[go: up one dir, main page]

JPH05264903A - Wide-angle zoom lens - Google Patents

Wide-angle zoom lens

Info

Publication number
JPH05264903A
JPH05264903A JP4040515A JP4051592A JPH05264903A JP H05264903 A JPH05264903 A JP H05264903A JP 4040515 A JP4040515 A JP 4040515A JP 4051592 A JP4051592 A JP 4051592A JP H05264903 A JPH05264903 A JP H05264903A
Authority
JP
Japan
Prior art keywords
lens
group
lens group
wide
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4040515A
Other languages
Japanese (ja)
Other versions
JP3260798B2 (en
Inventor
Takanori Yamanashi
隆則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP04051592A priority Critical patent/JP3260798B2/en
Publication of JPH05264903A publication Critical patent/JPH05264903A/en
Application granted granted Critical
Publication of JP3260798B2 publication Critical patent/JP3260798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To provide the zoom lens which has a wide angle and is bright, and can correct satisfactorily its aberration without enlarging the overall length and the outside diameter by constituting a first lens group of two groups of specific front and rear groups. CONSTITUTION:In the lens system which consists of a first lens group of positive refracting power, a second lens group of positive refracting power, and a third lens group of negative refracting power in order from an object side, and can execute variable power by varying an interval between a first lens group and a second lens group, and an interval between a second group and a third group, a first lens group is constituted of two groups of the front group and the rear group, so that the following condition is satisfied. That is, ¦phif/phi1¦<6.0, provided that phif and phi1 denote refracting power of the front group of a first lens group, and a first lens group, respectively. According to this constitution, the overall length of a lens system can be shortened, by forming a first lens group, a second lens group, and a third group zoom lens as a fundamental constitution, a first lens group can be formed to a lens constitution being suitable for converting to a wide-angle, and the wide-angle conversion can be attained moderately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広角なズームレンズに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide-angle zoom lens.

【0002】[0002]

【従来技術】近年、高変倍率を有するズームレンズを備
えた全自動カメラが、ニューコンセプトカメラとして製
品化が顕著になっている。このようにズームレンズが高
変倍率になれば、必ず広角化又は望遠化の方向に向か
う。
2. Description of the Related Art In recent years, a fully automatic camera equipped with a zoom lens having a high zoom ratio has been remarkably commercialized as a new concept camera. In this way, if the zoom lens has a high zoom ratio, it will surely be in the direction of widening the angle or telephoto.

【0003】従来のズームレンズは、広角端が2ω=6
3°程度であるか、低変倍率ズームレンズの中に2ω=
84°程度のものが知られている。例えば特開平2−2
84109号公報に記載されているレンズ系等である。
A conventional zoom lens has a wide-angle end of 2ω = 6.
It is about 3 ° or 2ω = in the low zoom lens.
Those of about 84 ° are known. For example, Japanese Patent Laid-Open No. 2-2
The lens system is disclosed in Japanese Patent No. 84109.

【0004】また特開平2−135312号公報に記載
されているレンズ系は、従来一眼レフレックスカメラ用
交換レンズでのみしか知られていなかった超広角なズー
ムレンズを、コンパクトカメラに適応出来るようにした
コンパクトなズームレンズである。
Further, the lens system described in Japanese Patent Laid-Open No. 2-135312 makes it possible to adapt a super wide-angle zoom lens, which was conventionally known only as an interchangeable lens for single-lens reflex cameras, to a compact camera. It is a compact zoom lens.

【0005】[0005]

【発明が解決しようとする課題】上記の各ズームレンズ
は、従来のタイプをそのまま広角化しようとしたもので
収差補正の面で無理が多い。つまり焦点距離を短くした
のに、ズームレンズのタイプとしては望遠タイプである
ので、光学性能の点で不十分なものである。
Each of the zoom lenses described above is an attempt to widen the angle of the conventional type as it is, and it is difficult to correct aberrations. That is, although the focal length is shortened, the zoom lens is a telephoto type, which is insufficient in terms of optical performance.

【0006】本発明の目的は、従来の3群構成のズーム
レンズを基とし、その第1レンズ群の構成を適切なもの
とすることによって広角で明るく、収差の良好に補正さ
れたズームレンズを提供することにある。
An object of the present invention is to provide a zoom lens which is based on a conventional zoom lens having a three-group structure and has a wide-angle, bright and well-corrected aberration by appropriately adjusting the structure of the first lens group. To provide.

【0007】[0007]

【課題を解決しようとする手段】本発明のズームレンズ
は、物体側より順に正の屈折力の第1レンズ群と、正の
屈折力の第2レンズ群と、負の屈折力の第3レンズ群と
よりなり、第1レンズ群と第2レンズ群との間隔と第2
レンズ群と第3レンズ群との間隔とを変化させることに
よって変倍を行なうレンズ系で、第1レンズ群を前群と
後群との二つの群にて構成し次の条件(1)を満足する
ようにしたことを特徴とするものである。 (1)|φf/φ1 |<6.0 ただしφf ,φ1 は夫々第1レンズ群の前群および第1
レンズ群の屈折力である。
A zoom lens according to the present invention comprises a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power in order from the object side. A second lens group, and a distance between the first lens group and the second lens group and a second lens group.
A lens system that performs zooming by changing the distance between the lens group and the third lens group. The first lens group is composed of two groups, a front group and a rear group, and the following condition (1) is satisfied: It is characterized by being satisfied. (1) | φf / φ1 | <6.0 where φf and φ1 are the front group and the first group of the first lens group, respectively.
It is the refractive power of the lens group.

【0008】本発明は、前記の本出願人の提案した特開
平2−135312号のレンズ系の広角化の試みを更に
発展させ、レンズ系の全長を短くでき、又ズームレンズ
のタイプとして物体側より順に正の屈折力の第1レンズ
群と、正の屈折力の第2レンズ群と、負の屈折力の第3
レンズ群からなる3群ズームレンズを基本構成とし、第
1レンズ群を広角化に適したレンズ構成とすることによ
って無理なく広角化を達成し得るようにしたものであ
る。
The present invention further develops the attempt to widen the angle of the lens system proposed by the present applicant in Japanese Patent Laid-Open No. 2-135312 to shorten the total length of the lens system, and also to reduce the total length of the lens system on the object side. In order from the first lens group having a positive refractive power, the second lens group having a positive refractive power, and the third lens group having a negative refractive power.
By using a three-group zoom lens composed of lens groups as a basic configuration and the first lens group as a lens configuration suitable for widening the angle, the widening of the angle can be achieved without difficulty.

【0009】本出願人の提案した特願平2−1521号
のレンズ系は、第1レンズ群自体の構成を変更すること
なく、このレンズ群を構成する負のレンズ成分と正のレ
ンズ成分をある一定以上の間隔を隔てて配置することに
よって正の屈折力の第2レンズ群への軸外光線の入射角
を小にして収差補正を容易にして広角化を達成するよう
にしたものである。
The lens system of Japanese Patent Application No. 2-1521 proposed by the present applicant has a negative lens component and a positive lens component constituting this lens group without changing the configuration of the first lens group itself. By arranging them with a certain distance or more, the incident angle of the off-axis ray to the second lens group having a positive refractive power can be made small to facilitate aberration correction and achieve a wide angle. ..

【0010】これに対して本発明は、次に述べる考えに
もとづいて、第1レンズ群の構成自体を広角化に適した
ものに変更したものである。
On the other hand, according to the present invention, the structure itself of the first lens group is changed to one suitable for widening the angle based on the following idea.

【0011】本発明のズームレンズは、初めから広角化
されたレンズ系を基本仕様としたのではなく、広角端か
ら望遠端までを、設計上容易な画角に設定して設計を行
ない、これを広角側へシフトさせて広角なズームレンズ
を得るようにしたものである。
The zoom lens of the present invention does not have a wide-angle lens system as a basic specification from the beginning, but is designed by setting an angle of view that is easy to design from the wide-angle end to the telephoto end. Is shifted to the wide-angle side to obtain a wide-angle zoom lens.

【0012】具体的には、例えば最初に焦点距離fが3
5mm〜135mmの光学系を設計し、これを基としそれに
0.8倍程度の広角アタッチメントを装着すれば28mm
〜105mmのレンズ系を得ることが出来る。ここで基本
となるレンズ系が、全長が短くレンズの外径の小さいも
のであれば、これに広角化を目的とするアタッチメント
を付加しても、全体としてさほど大きなレンズ系にはな
らない。
Specifically, for example, first, the focal length f is 3
28mm if you design an optical system of 5mm to 135mm and attach a 0.8x wide angle attachment to it.
A lens system of up to 105 mm can be obtained. If the basic lens system has a short overall length and a small lens outer diameter, even if an attachment for widening the angle is added to this, the overall lens system does not become so large.

【0013】前記の広角アタッチメントを基本となる光
学系に組込んで全体として一つの光学系とすれば、前記
アタッチメントを収差補正のためのレンズ群として配置
したのと同じ構成と考えられる。つまり前記のアタッチ
メントは、アフォーカルコンバーターとしての性質から
発展し,レンズ系中の広角化のためのレンズ成分と考え
られる。
If the wide-angle attachment is incorporated into a basic optical system to make one optical system as a whole, it is considered that the attachment is arranged as a lens group for aberration correction. That is, the above attachment is considered to be a lens component for widening the angle in the lens system, which has evolved from the property as an afocal converter.

【0014】本発明では、図43のようにこのレンズ成
分を第1レンズ群の前群La とし、基本となる光学系の
第1レンズ群を第1レンズ群の後群Lb として前述のよ
うな構成とした。即ち広角レンズの中の逆望遠タイプ
が、広角アフォーカルコンバーター(前群)と正のレン
ズ群(後群)との第1レンズ群ではじまるレンズ系で、
コンパクト化のために両者の実間隔を縮小したレトロフ
ォーカスタイプのレンズ系にしたのが本発明のレンズ系
である。
In the present invention, as shown in FIG. 43, this lens component is the front lens group La of the first lens group, and the first lens group of the basic optical system is the rear lens group Lb of the first lens group as described above. It was composed. That is, the reverse telephoto type of the wide-angle lens is a lens system that starts with the first lens group of the wide-angle afocal converter (front group) and the positive lens group (rear group),
The lens system of the present invention is a retrofocus type lens system in which the actual distance between the two is reduced for compactness.

【0015】ここで、本発明の目的を達成するためには
前記条件(1)を満足する必要がある。 この条件をは
ずれると本発明の目的を達成しにくくなる。
Here, in order to achieve the object of the present invention, it is necessary to satisfy the above condition (1). If this condition is not satisfied, it will be difficult to achieve the object of the present invention.

