1 was fired in accordance with the firing profile shown below, with a molded article of zirconium oxide (ZrO 2 ) intervening so as to prevent the molded raw material powders from contacting each other. ~ 3 and zirconium oxide composites exhibit the same characteristic curves as when PTC1 to PTC1 to 3 were respectively fired individually and connected in parallel, and 1
We clarified the fact that a simplified electrode processing is possible like the device. Zirconium oxide is an insulator that does not react with PTC at all.

【0019】この複合体を基体として用いた多重円盤型
のPTC素子を作成するための具体的な作成例について
以下に説明する。
A specific production example for producing a multi-disc type PTC element using this composite as a substrate will be described below.

【0020】図1に示すように、多重円盤型のPTC素
子の基体(複合体)10は、それぞれ直径および特性の
異なる円盤状ないしドーナツ盤状に原料粉を成型した3
種類のPTC1〜3を同心状に配置し、かつ、互いに側
面が接触しないように酸化ジルコニウムをドーナツ盤状
に成型した成型品6・7を介在させた多重構造となって
いる。3種類のPTC1〜3の配列順序は、それぞれの
特性によらず任意であってよい。PTC1〜3の原料粉
の成型は、例えば金型に原料粉を入れてプレス加工する
等して行う。酸化ジルコニウムの成型品6・7は、粒子
の大きさが100μm以下の酸化ジルコニウム粉末(例
えば第一稀元素化学株式会社製 AS−2100)に、
バインダーとしてポリビニルアルコール(PVA、例え
ば日本合成化学株式会社製)を加えて乾燥したものを、
例えば金型に入れてプレス加工する等して作成する。こ
の酸化ジルコニウムの成型品6・7は、例えば肉厚が1
mm程度あればよく、さらに薄くてもよい。この基体10
をAir気流下で次の〜に示す焼成プロファイルに
従って焼成する。
As shown in FIG. 1, a multi-disc type PTC element substrate (composite body) 10 is formed by molding raw material powder into discs or donut discs having different diameters and characteristics.
The PTCs 1 to 3 of the kind are arranged concentrically, and a multi-layered structure is formed in which molded products 6 and 7 formed by molding zirconium oxide into a donut disk shape are interposed so that the side surfaces do not contact each other. The arrangement order of the three types of PTCs 1 to 3 may be arbitrary regardless of their characteristics. The raw material powder for PTC1 to PTC3 is molded, for example, by putting the raw material powder in a mold and pressing. The molded products 6 and 7 of zirconium oxide are zirconium oxide powder having a particle size of 100 μm or less (for example, AS-2100 manufactured by Daiichi Rare Element Chemical Co., Ltd.),
Polyvinyl alcohol (PVA, for example, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was added as a binder and dried,
For example, it is created by putting it in a mold and pressing. The zirconium oxide molded products 6 and 7 have, for example, a wall thickness of 1
It may be about mm, and may be thinner. This base 10
Is fired under air flow according to the firing profiles shown in the following.

【0021】 室温から500℃に2時間45分掛け
て昇温する 500℃で2時間保持する 500℃から1350℃に4時間45分掛けて昇温
する 1350℃で2時間保持する 1350℃から1000℃に2時間45分掛けて降
温する 1000℃から室温に炉冷(炉内で自然冷却)する 上記の焼成プロファイルに従って焼成した基体10は、
それぞれのPTCが酸化ジルコニウムと融着することに
より一体化するが、個々のPTC内の原子の拡散は殆ど
起こらない。即ち、それぞれのPTCは酸化ジルコニウ
ムを介して熱的に接触しているが、融着したPTCと酸
化ジルコニウムとの境界面での原子の移動は殆ど無いの
で、基体10の電流−電圧特性は、図2に示すように、
PTC1〜3をそれぞれ単独で焼成して並列に接続した
場合に示すと考えられる電流−電圧特性と同一の特性曲
線を示している。つまり、得られた特性曲線は、図3
(ア)〜(ウ)の特性曲線の各ピーク部分を単純に連続
させたような形状となっている。しかも、2〜20V程
度の電圧変動範囲では、電流変動範囲がおよそ45〜6
5mAであって、図5よりも一層電流値が安定化してい
ることがわかる。尚、PTCは酸化ジルコニウムと融着
することにより一体化するので、PTC1〜3の原料粉
や酸化ジルコニウムの成型は、厳密に行う必要はなく、
互いに側面が接触して多重する程度の精度であればよ
い。但し、粒子の大きさが100μm以上の酸化ジルコ
ニウム粉末を用いると、それぞれのPTCは酸化ジルコ
ニウムと融着しないので好ましくない。
Temperature rising from room temperature to 500 ° C. over 2 hours 45 minutes Hold at 500 ° C. for 2 hours Temperature rising from 500 ° C. to 1350 ° C. over 4 hours 45 minutes Hold for 1 hour at 1350 ° C. 1350 ° C. to 1000 The temperature is lowered to 2 ° C. for 2 hours and 45 minutes. The furnace is cooled from 1000 ° C. to room temperature (natural cooling in the furnace).
Each PTC is fused with zirconium oxide to be integrated, but diffusion of atoms in each PTC hardly occurs. That is, the respective PTCs are in thermal contact with each other through zirconium oxide, but since there is almost no movement of atoms at the boundary surface between the fused PTC and zirconium oxide, the current-voltage characteristic of the substrate 10 is: As shown in FIG.
The characteristic curve is the same as the current-voltage characteristic that is considered to be exhibited when the PTCs 1 to 3 are fired individually and connected in parallel. That is, the obtained characteristic curve is as shown in FIG.
Each of the peak portions of the characteristic curves (a) to (c) has a shape that is simply continuous. Moreover, in the voltage fluctuation range of about 2 to 20 V, the current fluctuation range is about 45 to 6
It is 5 mA, and it can be seen that the current value is more stable than in FIG. Since PTC is fused and integrated with zirconium oxide, it is not necessary to strictly mold raw material powders of PTC1 to 3 and zirconium oxide.
The accuracy may be such that the side surfaces are in contact with each other and are multiplexed. However, it is not preferable to use zirconium oxide powder having a particle size of 100 μm or more because each PTC does not fuse with zirconium oxide.

【0022】焼成した基体10に、図6に示すように、
3種類のPTC1〜3が並列の接続となるように基体1
0の上面および底面にそれぞれ電極板11・12を取り
付け、さらに各電極板11・12に端子13・14を取
り付けて多重円盤型のPTC素子18が完成する。この
ように、本PTC素子18は、3種類のPTC1〜3を
用いているにも関わらず、電極加工のための工程数は1
素子と同様に簡素化することができる。必要に応じて、
基体10および電極板11・12の全体を樹脂塗膜等に
よって被覆すると、図7に示すように、ラジアルタイプ
のPTC素子19となる。
On the fired substrate 10, as shown in FIG.
Base 1 so that three types of PTC1 to 3 are connected in parallel
Electrode plates 11 and 12 are attached to the top and bottom surfaces of 0, respectively, and terminals 13 and 14 are attached to each electrode plate 11 and 12 to complete the multi-disc PTC element 18. As described above, the present PTC element 18 uses only three types of PTC1 to 3, but the number of steps for electrode processing is one.
It can be as simple as an element. If necessary,
When the substrate 10 and the electrode plates 11 and 12 are entirely covered with a resin coating film or the like, as shown in FIG. 7, a radial type PTC element 19 is obtained.

【0023】上記構成により、本発明のPTC素子は、
電圧変動に対する電流安定化領域の幅、および電流の変
動率を最適に設定した電流安定化素子として用いること
ができる。また、例えばセラミックスボンド等の接着
剤、あるいはビス等の治具を用いずに、複数個の正特性
サーミスタを複合させて1素子同様の工程によって電極
を形成して一つの素子にすることができる。さらに、酸
化ジルコニウムを介在させて複数個の正特性サーミスタ
を複合した後に焼成するので、複数個の正特性サーミス
タを別々に焼成する手間が省ける。
With the above structure, the PTC element of the present invention is
It can be used as a current stabilizing element in which the width of the current stabilizing region with respect to voltage fluctuation and the rate of current fluctuation are optimally set. Further, for example, without using an adhesive such as a ceramic bond or a jig such as a screw, a plurality of positive temperature coefficient thermistors can be combined to form an electrode in the same step as one element to form one element. .. Furthermore, since a plurality of PTC thermistors are combined with zirconium oxide interposed between them and then the PTC thermistors are fired, it is possible to save the trouble of firing the plurality of PTC thermistors separately.