【0016】本発明は、前述のように構成して広角端の
画角2ωが63°程度以上の広角なズームレンズを得る
ようにした。即ち本発明ではレンズ系を広角にするため
に、ズームレンズのタイプやレンズ構成を変更すること
なしに行なった。このようにレンズ系のタイプや構成を
変更することなしに広角化すると、第3レンズ群の負担
が大になり、広角端においてバックフォーカスを余裕を
もって確保することが出来ない。また望遠端での倍率負
担が非常に大になり、収差補正が困難になり、補正のた
めに製造しにくい面になる。
The present invention is configured as described above to obtain a wide-angle zoom lens having an angle of view 2ω at the wide-angle end of about 63 ° or more. That is, in the present invention, in order to make the lens system wide-angled, the zoom lens type and the lens structure were not changed. If the angle of view is widened without changing the type or configuration of the lens system in this way, the load on the third lens group becomes heavy, and it is not possible to ensure a sufficient back focus at the wide-angle end. In addition, the burden of magnification at the telephoto end becomes extremely large, which makes it difficult to correct aberrations, which makes it difficult to manufacture for correction.

【0017】このような問題点を解決するために、非球
面を用いるか、現在では生産技術面で課題を有している
屈折率分布型レンズ特にラジアル型の屈折率分布型レン
ズが用いられる。これらはレンズの製作が容易でない。
In order to solve such a problem, an aspherical surface is used, or a graded index lens, especially a radial type graded index lens, which presently has a problem in terms of production technology is used. These are not easy lenses to make.

【0018】一般にレンズ系を広角化するとき、中心光
束と軸外光束のレンズ系中を通る経路が大きく異なって
いるために収差補正上での難点が生ずる。つまり画角が
大になるにつれて像面湾曲、歪曲収差、倍率色収差、サ
ジタルコマフレアー等が増大する。そのため収差を良好
に補正するには対称型もしくはこれに近い構成にするこ
とが望ましい。
Generally, when widening the angle of a lens system, a problem occurs in aberration correction because the paths of the central light beam and the off-axis light beam greatly differ in the lens system. That is, as the angle of view increases, field curvature, distortion, lateral chromatic aberration, sagittal coma flare, and the like increase. Therefore, in order to satisfactorily correct the aberration, it is desirable to have a symmetrical type or a configuration close to this.

【0019】以上の理由から本発明では、前述のように
3群ズームレンズを基本としたズームレンズとし、第2
レンズ群の中央に開口絞りを配置して対称型に近いレン
ズ構成として、収差補正上極めて好ましいレンズ系にし
たことも特徴としている。またこのレンズ系で、絞り位
置を前後しても、光束の使用範囲が変化するだけで基本
構成は変わらない。
For the above reasons, in the present invention, as described above, the zoom lens based on the three-group zoom lens is used.
It is also characterized in that an aperture stop is arranged at the center of the lens group, and the lens system has a lens structure close to a symmetric type, which is an extremely preferable lens system for aberration correction. Also, with this lens system, the basic configuration does not change even if the diaphragm position is moved back and forth, only the usable range of the light flux changes.

【0020】このようにレンズ構成を対称型にすること
は、収差補正上好ましいので、これを広角化に適するよ
うにレンズ構成の成分をみなおすようにした。特に本発
明で扱うレンズタイプは、バックフォーカスを短くで
き、レンズ系の全長を短くし又レンズの外径を小さくで
きる。この点から、本発明は、絞りに対し対称なレンズ
系を基本にし、それにレンズ成分を付加して広角化する
ことによって一層すぐれた広角ズームレンズを構成する
ことが出来る。
Since it is preferable to make the lens structure symmetrical in terms of aberration correction, the components of the lens structure are taken into consideration so as to be suitable for widening the angle. In particular, in the lens type used in the present invention, the back focus can be shortened, the total length of the lens system can be shortened, and the outer diameter of the lens can be reduced. From this point of view, the present invention is based on a lens system which is symmetrical with respect to the diaphragm, and by adding a lens component to the lens system to widen the angle, it is possible to construct a more excellent wide-angle zoom lens.

【0021】ここで第1レンズ群の前群は、後群の作用
を補うものである。前述の構成のズームレンズは、第1
レンズ群と第3レンズ群を通過する光束から考え、これ
らレンズ群は、軸外収差に与える影響力が大きく、第2
レンズ群は、主に球面収差等の軸上収差に与える影響が
大きい。
Here, the front lens group of the first lens group complements the operation of the rear lens group. The zoom lens having the above-described configuration is the first
Considering the light flux passing through the lens group and the third lens group, these lens groups have a large influence on the off-axis aberration,
The lens group has a large influence mainly on axial aberrations such as spherical aberrations.

【0022】更にレンズ系を広角化するためには、倍率
色収差や変曲点を持つ歪曲収差など特有の収差を補正し
なければならない。つまり前記のような性質を有する本
発明のズームレンズの構成で、広角化のための特有の収
差を補正するためには、第1レンズ群と第3レンズ群と
の構成に着目する必要がある。また口径比を大きくする
ためには、第2レンズ群の構成に着目する必要がある。
In order to further widen the angle of the lens system, it is necessary to correct specific aberrations such as lateral chromatic aberration and distortion having an inflection point. That is, it is necessary to pay attention to the configuration of the first lens group and the third lens group in order to correct the aberration peculiar to widening the angle in the configuration of the zoom lens of the present invention having the above-mentioned properties. .. Further, in order to increase the aperture ratio, it is necessary to pay attention to the configuration of the second lens group.

【0023】第3レンズ群は、広角端を考えると構成レ
ンズ枚数を大幅に増やすことは得策でない。本発明の光
学系は後側主点位置がレンズ系の後方に位置するパワー
配置の光学系であるため、収差補正以前にバックフォー
カスを確保することが難かしく、逆に収差補正の自由度
が少なくなる。そのため第3レンズ群は、非球面を用い
て少ないレンズ枚数で構成することが望ましい。これに
よって第3レンズ群自体で残存収差を抑えることがで
き、また第1レンズ群で発生する高次収差分を補正し全
体としてバランスをとることが可能になる。またバック
フォーカスも無理なく確保することが出来、後玉径の増
大の問題やフィルム面との内面反射によるフレアーの発
生の問題を減らすことが出来る。
Considering the wide-angle end, it is not advisable to significantly increase the number of constituent lenses of the third lens group. Since the optical system of the present invention is an optical system in which the rear principal point position is located behind the lens system in a power arrangement, it is difficult to secure a back focus before aberration correction, and conversely, the degree of freedom of aberration correction is high. Less. Therefore, it is desirable that the third lens group be configured with a small number of lenses by using an aspherical surface. As a result, residual aberration can be suppressed by the third lens group itself, and higher-order aberrations that occur in the first lens group can be corrected and balanced as a whole. In addition, the back focus can be secured without difficulty, and the problem of the rear lens diameter increasing and the problem of flare due to internal reflection from the film surface can be reduced.

【0024】以上の点を吟味して、第1レンズ群に工夫
を加えて、広角レンズに特有の高次の倍率色収差や歪曲
収差等を補正することが好ましい。
In consideration of the above points, it is preferable that the first lens group be devised to correct high-order lateral chromatic aberration, distortion, etc. peculiar to the wide-angle lens.

【0025】広角端付近では特に軸外光線高が高く、第
1レンズ群内で収差を十分補正しないと、第2レンズ群
と第3レンズ群とによって残存高次収差を補正すること
が困難である。それは収差補正係数をみればわかる。特
に高次収差と低次収差のバランスを見ることに意味があ
る。
The off-axis ray height is particularly high near the wide-angle end, and it is difficult to correct residual high-order aberrations by the second lens unit and the third lens unit unless aberrations are corrected sufficiently in the first lens unit. is there. This can be seen by looking at the aberration correction coefficient. In particular, it is meaningful to see the balance between high-order aberrations and low-order aberrations.

【0026】表1と表2は、後に示す実施例1の収差係
数による第1レンズ群中の補正状況を示す。
Tables 1 and 2 show the correction situation in the first lens group by the aberration coefficient of Example 1 described later.

【0027】 表1 広角端 K SA3 CMA3 AST3 DIS3 PTZ3 1 -0.00001 -0.00060 -0.00634 -0.68756 -0.01525 Lf 2 0.00393 -0.00302 0.00026 -0.01807 0.07043 3 -0.00388 -0.00784 -0.00176 -0.03585 -0.05142 4 0.00011 0.00380 0.01529 0.35334 0.01401 5 0.00000 0.00004 -0.01272 -0.66454 0.01346 6 0.01626 0.00255 0.00004 0.00360 0.06885 7 -0.01313 -0.01030 -0.00090 -0.01394 -0.05240 8 0.00030 0.00926 0.03159 0.29145 -0.00313 9 -0.00643 -0.01924 -0.00639 -0.06723 -0.06106 10 -0.00041 0.01420 -0.05513 0.88004 -0.02043 (1) Lf 0.00016 -0.00765 0.00744 -0.38814 0.01777 Lb -0.00341 -0.00348 -0.04350 0.42938 -0.05471 (2) -0.00568 -0.00308 0.11297 -0.99783 -0.10148 (3) 0.00164 0.00491 -0.07868 0.54632 0.13018 K SA5 CMA5 AST5 DIS5 PTZ5 SA7 1 0.00000 0.00000 0.00089 0.19925 0.00537 0.00000 Lf 2 0.00005 0.00010 -0.00019 -0.04197 -0.02465 0.00000 3 -0.00006 -0.00030 0.00309 0.05851 0.02059 0.00000 4 0.00000 0.00001 -0.00278 -0.17371 -0.00664 0.00000 5 0.00000 0.00000 0.00140 0.29779 -0.00517 0.00000 6 0.00045 0.00065 -0.00128 -0.06874 -0.03299 0.00001 Lb 7 -0.00038 -0.00086 0.00385 0.06245 0.02784 -0.00001 8 0.00001 0.00015 -0.00667 -0.24618 -0.00634 0.00000 9 -0.00013 -0.00038 0.00605 0.10153 0.03024 0.00000 10 -0.00001 0.00027 -0.00851 -0.05951 0.00708 0.00000 (1) Lf -0.00001 -0.00019 0.00100 0.04207 -0.00532 0.00000 Lb -0.00006 -0.00017 -0.00516 0.08734 0.02066 0.00000 (2) 0.00215 0.00210 0.02325 0.11002 0.04238 0.00044 (3) -0.00011 -0.00182 -0.01764 -0.23535 -0.04339 -0.00001 表2 望遠端 K SA3 CMA3 AST3 DIS3 PTZ3 1 -0.00012 -0.00129 -0.00153 -0.02522 -0.00533 2 0.07407 -0.15959 0.03821 -0.04511 0.02461 3 -0.07297 0.12950 -0.02554 0.02573 -0.01796 4 0.00198 0.00570 0.00182 0.00645 0.00489 5 0.00000 0.00011 -0.00449 -0.02568 0.00470 6 0.30610 -0.62100 0.13998 -0.11093 0.02405 7 -0.24715 0.48029 -0.10370 0.07903 -0.01831 8 0.00567 0.01211 0.00287 0.00127 -0.00109 9 -0.12109 0.19893 -0.03631 0.03156 -0.02133 10 -0.00765 0.05210 -0.03943 0.10570 -0.00714 (1) Lf 0.00296 -0.02568 0.01292 -0.03815 0.00621 Lb -0.06413 0.12254 -0.04108 0.08095 -0.01912 (2) -0.04759 -0.01905 0.04255 -0.06852 -0.03545 (3) 0.10867 -0.07190 -0.01371 0.05029 0.04548 K SA5 CMA5 AST5 DIS5 PTZ5 SA7 1 0.00000 0.00000 0.00003 0.00058 0.00013 0.00000 Lf 2 0.00378 -0.01177 0.00036 0.00004 -0.00079 0.00023 3 -0.00467 0.01264 -0.00018 -0.00005 0.00061 -0.00035 4 0.00003 -0.00003 0.00001 -0.00043 -0.00024 0.00000 5 0.00000 -0.00002 -0.00015 0.00139 -0.00003 0.00000 6 0.03670 -0.11819 0.00751 -0.00661 -0.00013 0.00506 Lb 7 -0.03092 0.09610 -0.00552 0.00477 0.00010 -0.00437 8 0.00066 -0.00059 -0.00011 -0.00036 -0.00021 0.00008 9 -0.01079 0.03259 -0.00184 0.00146 0.00039 -0.00114 10 -0.00095 0.00630 -0.00199 0.00210 0.00044 -0.00014 (1) Lf -0.00086 0.00083 0.00021 0.00014 -0.00028 -0.00012 Lb -0.00530 0.01618 -0.00209 0.00276 0.00056 -0.00052 (2) 0.06153 0.00426 0.00182 -0.00011 0.00112 0.03223 (3) -0.05301 -0.04412 -0.00037 0.00050 -0.00148 -0.03257 TOTAL 0.00235 -0.02284 -0.00043 0.00329 -0.00008 -0.00097 上記表1は、広角端の値を表2は望遠端の値である。又
第1レンズ群以外は、面固有の収差補正係数の総和を示
してある。又K(1−4)およびLfは前群、K(5−
10)およびLbは後群、(2),(3)は第2,第3
レンズ群を表している。
Table 1 Wide-angle end K SA3 CMA3 AST3 DIS3 PTZ3 1 -0.00001 -0.00060 -0.00634 -0.68756 -0.01525 Lf 2 0.00393 -0.00302 0.00026 -0.01807 0.07043 3 -0.00388 -0.00784 -0.00176 -0.03585 -0.05142 4 0.00011 0.00380 0.01529 0.35334 0.01401 5 0.00000 0.00004 -0.01272 -0.66454 0.01346 6 0.01626 0.00255 0.00004 0.00360 0.06885 7 -0.01313 -0.01030 -0.00090 -0.01394 -0.05240 8 0.00030 0.00926 0.03159 0.29145 -0.00313 9 -0.00643 -0.01924 -0.00639 -0.06723 -0.06106 10 -0.00041 0.01420 -0.05513 0.88004 -0.02043 (1) Lf 0.00016 -0.00765 0.00744 -0.38814 0.01777 Lb -0.00341 -0.00348 -0.04350 0.42938 -0.05471 (2) -0.00568 -0.00308 0.11297 -0.99783 -0.10148 (3) 0.00164 0.00491 -0.07868 0.54632 0.13018 K SA5 CMA5 AST5 DIS5 PTZ5 SA7 1 0.00000 0.00000 0.00089 0.19925 0.00537 0.00000 Lf 2 0.00005 0.00010 -0.00019 -0.04197 -0.02465 0.00000 3 -0.00006 -0.00030 0.00309 0.05851 0.02059 0.00000 4 0.00000 0.00001 -0.00278 -0.17371 -0.00664 0.00000 5 0.00000 0.00000 0.00140 0.29779 -0.00517 0.00000 6 0.000 45 0.00065 -0.00128 -0.06874 -0.03299 0.00001 Lb 7 -0.00038 -0.00086 0.00385 0.06245 0.02784 -0.00001 8 0.00001 0.00015 -0.00667 -0.24618 -0.00634 0.00000 9 -0.00013 -0.00038 0.00605 0.10153 0.03024 0.00000 10 -0.00001 0.00027 -0.00851 -0.05951 0.00708 0.00000 ( 1) Lf -0.00001 -0.00019 0.00100 0.04207 -0.00532 0.00000 Lb -0.00006 -0.00017 -0.00516 0.08734 0.02066 0.00000 (2) 0.00215 0.00210 0.02325 0.11002 0.04238 0.00044 (3) -0.00011 -0.00182 -0.01764 -0.23535 -0.04339 -0.00001 Table 2 Telephoto end K SA3 CMA3 AST3 DIS3 PTZ3 1 -0.00012 -0.00129 -0.00153 -0.02522 -0.00533 2 0.07407 -0.15959 0.03821 -0.04511 0.02461 3 -0.07297 0.12950 -0.02554 0.02573 -0.01796 4 0.00198 0.00570 0.00182 0.00645 0.00489 5 0.00000 0.00011 -0.00449 -0.02568 0.00470 6 0.30610 -0.62100 0.13998 -0.11093 0.02405 7 -0.24715 0.48029 -0.10370 0.07903 -0.01831 8 0.00567 0.01211 0.00287 0.00127 -0.00109 9 -0.12109 0.19893 -0.03631 0.03156 -0.02133 10 -0.00765 0.05210 -0.03943 0.10570 -0.00714 (1) Lf 0.00296 -0.02568 0.01292 -0.03815 0.00621 Lb -0.06413 0.12254 -0.04108 0.08095 -0.01912 (2) -0.04759 -0.01905 0.04255 -0.06852 -0.03545 (3) 0.10867 -0.07190 -0.01371 0.05029 0.04548 K SA5 CMA5 AST5 DIS5 PTZ5 SA7 1 0.00000 0.00000 0.00003 0.00058 0.00013 0.00000 Lf 2 0.00378 -0.01177 0.00036 0.00004 -0.00079 0.00023 3 -0.00467 0.01264 -0.00018 -0.00005 0.00061 -0.00035 4 0.00003 -0.00003 0.00001 -0.00043 -0.00024 0.00000 5 0.00000 -0.00002 -0.00015 0.00139 -0.00003 0.00000 6 0.03670 -0.11819 0.00751 -0.00661 -0.00013 0.00506 Lb 7 -0.03092 0.09610 -0.00552 0.00477 0.00010 -0.00437 8 0.00066 -0.00059 -0.00011 -0.00036 -0.00021 0.00008 9 -0.01079 0.03259 -0.00184 0.00146 0.00039 -0.00114 10 -0.00095 0.00630 -0.00199 0.00210 0.00044 -0.00014 (1) Lf -0.00086 0.00083 0.00021 0.00014 -0.00028 -0.00012 Lb -0.00530 0.01618 -0.00209 0.00276 0.00056 -0.00052 (2) 0.06153 0.00426 0.00182 -0.00011 0.00112 0.03223 (3) -0.05301 -0.04412 -0.00037 0.00050 -0.00148 -0.03257 TOTAL 0.00235 -0.02284 -0.00043 0.00329 -0.00008 -0.000 97 Table 1 above shows the values at the wide-angle end, and Table 2 shows the values at the telephoto end. In addition, the sum of aberration correction coefficients peculiar to the surface is shown except for the first lens group. K (1-4) and Lf are the front group, K (5-
10) and Lb are the rear group, (2) and (3) are the second and third groups.
It represents a lens group.

【0028】これら表より軸上収差である球面収差の影
響は、第1レンズ群では小さい。一方、軸外収差である
非点収差,歪曲収差の補正状況は、第1レンズ群内での
作用が大きいことがわかる。即ちこの実施例のレンズ系
は、非点収差においては前群が後群の補正不足を効果的
に補正し、歪曲収差においては、前群が後群の補正過剰
を補正している。このことは、図45に示す光線図で、
前群に鋭角で入射する軸外光束が後群に入射する際に緩
やかな入射角を有することから補正作用を分担している
ことがわかる。
From these tables, the effect of spherical aberration, which is axial aberration, is small in the first lens group. On the other hand, it can be seen that the correction of off-axis aberrations, astigmatism and distortion, has a large effect within the first lens group. That is, in the lens system of this example, the front group effectively corrects the insufficient correction of the rear group in the astigmatism, and the front group corrects the excessive correction of the rear group in the distortion aberration. This is the ray diagram shown in FIG.
It can be seen that the off-axis light flux that enters the front lens group at an acute angle has a gentle angle of incidence when it strikes the rear lens group, and therefore it is understood that the correction action is shared.

【0029】本発明においては、従来の第1レンズ群を
基本とした光学系においては、それを広角化しようとす
る場合無理があることを認識した上で、これを広角化す
るために前述のように屈折力の弱いレンズ成分を第1レ
ンズ群の前に付加し、第1レンズ群への入射角を収差補
正の容易なものとした。そしてこの付加されたレンズ成
分を第1レンズ群の前群としいわば従来の第1レンズ群
を第1レンズ群の後群とし、これら全体で第1レンズ群
にして広角で収差の良好に補正されたレンズ系を得るよ
うにしたものである。この場合前群は最も簡単な構成と
して負レンズ1枚が考えられるが、収差を一層良好に補
正するためには、上記負レンズに正レンズを付加するこ
とが効果的である。
In the present invention, in the conventional optical system based on the first lens group, it is recognized that it is unreasonable to widen the angle, and in order to widen the angle, the above-mentioned As described above, a lens component having a weak refractive power is added in front of the first lens group to make the incident angle to the first lens group easy for aberration correction. The added lens component is the front group of the first lens group, so to speak, the conventional first lens group is the rear group of the first lens group. It is intended to obtain a lens system. In this case, a single negative lens is considered as the simplest configuration in the front group, but it is effective to add a positive lens to the negative lens in order to correct aberrations better.

【0030】一方前玉径の縮小や入射瞳が遠くなりすぎ
るのを防止するには後に述べる条件により規制すること
が望むましい。前述のように第1レンズ群は、前群を少
なくとも1枚の負レンズを用いることが望ましい。一方
後群は、少なくとも1枚の正のレンズ成分と1枚の負の
レンズ成分とにて構成することが望ましい。
On the other hand, in order to prevent the diameter of the front lens from being reduced and the entrance pupil from becoming too far away, it is desirable that the conditions be described later. As described above, it is desirable that the first lens group uses at least one negative lens in the front lens group. On the other hand, it is desirable that the rear lens group be composed of at least one positive lens component and one negative lens component.

【0031】又、前記条件(1)は、次の各条件と関係
している。 (2)0.1<φ 1/φ w<1.25 (3)1.1<φ 12w/φ w<3.0 (4)1.5<β3T/ β3w<4.0 ただしφ wは広角端における全系の屈折力、φ 12wは
広角端における第1レンズ群と第2レンズ群の合成の屈
折力、β3w,β3Tは夫々第3レンズ群の倍率である。条
件(2)は、第1レンズ群の屈折力を規定するもので、
この条件(2)の上限を越えると収差補正が困難にな
る。また条件(2)の下限を越えるとズ−ミング時の移
動量がふえ小型化を維持するうえで好ましくない。条件
(3)は第1レンズ群と第2レンズ群のレンズ全長を小
さくし、収差補正上から望ましい屈折力を決定するため
に必要な条件である。この条件の上限を越えると小型化
を達成することはできても十分な光学性能を得ることが
困難になる。一方、下限を越えるとレンズ系が大型にな
るため好ましくない。条件(4)は、変倍率に関係する
条件で、下限を越えると近軸的解が得られても現実的な
高変倍ズ−ムレンズを達成することが困難になる。
The condition (1) is related to the following conditions.
is doing. (2) 0.1 <φ 1 / φ w <1.25 (3) 1.1 <φ 12w / φ w <3.0 (4) 1.5 <β3T / β3w <4.0 where φ w is the refractive power of the entire system at the wide-angle end, φ 12w is
At the wide-angle end, the composite bending of the first lens group and the second lens group
Folding power, β3w, and β3T are magnifications of the third lens group, respectively. Article
The condition (2) defines the refractive power of the first lens group,
If the upper limit of this condition (2) is exceeded, aberration correction will become difficult.
It If the lower limit of condition (2) is exceeded, the movement during zooming will be delayed.
This is not preferable because the amount of movement is increased and miniaturization is maintained. conditions
(3) has a small total lens length of the first lens group and the second lens group.
In order to determine the desired refractive power from the viewpoint of aberration correction
Is a necessary condition. If the upper limit of this condition is exceeded, the size will be reduced.
Can achieve sufficient optical performance
It will be difficult. On the other hand, if the lower limit is exceeded, the lens system will become large.
Therefore, it is not preferable. Condition (4) is related to the scaling factor
Under the condition, if the lower limit is exceeded, even if a paraxial solution is obtained, it is realistic.
It becomes difficult to achieve a high zoom lens.

【0032】更に本発明のレンズ系は、第1レンズ群で
の近軸光線および近軸軸外光線について注目すれば、次
の条件(5),(6)を満足することが好ましい。 (5)0.5<hB/hF <1.5 (6)0.2<AB/AF <2.0 ただしhF は広角端における第1レンズ群の前群に入射
する近軸軸上光線高、hB は広角端における第1レンズ
群の後群に入射する近軸軸上光線高、AF は広角端にお
ける第1レンズ群の前群に入射する近軸軸外光線高、A
B は広角端における第1レンズ群の後群に入射する近軸
軸外光線高である。
Further, the lens system of the present invention preferably satisfies the following conditions (5) and (6), focusing attention on paraxial rays and paraxial rays in the first lens group. (5) 0.5 <hB / hF <1.5 (6) 0.2 <AB / AF <2.0 where hF is the paraxial on-axis ray height incident on the front group of the first lens group at the wide-angle end. , HB is the paraxial ray height incident on the rear group of the first lens group at the wide-angle end, AF is the paraxial off-axis ray height incident on the front group of the first lens group at the wide-angle end, A
B is the paraxial off-axis ray height incident on the rear group of the first lens group at the wide-angle end.

【0033】条件(3)は、前群が負の群としての作用
を持たせて第1レンズ群を逆望遠タイプに構成すること
により広角化するか、又は前群を収斂系とした場合でも
弱い正の屈折力を持たせるようにしたことを意味してい
る。この条件(5)の下限を越えると広角端で軸外収差
の補正作用が弱くなる。条件(5)の上限を越えると前
群の屈折力が強くなり、収差補正のため構成枚数が増加
し、レンズ系が大型になる。
The condition (3) is widened by forming the first lens group into an inverse telephoto type by giving the action of the front group as a negative group, or even if the front group is a converging system. This means that it has a weak positive refractive power. If the lower limit of this condition (5) is exceeded, the effect of correcting off-axis aberrations at the wide-angle end becomes weak. When the value exceeds the upper limit of the condition (5), the refractive power of the front group becomes strong, the number of constituent elements increases for aberration correction, and the lens system becomes large.

【0034】条件(6)も条件(5)と同様で、その下
限を越えると前群の屈折力が大になり、上限を越えると
広角端での収差補正が困難になる。
The condition (6) is also the same as the condition (5). If the lower limit of the condition is exceeded, the refractive power of the front unit becomes large, and if the upper limit is exceeded, it becomes difficult to correct aberrations at the wide-angle end.

【0035】上記のように条件(5),(6)は、入射
する軸外光線の角度を緩くし収差補正をより容易にする
ためのものである。つまりこれら条件を外れると広角端
の画角が望遠側であれば収差補正上の作用が働くが、超
広角では軸外収差の補正効果が減少する。
As described above, the conditions (5) and (6) are for making the angle of the incident off-axis ray gentle and facilitating the aberration correction. That is, if these conditions are not satisfied, the effect of aberration correction works if the angle of view at the wide-angle end is on the telephoto side, but the effect of correcting off-axis aberrations decreases at ultra-wide angles.

【0036】以上は、3群ズームについて述べたが、4
群ズームに関しても本発明の要旨を適用し得る。即ち図
44のように物体側より順に正の屈折力の第1レンズ群
と、正の屈折力の第2レンズ群と、正の屈折力の第3レ
ンズ群と、負の屈折力の第4レンズ群との四つのレンズ
群で構成し、第1レンズ群と第2レンズ群、第2レンズ
群と第3レンズ群と、第3レンズ群と第4レンズ群との
間隔を変えることによって変倍作用を持たせるもので、
広角化のために第1レンズ群の構成を前群と後群にて構
成し、前記の3群ズームにおけると同様の条件(1)を
満足するものである。
The three-group zoom has been described above.
The gist of the present invention can be applied to the group zoom. That is, as shown in FIG. 44, in order from the object side, the first lens group having a positive refractive power, the second lens group having a positive refractive power, the third lens group having a positive refractive power, and the fourth lens group having a negative refractive power. The first lens group and the second lens group, the second lens group and the third lens group, and the third lens group and the fourth lens group. It has a double action,
The first lens group is made up of a front group and a rear group for widening the angle, and the same condition (1) as in the above-described three-group zoom is satisfied.

【0037】第1レンズ群の近軸および厚肉レンズでの
光線の状況を示すと夫々図46,図47および図48,
図49のとうれである。
The states of light rays at the paraxial and thick lenses of the first lens group are shown in FIGS. 46, 47 and 48, respectively.
This is the case of FIG. 49.

【0038】[0038]

【実施例】次に本発明のズームレンズの各実施例を説明
する。 実施例1 f=28.90 〜102.00mm,F/4.5 〜F/7.625 ,2ω=73.64 °〜23.94 ° r1 =160.7804 d1 =1.2000 n1 =1.74100 ν1 =52.68 r2 =34.8076 d2 =6.9850 r3 =38.8887 d3 =3.3406 n2 =1.53172 ν2 =48.90 r4 =142.7690 d4 =D1 r5 =-194.6240 d5 =1.0000 n3 =1.83400 ν3 =37.16 r6 =38.0459 d6 =0.3520 r7 =43.6383 d7 =3.4187 n4 =1.65844 ν4 =50.86 r8 =-730.7292 d8 =0.1500 r9 =32.2002 d9 =5.2460 n5 =1.51823 ν5 =58.96 r10=-96.2536 d10=D2 r11=-498.7110 d11=1.0000 n6 =1.78590 ν6 =44.18 r12=15.0840 d12=0.8410 r13=24.1630 d13=2.7640 n7 =1.78470 ν7 =26.22 r14=-102.9802 d14=3.9120 r15=-14.3361 d15=1.1100 n8 =1.65830 ν8 =53.44 r16=-16.3753 d16=4.9610 r17=∞(絞り) d17=3.6000 r18=-79.9489 d18=2.1300 n9 =1.66680 ν9 =33.04 r19=-51.9241 d19=0.5000 r20=-555.5860 d20=3.0490 n10=1.51454 ν10=54.69 r21=-26.8298 d21=0.1200 r22=103.1734 d22=0.6500 n11=1.80518 ν11=25.43 r23=17.2071 d23=5.4150 n12=1.60729 ν12=59.38 r24=-26.0457 d24=1.2500 r25=-21.6894 d25=0.8780 n13=1.77250 ν13=49.66 r26=-22.7792 d26=D3 r27=-54.8870 d27=3.3170 n14=1.78472 ν14=25.71 r28=-22.2644 d28=2.4970 r29=-15.6872(非球面)d29=0.3600 n15=1.52492 ν15=51.77 r30=-16.8658 d30=1.3200 n16=1.77250 ν16=49.66 r31=62.5760 非球面係数 P=1.0000,E=0.30618 ×10-4,F=0.10777 ×1
0-6,G=-0.18514×10-9,H=0.20423 ×10-11 f 28.90 54.44 102.00 D1 1.750 1.750 1.750 D2 1.500 16.298 22.421 D3 15.852 7.073 1.530 |φf/φ1 |=0.65194,φ1/φw=0.246, φ12w/φw=
1.330 hB/hF =1.1256, AB/AF =0.8117, β3T/β3w=3.0 実施例2 f=28.92 〜102.02mm,F/4.5 〜F/7.625 ,2ω=73.6°〜23.94 ° r1 =-82.5283 d1 =1.2500 n1 =1.74100 ν1 =52.68 r2 =8479.1527 d2 =1.0288 r3 =109.7348 d3 =2.2603 n2 =1.53172 ν2 =48.90 r4 =-234.4198 d4 =0.7500 r5 =-104.1899 d5 =0.8500 n3 =1.83400 ν3 =37.16 r6 =35.3417 d6 =0.3000 r7 =39.3253 d7 =4.5192 n4 =1.65844 ν4 =50.86 r8 =-20126.4985 d8 =0.1200 r9 =38.2462 d9 =5.5542 n5 =1.65830 ν5 =53.44 r10=-81.9930 d10=D1 r11=161.3593 d11=0.5000 n6 =1.78590 ν6 =44.18 r12=12.1902 d12=0.7721 r13=20.1078 d13=3.1941 n7 =1.78470 ν7 =26.22 r14=-324.9518 d14=2.9127 r15=-12.2940 d15=0.6569 n8 =1.65830 ν8 =53.44 r16=-14.2480 d16=2.5569 r17=∞(絞り) d17=3.4906 r18=-39.4065 d18=1.9818 n9 =1.59270 ν9 =35.29 r19=-23.5086 d19=1.0128 r20=-77.1442 d20=2.2237 n10=1.50137 ν10=56.40 r21=-27.3780 d21=0.1200 r22=71.2472 d22=0.8500 n11=1.84666 ν11=23.78 r23=17.8516 d23=4.0993 n12=1.60881 ν12=58.94 r24=-19.8521 d24=0.8500 r25=-20.0533 d25=1.5717 n13=1.77250 ν13=49.66 r26=-21.5906 d26=D2 r27=-49.9729 d27=3.4179 n14=1.78472 ν14=25.71 r28=-20.4693 d28=2.6530 r29=-13.9632(非球面)d29=0.1000 n15=1.52492 ν15=51.77 r30=-14.0500 d30=0.9444 n16=1.78590 ν16=44.18 r31=57.0622 非球面係数 P=1.0000,E=0.46567 ×10-4,F=0.16608 ×1
0-6,G=-0.40245×10-9,H=0.76140 ×10-11 f 28.92 54.39 102.02 D1 1.250 15.540 20.970 D2 12.853 5.873 1.207 |φf/φ1 |=0.17379 ,φ1/φw=0.304, φ12w/φw=
1.404 hB/hF =1.0233, AB/AF =0.9179 , β3T/β3w=3.329 実施例3 f=24.50 〜76.49mm ,F/4.5 〜F/7.5 ,2ω=82.88 °〜31.58 ° r1 =96.5532 d1 =1.2000 n1 =1.69350 ν1 =53.23 r2 =27.7448 d2 =11.6550 r3 =-91.4665 d3 =1.2066 n2 =1.78470 ν2 =26.22 r4 =-303.5278 d4 =0.1500 r5 =39.5053 d5 =3.0500 n3 =1.58913 ν3 =60.97 r6 =72.7943 d6 =0.1500 r7 =37.1151 d7 =5.0200 n4 =1.60311 ν4 =60.70 r8 =-206.3245 d8 =D1 r9 =57.4357 d9 =1.0000 n5 =1.67790 ν5 =55.33 r10=16.3022 (非球面)d10=1.5109 r11=36.9971 d11=2.7640 n6 =1.72151 ν6 =29.24 r12=-33.4657 d12=1.1015 r13=-23.8559 d13=1.1100 n7 =1.83400 ν7 =37.16 r14=-125.8813 d14=4.7035 r15=∞(絞り) d15=3.4988 r16=-21.5971 d16=2.1300 n8 =1.46450 ν8 =65.94 r17=-22.7796 d17=3.9083 r18=-54.9728 d18=2.5000 n9 =1.51821 ν9 =65.04 r19=-18.0505 d19=0.1200 r20=52.5661 d20=0.8500 n10=1.84666 ν10=23.78 r21=21.2304 d21=4.0000 n11=1.56873 ν11=63.16 r22=-58.4819 d22=0.8950 r23=70.2181 d23=2.5000 n12=1.77250 ν12=49.66 r24=-204.8691 d24=D2 r25=-76.9580 d25=3.3170 n13=1.74000 ν13=28.29 r26=-25.1526 d26=D2 r27=-19.5931(非球面)d27=0.3600 n14=1.52492 ν14=51.77 r28=-23.2468 d28=1.3200 n15=1.77250 ν15=49.66 r29=35.1917 非球面係数 (第10面)P=1.0000,E=0.15173 ×10-4,F=0.
18351 ×10-6,G=-0.10833×10-8,H=0.28490 ×10
-10 (第27面)P=1.0000,E=0.22735 ×10-4,F=0.
29706 ×10-7,G=-0.30210×10-9,H=0.83428 ×10
-12 f 24.50 45.02 76.49 D1 0.850 16.915 22.361 D2 12.830 5.031 0.510 |φf/φ1 |=2.13856 , φ1/φw=0.175, φ12w/φ
w=1.365 hB/hF =1.2347, AB/AF =0.5986, β3T/β3w=2.727 実施例4 f=29.01 〜105.43mm,F/4 〜F/7.65,2ω=73.42 °〜23.2° r1 =123.2807 d1 =1.2000 n1 =1.69680 ν1 =55.52 r2 =28.1453 d2 =7.0560 r3 =31.7325 d3 =5.4876 n2 =1.53172 ν2 =48.90 r4 =302.3165 d4 =D1 r5 =-125.1445 d5 =1.0000 n3 =1.83400 ν3 =37.16 r6 =33.3387 d6 =0.6923 r7 =40.6740 d7 =3.6156 n4 =1.65844 ν4 =50.86 r8 =-1157.9848 d8 =0.1500 r9 =32.3632 d9 =5.6348 n5 =1.51823 ν5 =58.96 r10=-60.9035 d10=D2 r11=-87.8043 d11=1.0000 n6 =1.78590 ν6 =44.18 r12=16.2024 d12=0.9097 r13=31.3832 d13=2.9131 n7 =1.78470 ν7 =26.22 r14=-49.7711 d14=3.5341 r15=-18.0019 d15=1.2081 n8 =1.65830 ν8 =53.44 r16=-22.3951 d16=4.7231 r17=∞(絞り) d17=3.4676 r18=-115.0000 d18=2.1300 n9 =1.68893 ν9 =31.08 r19=-64.5600 d19=0.5000 r20=484.4333 d20=3.3939 n10=1.54739 ν10=53.55 r21=-26.1713 d21=0.5903 r22=146.1389 d22=0.4350 n11=1.78472 ν11=25.71 r23=17.3114 d23=5.4869 n12=1.58313 ν12=59.36 r24=-25.9767 d24=1.2500 r25=-19.9068 d25=1.4830 n13=1.74100 ν13=52.68 r26=-20.9013 d26=D3 r27=-38.0869 d27=2.7902 n14=1.84666 ν14=23.78 r28=-21.4684 d28=2.6534 r29=-16.2903(非球面)d29=0.3593 n15=1.52492 ν15=51.77 r30=-17.4211 d30=1.3500 n16=1.77250 ν16=49.66 r31=82.1742 非球面係数 P=1.0000,E=0.20587 ×10-4,F=0.86201 ×1
0-7,G=-0.48242×10-9,H=0.27293 ×10-11 f 29.01 54.44 105.43 D1 1.750 1.750 1.750 D2 1.500 15.621 21.576 D3 17.439 8.661 2.636 |φf/φ1 |=0.18545 , φ1/φw=0.322, φ12w/φw
=1.349 hB/hF =1.134 , AB/AF =0.8547, β3T/β3w=2.973 実施例5 f=29.51 〜131.00mm,F/4.5 〜F/8.25,2ω=72.48 °〜18.76 ° r1 =147.7015 d1 =0.8500 n1 =1.74100 ν1 =52.68 r2 =39.8775 d2 =6.9732 r3 =34.9579 d3 =4.4400 n2 =1.53172 ν2 =48.90 r4 =-509.1641 d4 =D1 r5 =-55.5614 d5 =0.8600 n3 =1.83400 ν3 =37.16 r6 =38.7196 d6 =0.3489 r7 =45.0582 d7 =3.6100 n4 =1.65844 ν4 =50.86 r8 =-134.9701 d8 =0.1200 r9 =36.3870 d9 =4.4600 n5 =1.50137 ν5 =56.40 r10=-55.5290 d10=D2 r11=-74.3691 d11=0.5500 n6 =1.78590 ν6 =44.18 r12=15.5103 d12=0.7341 r13=24.6834 d13=2.6600 n7 =1.78470 ν7 =26.22 r14=-63.3984 d14=D3 r15=-13.9591 d15=0.9163 n8 =1.65830 ν8 =53.44 r16=-16.2221 d16=4.3715 r17=∞(絞り) d17=3.3080 r18=-77.7267 d18=1.7100 n9 =1.66680 ν9 =33.04 r19=-56.3440 d19=0.1400 r20=-322.6649 d20=2.3300 n10=1.50137 ν10=56.40 r21=-24.8971 d21=0.1200 r22=74.2271 d22=0.5300 n11=1.80518 ν11=25.43 r23=17.1956 d23=5.1000 n12=1.60311 ν12=60.70 r24=-24.4180 d24=1.0490 r25=-20.8299 d25=0.8800 n13=1.77250 ν13=49.66 r26=-22.2142 d26=D4 r27=-50.1298 d27=3.2000 n14=1.78472 ν14=25.71 r28=-21.5995 d28=2.3876 r29=-14.9318(非球面)d29=0.4500 n15=1.52492 ν15=51.77 r30=-15.1591 d30=1.1900 n16=1.77250 ν16=49.66 r31=52.7870 非球面係数 P=1.0000,E=0.45142 ×10-4,F=0.15406 ×1
0-6,G=-0.58035×10-9,H=0.42319 ×10-11 f 29.51 62.50 131.00 D1 1.460 1.460 1.460 D2 0.766 17.061 22.292 D3 4.073 3.798 3.630 D4 15.086 6.568 1.369 |φf/φ1 |=0.34602, φ1/φw=0.360, φ12w/φw=
1.385 hB/hF =1.0767 AB/AF =0.9845, β3T/β3w=3.442 実施例6 f=29.30 〜102.00mm,F/4.6 〜F/7.65,2ω=72.88 °〜23.94 ° r1 =-60.5111 d1 =1.2500 n1 =1.74100 ν1 =52.68 r2 =-103.1603 d2 =0.2000 r3 =51.3114 d3 =2.6500 n2 =1.53172 ν2 =48.90 r4 =254.0371 d4 =1.0500 r5 =-148.9276 d5 =0.8500 n3 =1.83400 ν3 =37.16 r6 =27.9011 d6 =0.3000 r7 =28.5843 d7 =4.0000 n4 =1.65844 ν4 =50.86 r8 =451.3443 d8 =0.1200 r9 =47.3480 d9 =4.0500 n5 =1.65830 ν5 =53.44 r10=-73.2687 d10=D1 r11=-192.7657 d11=0.5000 n6 =1.78590 ν6 =44.18 r12=11.3110 d12=0.6696 r13=21.2161 d13=1.9980 n7 =1.78470 ν7 =26.22 r14=-75.8136 d14=5.3056 r15=∞(絞り) d15=3.6513 r16=-18.5732 d16=2.1356 n8 =1.59551 ν8 =39.21 r17=-19.9100 d17=0.5046 r18=-31.4506 d18=1.5121 n9 =1.50137 ν9 =56.40 r19=-18.2746 d19=0.1200 r20=75.5019 d20=0.8500 n10=1.84666 ν10=23.78 r21=19.0505 d21=3.9996 n11=1.60881 ν11=58.94 r22=-17.4005 d22=D2 r23=-45.2876 d23=3.0000 n12=1.78472 ν12=25.71 r24=-18.7253 d24=2.6527 r25=-12.9546(非球面)d25=0.1000 n13=1.52492 ν13=51.77 r26=-14.0500 d26=1.0000 n14=1.79952 ν15=42.24 r27=119.6924 非球面係数 P=1.0000,E=0.37563 ×10-4,F=0.36933 ×1
0-6,G=-0.27582×10-8,H=0.24748 ×10-10 f 29.30 54.52 102.00 D1 1.136 13.805 20.500 D2 15.118 6.870 0.998 |φf/φ1 |=0.25624 ,φ1/φw=0.385, φ12w/φw=
1.346 hB/hF =0.9986,AB/AF =1.0469 , β3T/β3w=
2.651 ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d1
,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n1
,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。実施例1は、焦点距離が
29.0〜105mmの広角ズームレンズで、図1に示す
ものである。この実施例のレンズ系は、全長にはあまり
制約を与えず、広角端で90mm弱に抑えているが変倍域
の全域で安定した良好な光学性能を有している。この実
施例の収差状況は、図7乃至図12に示す通りで、図
7,図9,図11が夫々無限遠物体に対する広角端,中
間焦点距離,望遠端における収差曲線図、図8,図1
0,図12が夫々2.0mmの物体に対する広角端,中間
焦点距離,望遠端における収差曲線図である。実施例2
は、焦点距離28.9〜102mmの広角ズームレンズ
で、図2に示す構成である。この実施例は、実施例1と
異なり、第2レンズ群中に像面補正用のレンズを配置し
たことにより全長が若干長くなっている。この実施例の
収差状況は、図13乃至図18に示す通りで、図13,
図15,図17が夫々無限遠物体に対する広角端,中間
焦点距離,望遠端における各収差曲線図、図14,図1
6,図18が夫々物体距離2.0mに対する広角端,中
間焦点距離,望遠端における各収差曲線図である。実施
例3は、焦点距離が24.5〜76.5mmの超広角を含
む広角ズームレンズである。図3に示すように、第1レ
ンズ群中の前群は負のレンズ成分1枚からなり、又第2
レンズ群に特徴を持たせた実施例である。収差補正上第
3レンズ群以外に第2レンズ群にも非球面を用いてい
る。この実施例の収差状況は図19乃至図24に示す通
りである。つまり図19,図21,図22が夫々無限遠
物体に対する広角端,中間焦点距離,望遠端における各
収差曲線図であり、図20,図22,図24が夫々2.
0mの物体に対する広角端,中間焦点距離,望遠端にお
ける収差曲線図である。実施例4は、焦点距離29.0
〜105mmの広角ズームレンズである。この実施例は、
図4に示すレンズ構成で、全長が比較的長くなってい
る。それによって光学性能は一層良好になった。この実
施例4の収差状況は、図25乃至図30に示す通りであ
る。これら図のうち、図25,図27,図29が夫々無
限遠物体に対する広角端,中間焦点距離,望遠端におけ
る収差曲線図であり、図26,図28,図30は夫々
2.0mの物体に対する広角端,中間焦点距離,望遠端
における収差曲線図である。実施例5は、焦点距離が2
9.5〜131mmの高変倍率の広角ズームレンズであ
る。この実施例は、図5に示す通りの構成で4群ズーム
レンズである。広角端の全長は83.6と短縮されてお
り、又バックフォーカスは8.92である。この実施例
の収差状況は、図31乃至図36に示す通りで、図3
1,図33,図35が夫々無限遠物体に対する広角端,
中間焦点距離,望遠端における収差曲線図、図32,図
34,図36は夫々2.0mの物体に対する広角端,中
間焦点距離,望遠端における収差曲線図である。この実
施例は、望遠端での球面収差の補正状況にやや難がみら
れるが実用上は十分である。実施例6は、焦点距離が2
9.3〜102mmの広角ズームレンズで、全長が広角端
で68.25である。この実施例は、図6に示す通り
で、第1レンズ群が負レンズと正レンズとからなる前群
と、1枚の負レンズと2枚の正レンズとからなる後群と
で構成されている。また第3レンズ群は、合成樹脂材料
を用いることを想定した非球面を用いている。またバッ
クフォーカスは、広角端で9.52であり、十分に確保
されている。この実施例6の収差状況は、図37乃至図
42に示す通りで、図37,図39,図41が夫々無限
遠物体に対する広角端,中間焦点距離,望遠端における
収差曲線図、図38,図40,図42が夫々2.0mの
物体に対する広角端,中間焦点距離,望遠端における収
差曲線図である。この実施例6は、全長の短縮をはかっ
たもので、そのため広角端で倍率色収差がg線で十分に
は補正し得ていないが、全体的には良好な補正状態であ
る。また歪曲収差は比較的単調な変化である。更に広角
端でのメリディオナル方向の非点収差の曲がりは第3レ
ンズ群の非球面による影響である。尚上記実施例のレン
ズ系のフォーカシングは、3群ズームレンズの場合第2
レンズ群により、又4群ズームレンズの場合第2−3レ
ンズ群によって行なわれる。実施例6以外の実施例は、
フォーカシング時、フォーカシングレンズ群内の最も像
面側に近距離収差補正用のレンズ成分を設け、このレン
ズ成分を固定し残りのレンズ成分を移動してフォーカシ
ングと収差補正を行なうようになっている。上記実施例
で用いている非球面の形状は、光軸方向をx軸、光軸と
垂直な方向をy軸とした時次の式で表わされる。 ただしrは非球面頂点近傍での曲率半径、Pは円錐定
数、E,F,G,H,…は非球面係数である。
EXAMPLES Next, examples of the zoom lens of the present invention will be described. Example 1 f = 28.90 to 102.00 mm, F / 4.5 to F / 7.625, 2ω = 73.64 ° to 23.94 ° r1 = 160.7804 d1 = 1.2000 n1 = 1.74100 ν1 = 52.68 r2 = 34.8076 d2 = 6.9850 r3 d3 = 38.8887. = 1.53172 v2 = 48.90 r4 = 142.7690 d4 = D1 r5 = -194.6240 d5 = 1.0000 n3 = 1.83400 v3 = 37.16 r6 = 38.0459 d6 = 0.3520 r7 = 43.6 r8 = 73.6 r8 = 73.6 r8 = 74.50 n8 = 4. = 32.2002 d9 = 5.2460 n5 = 1.51823 ν5 = 58.96 r10 = -96.2536 d10 = D2 r11 = -498.7110 d11 = 1.0000 n6 = 1.78590 ν6 = 44.18 r12 = 15.0840 d12 = 0.8410 r13 = 24.1630 n7 = 1.7640 d13 = 2.7640 = -102.9802 d14 = 3.9120 r15 = -14.3361 d15 = 1.1100 n8 = 1.65830 ν8 = 53.44 r16 = -16.3753 d16 = 4.9610 r17 = ∞ (diaphragm) d17 = 3.6000 r18 = -79.9489 d18 = 2.1300 n9 = 1.66680 ν9 = 33.04 -51.9241 d19 = 0.5000 r20 = -555.5860 d20 = 3.0490 n10 = 1.54454 ν10 = 54.69 r21 = -26.8298 d21 = 0.1200 r22 = 103.1734 d22 = 0.6500 n11 = 1.80518 ν11 = 25.43 r23 = 17.2071 d23 = 5.4150 n12 = 1.60729 ν12 = 59.38 r24 = -26.0457 d25 = 1.2500894 0.8780 n13 = 1.77250 ν13 = 49.66 r26 = -22.7792 d26 = D3 r27 = -54.8870 d27 = 3.3170 n14 = 1.78472 ν14 = 25.71 r28 = -22.2644 d28 = 2.4970 r29 = -15.6872 (aspherical surface) d29 = 0.3600 n15 = 1.52492 ν15 51.77 r30 = -16.8658 d30 = 1.3200 n16 = 1.77250 ν16 = 49.66 r31 = 62.5760 Aspheric surface coefficient P = 1.0000, E = 0.30618 × 10 -4 , F = 0.10777 × 1
0 -6 , G = -0.18514 x 10 -9 , H = 0.20423 x 10 -11 f 28.90 54.44 102.00 D1 1.750 1.750 1.750 D2 1.500 16.298 22.421 D3 15.852 7.073 1.530 | φf / φ1 | = 0.65194, φ1 / φw = 0.246, φ12w / φw =
1.330 hB / hF = 1.1256, AB / AF = 0.8117, β3T / β3w = 3.0 Example 2 f = 28.92 to 102.02 mm, F / 4.5 to F / 7.625, 2ω = 73.6 ° to 23.94 ° r1 = -82.5283 d1 = 1.2500 n1 = 1.74100 ν1 = 52.68 r2 = 8479.1527 d2 = 1.0288 r3 = 109.7348 d3 = 2.2603 n2 = 1.53172 ν2 = 48.90 r4 = -234.4198 d4 = 0.7500 r5 = -104.1899 d5 = 0.36400616 = 0.8500 n3 = 0.8500 n3 = 0.8500 n3 r7 = 39.3253 d7 = 4.5192 n4 = 1.65844 ν4 = 50.86 r8 = -20126.4985 d8 = 0.1200 r9 = 38.2462 d9 = 5.5542 n5 = 1.65830 ν5 = 53.44 n6 = 16.37 n18 = 16.36 d11 r6 = 16.16d11 = 16. r12 = 12.1902 d12 = 0.7721 r13 = 20.1078 d13 = 3.1941 n7 = 1.78470 ν7 = 26.22 r14 = -324.9518 d14 = 2.9127 r15 = -12.2940 d15 = 0.6569 n8 = 1.65830 ν8 = 53.44 r16 = -14.2480 d16 ) D17 = 3.4906 r18 = -39.4065 d18 = 1.9818 n9 = 1.59270 ν9 = 3 5.29 r19 = -23.5086 d19 = 1.0128 r20 = -77.1442 d20 = 2.2237 n10 = 1.50137 ν10 = 56.40 r21 = -27.3780 d21 = 0.1200 r22 = 71.2472 d22 = 0.8500 n11 = 1.864666 ν11 = 23.78 r23 = 17.8516 n12 = 4.0993 = 58.94 r24 = -19.8521 d24 = 0.8500 r25 = -20.0533 d25 = 1.5717 n13 = 1.77250 ν13 = 49.66 r26 = -21.5906 d26 = D2 r27 = -49.9729 d27 = 3.4179 n14 = 1.78472 ν14 = 25.71 r28 = -20.53093 d29 = -13.9632 (aspherical surface) d29 = 0.1000 n15 = 1.52492 ν15 = 51.77 r30 = -14.0500 d30 = 0.9444 n16 = 1.78590 ν16 = 44.18 r31 = 57.0622 Aspherical coefficient P = 1.0000, E = 0.46567 × 10 -4 , F = 0.16608 × 1
0 -6 , G = -0.40245 × 10 -9 , H = 0.76140 × 10 -11 f 28.92 54.39 102.02 D1 1.250 15.540 20.970 D2 12.853 5.873 1.207 | φf / φ1 | = 0.17379, φ1 / φw = 0.304, φ12w / φw =
1.404 hB / hF = 1.0233, AB / AF = 0.9179, β3T / β3w = 3.329 Example 3 f = 24.50 to 76.49 mm, F / 4.5 to F / 7.5, 2ω = 82.88 ° to 31.58 ° r1 = 96.5532 d1 = 1.2000 n1 = 1.69350 ν1 = 53.23 r2 = 27.7448 d2 = 11.6550 r3 = -91.4665 d3 = 1.2066 n2 = 1.78470 ν2 = 26.22 r4 = -303.5278 d4 = 0.1500 r5 = 3.060 797 = 6. = 37.1151 d7 = 5.0200 n4 = 1.60311 ν4 = 60.70 r8 = -206.3245 d8 = D1 r9 = 57.4357 d9 = 1.0000 n5 = 1.67790 ν5 = 55.33 r10 = 16.3022 (aspherical surface) d10 = 1.5109 r11 = 36.997 = 29.24 r12 = -33.4657 d12 = 1.1015 r13 = -23.8559 d13 = 1.1100 n7 = 1.83400 ν7 = 37.16 r14 = -125.8813 d14 = 4.7035 r15 = ∞ (diaphragm) d15 = 3.4988 r16 = -21.5971 d16 = 2.1300 n8 = 8350 65.94 r17 = -22.7796 d17 = 3.9083 r18 = -54.9728 d18 = 2.5000 n9 = 1.5182 1 ν9 = 65.04 r19 = -18.0505 d19 = 0.1200 r20 = 52.5661 d20 = 0.8500 n10 = 1.84666 ν10 = 23.78 r21 = 21.2304 d21 = 4.0000 n11 = 1.56873 ν11 = 63.16 r22 = -58.4819 d22 = 0.8950 r23 = 7950 r23 = 7950 1.77250 ν12 = 49.66 r24 = -204.8691 d24 = D2 r25 = -76.9580 d25 = 3.3170 n13 = 1.74000 ν13 = 28.29 r26 = -25.1526 d26 = D2 r27 = -19.5931 (aspherical surface) d27 = 0.3600 n14 = 1.52492 ν14 = 51.77 -23.2468 d28 = 1.200 200 n15 = 1.77250 ν15 = 49.66 r29 = 35.1917 Aspheric coefficient (10th surface) P = 1.0000, E = 0.15173 × 10 -4 , F = 0.
18351 x 10 -6 , G = -0.108 33 x 10 -8 , H = 0.28490 x 10
-10 (27th surface) P = 1.0000, E = 0.22735 × 10 -4 , F = 0.
29706 x 10 -7 , G = -0.30210 x 10 -9 , H = 0.83428 x 10
-12 f 24.50 45.02 76.49 D1 0.850 16.915 22.361 D2 12.830 5.031 0.510 | φf / φ1 | = 2.13856, φ1 / φw = 0.175, φ12w / φ
w = 1.365 hB / hF = 1.2347, AB / AF = 0.5986, β3T / β3w = 2.727 Example 4 f = 29.01 to 105.43 mm, F / 4 to F / 7.65, 2ω = 73.42 ° to 23.2 ° r1 = 123.2807 d1 = 1.2000 n1 = 1.69680 ν1 = 55.52 r2 = 28.1453 d2 = 7.0560 r3 = 31.7325 d3 = 5.4876 n2 = 1.53172 ν2 = 48.90 r4 = 302.3165 d4 = D3 r6 = 125.1445 d5 = 3. r7 = 40.6740 d7 = 3.6156 n4 = 1.65844 ν4 = 50.86 r8 = -1157.9848 d8 = 0.1500 r9 = 32.3632 d9 = 5.6348 n5 = 1.51823 ν5 = 58.96 r10 = -60.9035 d10 = 116.0611 = D21.0 r11 = D2 1.04 = 11. 44.18 r12 = 16.2024 d12 = 0.9097 r13 = 31.3832 d13 = 2.9131 n7 = 1.78470 ν7 = 26.22 r14 = -49.7711 d14 = 3.5341 r15 = -18.0019 d15 = 1.2081 n8 = 1.65830 ν8 = 53.44 r16 = -22.395 Aperture) d17 = 3.4676 r18 = -115.0000 d18 = 2.1300 n9 = 1.68893 ν9 = 31.08 r19 = -64.5600 d19 = 0.5000 r20 = 484.4333 d20 = 3.3939 n10 = 1.54739 ν10 = 53.55 r21 = -26.1713 d21 = 0.5903 r22 = 146.1389 d22 = 0.4350 n11 = 1.78472 ν11 = 25.71 r23 = 17.3114 d23 = 5.4869 n12 = 1.583. -25.9767 d24 = 1.2500 r25 = -19.9068 d25 = 1.4830 n13 = 1.74100 ν13 = 52.68 r26 = -20.9013 d26 = D3 r27 = -38.0869 d27 = 2.7902 n14 = 1.84666 ν14 = 23.78 r28 = -21.4684 d28 = 1.26534 r29 Aspherical surface) d29 = 0.3593 n15 = 1.52492 ν15 = 51.77 r30 = -17.4211 d30 = 1.3500 n16 = 1.77250 ν16 = 49.66 r31 = 82.1742 aspherical coefficient P = 1.0000, E = 0.20587 × 10 -4 , F = 0.86201 × 1
0 -7 , G = -0.48242 x 10 -9 , H = 0.27293 x 10 -11 f 29.01 54.44 105.43 D1 1.750 1.750 1.750 D2 1.500 15.621 21.576 D3 17.439 8.661 2.636 | φf / φ1 | = 0.18545, φ1 / φw = 0.322, φ12w / φw
= 1.349 hB / hF = 1.134, AB / AF = 0.8547, β3T / β3w = 2.973 Example 5 f = 29.51 to 131.00 mm, F / 4.5 to F / 8.25, 2ω = 72.48 ° to 18.76 ° r1 = 147.7015 d1 = 0.8500 n1 = 1.74100 ν1 = 52.68 r2 = 39.8775 d2 = 6.9732 r3 = 34.9579 d3 = 4.4400 n2 = 1.53172 ν2 = 48.90 r4 = -509.1641 d4 = D1 r5 = -55.5614 d5 = 1.836400 n3 = 0.8600 n3. r7 = 45.0582 d7 = 3.6100 n4 = 1.65844 ν4 = 50.86 r8 = -134.9701 d8 = 0.1200 r9 = 36.3870 d9 = 4.4600 n5 = 1.50137 ν5 = 56.40 r10 = -55.5290 d10 = D2 r0 = 60.5611 = -74.11 44.18 r12 = 15.5103 d12 = 0.7341 r13 = 24.6834 d13 = 2.6600 n7 = 1.78470 ν7 = 26.22 r14 = -63.3984 d14 = D3 r15 = -13.9591 d15 = 0.9163 n8 = 1.65830 ν8 = 53.44 r16 = -16.2221 Aperture) d17 = 3.3080 r18 = -77.7267 d18 = 1.7100 n9 = 1.66680 ν9 = 33.04 19 = -56.3440 d19 = 0.1400 r20 = -322.6649 d20 = 2.3300 n10 = 1.50137 ν10 = 56.40 r21 = -24.8971 d21 = 0.1200 r22 = 74.2271 d22 = 0.5300 n11 = 1.85018 ν11 = 25.43 r23 = 17.1956 d12 = 5.10311 60.70 r24 = -24.4180 d24 = 1.0490 r25 = -20.8299 d25 = 0.8800 n13 = 1.77250 ν13 = 49.66 r26 = -22.2142 d26 = D4 r27 = -50.1298 d27 = 3.2000 n14 = 1.78472 ν14 = 25.71 r28 = -21.5995 d28 = 2.3876 -14.9318 (aspherical surface) d29 = 0.4500 n15 = 1.52492 ν15 = 51.77 r30 = -15.1591 d30 = 1.1900 n16 = 1.77250 ν16 = 49.66 r31 = 52.7870 Aspherical coefficient P = 1.0000, E = 0.45142 × 10 -4 , F = 0.15406 × 1
0 -6 , G = -0.58035 x 10 -9 , H = 0.42319 x 10 -11 f 29.51 62.50 131.00 D1 1.460 1.460 1.460 D2 0.766 17.061 22.292 D3 4.073 3.798 3.630 D4 15.086 6.568 1.369 | φf / φ1 | = 0.34602, φ1 / φw = 0.360, φ12w / φw =
1.385 hB / hF = 1.0767 AB / AF = 0.9845, β3T / β3w = 3.442 Example 6 f = 29.30 to 102.00 mm, F / 4.6 to F / 7.65, 2ω = 72.88 ° to 23.94 ° r1 = -60.5111 d1 = 1.2500 n1 = 1.74100 ν1 = 52.68 r2 = -103.1603 d2 = 0.2000 r3 = 51.3114 d3 = 2.6500 n2 = 1.53172 ν2 = 48.90 r4 = 254.0371 d4 = 1.0500 r5 = -1437 7.6 = 68.77 = 637 = 6. = 28.5843 d7 = 4.0000 n4 = 1.65844 ν4 = 50.86 r8 = 451.3443 d8 = 0.1200 r9 = 47.3480 d9 = 4.0500 n5 = 1.65830 ν5 = 53.44 r10 = -73.2687 d10 = D1 r11 = 61.70.512 = 11.3110 d12 = 0.6696 r13 = 21.2161 d13 = 1.9980 n7 = 1.78470 ν7 = 26.22 r14 = -75.8136 d14 = 5.3056 r15 = ∞ (diaphragm) d15 = 3.6513 r16 = -18.5732 d16 = 2.1356 n8 = 1.59551 ν8 = 39.21 d17 = 0.5046 r18 = -31.4506 d18 = 1.5121 n9 = 1.50137 ν9 = 56.40 r 19 = -18.2746 d19 = 0.1200 r20 = 75.5019 d20 = 0.8500 n10 = 1.84666 v10 = 23.78 r21 = 19.0505 d21 = 3.9996 n11 = 1.60881 v11 = 58.94 r22 = -17.4005 d22 = D2 r23 = -45.2876 d23 = 3.02 n12 = 3.02 n12 = 3.02 25.71 r24 = -18.7253 d24 = 2.6527 r25 = -12.9546 (aspherical surface) d25 = 0.1000 n13 = 1.52492 ν13 = 51.77 r26 = -14.0500 d26 = 1.0000 n14 = 1.79952 ν15 = 42.24 r27 = 119.6924 Aspheric coefficient P = 1.0000, E = 0.37563 x 10 -4 , F = 0.36933 x 1
0 -6 , G = -0.27582 x 10 -8 , H = 0.24748 x 10 -10 f 29.30 54.52 102.00 D1 1.136 13.805 20.500 D2 15.118 6.870 0.998 | φf / φ1 | = 0.25624, φ1 / φw = 0.385, φ12w / φw =
1.346 hB / hF = 0.9986, AB / AF = 1.0469, β3T / β3w =
2.651 where r1, r2, ... are the radii of curvature of each lens surface, d1
, D2, ... are the wall thickness and lens spacing of each lens, n1
, N2, ... is the refractive index of each lens, ν1, ν2, ...
Is the Abbe number of each lens. Example 1 is a wide-angle zoom lens having a focal length of 29.0 to 105 mm, which is shown in FIG. The lens system of this embodiment does not restrict the overall length so much and suppresses it to less than 90 mm at the wide-angle end, but has stable and good optical performance over the entire zoom range. The aberrations of this embodiment are as shown in FIGS. 7 to 12, and FIGS. 7, 9 and 11 show aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object at infinity, FIG. 8, and FIG. 1
0 and FIG. 12 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object of 2.0 mm, respectively. Example 2
Is a wide-angle zoom lens having a focal length of 28.9 to 102 mm, which has the configuration shown in FIG. Unlike Example 1, this example has a slightly longer overall length because an image plane correcting lens is arranged in the second lens group. The aberrations in this example are as shown in FIGS.
FIGS. 15 and 17 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end, respectively, for an object at infinity, and FIGS.
6 and 18 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object distance of 2.0 m, respectively. The third embodiment is a wide-angle zoom lens including a super wide angle with a focal length of 24.5 to 76.5 mm. As shown in FIG. 3, the front group in the first lens group consists of one negative lens component, and
It is an example in which the lens group has characteristics. In terms of aberration correction, an aspherical surface is used for the second lens group as well as the third lens group. The aberrations in this example are as shown in FIGS. 19 to 24. That is, FIGS. 19, 21, and 22 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object at infinity, respectively, and FIGS.
It is an aberration curve figure in the wide-angle end, an intermediate focal length, and a telephoto end with respect to an object of 0 m. Example 4 has a focal length of 29.0.
It is a wide-angle zoom lens of ~ 105 mm. This example
With the lens configuration shown in FIG. 4, the overall length is relatively long. As a result, the optical performance was improved. The aberrations of the fourth embodiment are as shown in FIGS. Of these figures, FIG. 25, FIG. 27, and FIG. 29 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end, respectively, for an object at infinity, and FIGS. FIG. 6 is an aberration curve diagram at the wide-angle end, the intermediate focal length, and the telephoto end for the Example 5 has a focal length of 2
A wide-angle zoom lens with a high zoom ratio of 9.5 to 131 mm. This embodiment is a four-group zoom lens with a configuration as shown in FIG. The total length of the wide-angle end is shortened to 83.6, and the back focus is 8.92. The aberrations in this example are as shown in FIGS.
1, FIG. 33, and FIG. 35 are the wide-angle end for an object at infinity,
32, 34, and 36 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object of 2.0 m respectively. In this embodiment, the correction of spherical aberration at the telephoto end is slightly difficult, but is practically sufficient. In Example 6, the focal length is 2
It is a wide-angle zoom lens of 9.3 to 102 mm, and the total length is 68.25 at the wide-angle end. In this embodiment, as shown in FIG. 6, the first lens group is composed of a front group composed of a negative lens and a positive lens, and a rear group composed of one negative lens and two positive lenses. There is. Further, the third lens group uses an aspherical surface on the assumption that a synthetic resin material is used. The back focus is 9.52 at the wide-angle end, which is sufficiently secured. The aberration states of the sixth embodiment are as shown in FIGS. 37 to 42. FIGS. 37, 39, and 41 show aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object at infinity, respectively. 40 and 42 are aberration curve diagrams at the wide-angle end, the intermediate focal length, and the telephoto end for an object of 2.0 m, respectively. In Example 6, the overall length was shortened, so that the lateral chromatic aberration at the wide-angle end could not be sufficiently corrected with the g-line, but the overall correction state was good. Further, the distortion aberration is a relatively monotonous change. Further, the bending of astigmatism in the meridional direction at the wide-angle end is an effect of the aspherical surface of the third lens group. The focusing of the lens system in the above-described embodiment is the second in the case of the three-group zoom lens.
This is performed by the lens group, and in the case of a 4-group zoom lens, it is performed by the second to third lens groups. Examples other than Example 6,
At the time of focusing, a lens component for short-distance aberration correction is provided on the most image plane side in the focusing lens unit, and this lens component is fixed and the remaining lens components are moved to perform focusing and aberration correction. The shape of the aspherical surface used in the above embodiment is represented by the following equation when the optical axis direction is the x axis and the direction perpendicular to the optical axis is the y axis. However, r is a radius of curvature near the aspherical vertex, P is a conic constant, and E, F, G, H, ... Are aspherical coefficients.

【0039】[0039]

【発明の効果】本発明は、第1レンズ群の構成に特徴を
持たせることによって、全長や外径をあまり大きくする
ことなしに、従来広角化に不利であるといわれているこ
の種のズームレンズにおいて、光学性能を良好に保ちな
がら広角になし得た。
As described above, according to the present invention, by making the constitution of the first lens group characteristic, this type of zoom which is conventionally considered to be disadvantageous in widening the angle without increasing the total length and outer diameter too much. In the lens, it was possible to achieve a wide angle while maintaining good optical performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の断面図。FIG. 1 is a sectional view of a first embodiment.

【図2】実施例2の断面図。FIG. 2 is a sectional view of a second embodiment.

【図3】実施例3の断面図。FIG. 3 is a sectional view of a third embodiment.

【図4】実施例4の断面図。FIG. 4 is a sectional view of a fourth embodiment.

【図5】実施例5の断面図。FIG. 5 is a sectional view of a fifth embodiment.

【図6】実施例6の断面図。FIG. 6 is a sectional view of a sixth embodiment.

【図7】実施例1の無限遠物体に対する広角端における
収差曲線図。
7 is an aberration curve diagram at the wide-angle end for an object at infinity according to Example 1. FIG.

【図8】実施例1の2.0mの物体に対する広角端にお
ける収差曲線図。
FIG. 8 is an aberration curve diagram for a 2.0 m object in Example 1 at the wide-angle end.

【図9】実施例1の無限遠物体に対する中間焦点距離に
おける収差曲線図。
9 is an aberration curve diagram at an intermediate focal length for an infinitely distant object in Example 1. FIG.

【図10】実施例1の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 10 is an aberration curve diagram for a 2.0 m object in Example 1 at an intermediate focal length.

【図11】実施例1の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 11 is an aberration curve diagram at the telephoto end for an object at infinity in Example 1.

【図12】実施例1の2.0mの物体に対する望遠端に
おける収差曲線図。
12 is an aberration curve diagram at the telephoto end for an object of 2.0 m in Example 1. FIG.

【図13】実施例2の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 13 is an aberration curve diagram at the wide-angle end for an object at infinity according to Example 2.

【図14】実施例2の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 14 is an aberration curve diagram at the wide-angle end for an object of 2.0 m in Example 2.

【図15】実施例2の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 15 is an aberration curve diagram at an intermediate focal length for an object at infinity according to Example 2;

【図16】実施例2の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 16 is an aberration curve diagram for Example 2.0 at an intermediate focal length for an object of 2.0 m.

【図17】実施例2の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 17 is an aberration curve diagram at the telephoto end for an infinitely distant object in Example 2.

【図18】実施例2の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 18 is an aberration curve diagram for a 2.0 m object in Example 2 at the telephoto end.

【図19】実施例3の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 19 is an aberration curve diagram at the wide-angle end for an object at infinity according to Example 3;

【図20】実施例3の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 20 is an aberration curve diagram for a 2.0 m object in Example 3 at the wide-angle end.

【図21】実施例3の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 21 is an aberration curve diagram at an intermediate focal length for an object at infinity according to Example 3;

【図22】実施例3の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 22 is an aberration curve diagram at an intermediate focal length for a 2.0 m object in Example 3;

【図23】実施例3の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 23 is an aberration curve diagram for the object at infinity according to Example 3 at the telephoto end.

【図24】実施例3の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 24 is an aberration curve diagram for Example 2.0 at the telephoto end for a 2.0 m object.

【図25】実施例4の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 25 is an aberration curve diagram at the wide-angle end for an object at infinity according to Example 4;

【図26】実施例4の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 26 is an aberration curve diagram for a 2.0 m object in Example 4 at the wide-angle end.

【図27】実施例4の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 27 is an aberration curve diagram at an intermediate focal length for an object at infinity according to Example 4;

【図28】実施例4の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 28 is an aberration curve diagram for a 2.0 m object in Example 4 at an intermediate focal length.

【図29】実施例4の無限遠物体に対する望遠端におけ
る収差曲線図。
29 is an aberration curve diagram at the telephoto end for an object at infinity according to Example 4. FIG.

【図30】実施例4の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 30 is an aberration curve diagram at the telephoto end for an object of 2.0 m in Example 4.

【図31】実施例5の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 31 is an aberration curve diagram at the wide-angle end for an object at infinity in Example 5.

【図32】実施例5の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 32 is an aberration curve diagram for a 2.0 m object in Example 5 at the wide-angle end.

【図33】実施例5の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 33 is an aberration curve diagram at an intermediate focal length for an object at infinity according to Example 5;

【図34】実施例5の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 34 is an aberration curve diagram for a 2.0 m object in Example 5 at an intermediate focal length.

【図35】実施例5の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 35 is an aberration curve diagram for the object at infinity according to Example 5 at the telephoto end.

【図36】実施例5の2.0mの物体に対する望遠端に
おける収差曲線図。
FIG. 36 is an aberration curve diagram for Example 2.0 at the telephoto end for an object of 2.0 m.

【図37】実施例6の無限遠物体に対する広角端におけ
る収差曲線図。
FIG. 37 is an aberration curve diagram at the wide-angle end for an object at infinity in Example 6.

【図38】実施例6の2.0mの物体に対する広角端に
おける収差曲線図。
FIG. 38 is an aberration curve diagram for a 2.0 m object in Example 6 at the wide-angle end.

【図39】実施例6の無限遠物体に対する中間焦点距離
における収差曲線図。
FIG. 39 is an aberration curve diagram for the object at infinity in Example 6 at the intermediate focal length.

【図40】実施例6の2.0mの物体に対する中間焦点
距離における収差曲線図。
FIG. 40 is an aberration curve diagram for a 2.0 m object in Example 6 at an intermediate focal length.

【図41】実施例6の無限遠物体に対する望遠端におけ
る収差曲線図。
FIG. 41 is an aberration curve diagram for the object at infinity according to Example 6 at the telephoto end.

【図42】実施例6の2.0mの物体に対する望遠端に
おける収差曲線図。
42 is an aberration curve diagram for Example 2.0 at the telephoto end for an object of 2.0 m.

【図43】本発明の3群ズ−ムのときの基本構成を示す
FIG. 43 is a diagram showing a basic configuration in