【0024】尚、本実施例は、PTC素子を電流安定化
素子として用いた場合について説明したが、本PTC素
子は電流低減素子として用いることもできる。この場合
は、例えば、それぞれ直径および特性の異なる円盤状お
よびドーナツ盤状に原料粉を成型した2種類のPTCを
同心状に配置し、かつ、互いに側面が接触しないように
酸化ジルコニウムをドーナツ盤状に成型した成型品を介
在させた三重円盤型基体をAir気流下で上述の焼成プ
ロファイルに従って焼成する。そして、焼成した基体の
上面に、2種類のPTCに共通の電極板を取り付け、基
体底面に、各PTC毎に独立した電極板を取り付ければ
よい。2種類のPTCは同心状に配置されることにより
酸化ジルコニウムを介して熱的に接触しているので、キ
ュリー点等が低い方のPTCは、キュリー点等が高い方
のPTCによって効率よく加熱される。
In this embodiment, the PTC element is used as the current stabilizing element, but the PTC element can also be used as the current reducing element. In this case, for example, two types of PTC formed by molding the raw material powder into a disk shape and a donut disk shape having different diameters and characteristics are arranged concentrically, and zirconium oxide is formed into a donut disk shape so that side surfaces do not contact each other. The triple disk-shaped substrate with the molded product formed in between is fired in the air flow according to the above firing profile. Then, an electrode plate common to the two types of PTCs may be attached to the top surface of the fired substrate, and an independent electrode plate for each PTC may be attached to the bottom surface of the substrate. Since the two types of PTCs are arranged concentrically and are in thermal contact with each other through zirconium oxide, the PTC having a lower Curie point is efficiently heated by the PTC having a higher Curie point. It

【0025】上記構成により、本発明のPTC素子は、
印加電圧に対して電流を減衰させる電流低減効果が増大
した電流低減素子として用いることができる。また、例
えばセラミックスボンド等の接着剤、あるいはビス等の
治具を用いずに、2個の正特性サーミスタを複合させて
1素子同様の工程によって電極を形成して一つの素子に
することができる。さらに、酸化ジルコニウムを介在さ
せて2個の正特性サーミスタを複合した後に焼成するの
で、2個の正特性サーミスタを別々に焼成する手間が省
ける。
With the above structure, the PTC element of the present invention is
It can be used as a current reducing element having an increased current reducing effect of attenuating a current with respect to an applied voltage. Also, for example, without using an adhesive such as a ceramic bond or a jig such as a screw, two positive temperature coefficient thermistors can be combined to form an electrode in the same process as one element to form one element. .. Further, since the two positive temperature coefficient thermistors are compounded with zirconium oxide interposed and then fired, the time and effort for firing the two positive temperature coefficient thermistors separately can be saved.

【0026】[0026]

【発明の効果】本発明のPTC素子は、以上のように、
キュリー点がそれぞれ異なる複数個の正特性サーミスタ
を並列に接続し、電極板で挾持してなるPTC素子であ
って、上記複数個の正特性サーミスタが互いに接触しな
いように酸化ジルコニウムを介在させた後に焼成して、
この正特性サーミスタと酸化ジルコニウムとが融着した
複合体を上記PTC素子の基体に供する構成である。
As described above, the PTC element of the present invention has the following features.
A PTC element in which a plurality of positive temperature coefficient thermistors having different Curie points are connected in parallel and sandwiched by an electrode plate, and zirconium oxide is interposed so that the plurality of positive temperature coefficient thermistors do not contact each other. Bake,
The composite body in which the positive temperature coefficient thermistor and zirconium oxide are fused is used as the substrate of the PTC element.

【0027】それゆえ、異なる特性の正特性サーミスタ
を複数個組み合わせることによって、電圧変動に対する
電流安定化領域の幅、および電流の変動率を最適に設定
した電流安定化素子や印加電圧に対して電流を減衰させ
る電流低減効果が増大した電流低減素子等に応用可能な
PTC素子を得ることができる。
Therefore, by combining a plurality of positive temperature coefficient thermistors having different characteristics, the width of the current stabilizing region with respect to the voltage fluctuation and the current fluctuation element for which the fluctuation rate of the current is optimally set and the current to the applied voltage are set. It is possible to obtain a PTC element that can be applied to a current reduction element or the like with an increased current reduction effect that attenuates.

【0028】従って、例えばセラミックスボンド等の接
着剤、あるいはビス等の治具を用いずに、複数個の正特
性サーミスタを複合させて1素子同様の工程によって電
極を形成して一つの素子にすることができる。また、酸
化ジルコニウムを介在させて複数個の正特性サーミスタ
を複合した後に焼成するので、複数個の正特性サーミス
タを別々に焼成する手間が省けるという効果を奏する。
Therefore, for example, without using an adhesive such as a ceramic bond or a jig such as a screw, a plurality of positive temperature coefficient thermistors are compounded to form an electrode in the same process as one device to form one device. be able to. Further, since a plurality of PTC thermistors are compounded with zirconium oxide interposed therebetween and then the PTC thermistors are fired, it is possible to save the labor of firing the plurality of PTC thermistors separately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるPTC素子の基体
(複合体)を示す断面図である。
FIG. 1 is a cross-sectional view showing a base body (composite body) of a PTC element according to an embodiment of the present invention.

【図2】上記PTC素子の電流−電圧特性を示すグラフ
である。
FIG. 2 is a graph showing current-voltage characteristics of the PTC element.

【図3】キュリー点がそれぞれ異なる正特性サーミスタ
の電流−電圧特性を示すグラフである。
FIG. 3 is a graph showing current-voltage characteristics of positive temperature coefficient thermistors having different Curie points.

【図4】並列に接続された正特性サーミスタの電流−電
圧特性を測定するための回路図である。
FIG. 4 is a circuit diagram for measuring current-voltage characteristics of positive temperature coefficient thermistors connected in parallel.

【図5】キュリー点が互いに異なる2つの正特性サーミ
スタを並列に接続した場合における電流−電圧特性を示
すグラフである。
FIG. 5 is a graph showing current-voltage characteristics when two positive temperature coefficient thermistors having different Curie points are connected in parallel.

【図6】PTC素子を示す断面図である。FIG. 6 is a cross-sectional view showing a PTC element.

【図7】被覆したPTC素子を示す正面図である。FIG. 7 is a front view showing a covered PTC element.

【符号の説明】[Explanation of symbols]

1 チタン酸バリウム半導体磁器(PTC) 10 基体(複合体) 11 電極板 13 端子 1 Barium Titanate Semiconductor Porcelain (PTC) 10 Base (Composite) 11 Electrode Plate 13 Terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】キュリー点がそれぞれ異なる複数個の正特
性サーミスタを並列に接続し、電極板で挾持してなるP
TC素子であって、 上記複数個の正特性サーミスタが互いに接触しないよう
に酸化ジルコニウムを介在させた後に焼成して、この正
特性サーミスタと酸化ジルコニウムとが融着した複合体
を上記PTC素子の基体に供することを特徴とするPT
C素子。
1. A P comprising a plurality of positive temperature coefficient thermistors each having a different Curie point connected in parallel and sandwiched by an electrode plate.
A TC element, wherein a composite body in which the positive temperature coefficient thermistor and zirconium oxide are melt-bonded to each other is used as a substrate of the PTC element, the zirconium oxide being interposed between the plurality of positive temperature coefficient thermistors so that they do not contact each other. PT characterized by being used for
C element.
JP4967192A 1992-03-06 1992-03-06 PTC element Expired - Fee Related JP2613343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4967192A JP2613343B2 (en) 1992-03-06 1992-03-06 PTC element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4967192A JP2613343B2 (en) 1992-03-06 1992-03-06 PTC element

Publications (2)

Publication Number Publication Date
JPH05251206A true JPH05251206A (en) 1993-09-28
JP2613343B2 JP2613343B2 (en) 1997-05-28

Family

ID=12837638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4967192A Expired - Fee Related JP2613343B2 (en) 1992-03-06 1992-03-06 PTC element

Country Status (1)

Country Link
JP (1) JP2613343B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529851A (en) * 2008-08-07 2011-12-15 エプコス アクチエンゲゼルシャフト Molded body, heating device using the molded body, and method for manufacturing the molded body
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529851A (en) * 2008-08-07 2011-12-15 エプコス アクチエンゲゼルシャフト Molded body, heating device using the molded body, and method for manufacturing the molded body
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device
EP2310337B1 (en) * 2008-08-07 2016-11-02 Epcos AG Heating device and method for producing a heating device

Also Published As

Publication number Publication date
JP2613343B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JPS5928962B2 (en) Manufacturing method of thick film varistor
US4806739A (en) Plate-like ceramic heater
JPH05251206A (en) Ptc element
US2868935A (en) Thermosensitive resistance element
JP3327444B2 (en) Positive thermistor element
US3274467A (en) Ceramic capacitor
JPH05251205A (en) PTC element
TW569246B (en) Semiconductive ceramic, positive temperature coefficient thermistor for degaussing, degaussing circuit, and method for manufacturing semiconductive ceramic
US3574930A (en) Method of forming a printed thermistor on a metal sheet
JP2001274229A (en) Method of manufacturing electrostatic chuck and method of manufacturing ceramic heater
JPS6255281B2 (en)
JPH03246902A (en) Manufacturing method of positive temperature coefficient thermistor
US6432558B1 (en) Semiconductor ceramic and semiconductor ceramic device
JP2643545B2 (en) Positive thermistor element
JPH08195302A (en) Positive characteristic thermistor
JP2548458B2 (en) PTC thermistor device
CN1065219C (en) Semiconductor ceramics and manufacturing method thereof
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JPH0461301A (en) Positive characteristic thermister element
JP3894652B2 (en) Electrostatic chuck
JP2000016866A (en) Method for producing barium titanate-based semiconductor material
JPH11176612A (en) Method of manufacturing voltage non-linear resistor
JPH04364B2 (en)
JPS61101007A (en) Method for manufacturing thick film type positive temperature semiconductor device
JPS6158204A (en) Method for manufacturing thick film type positive temperature semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees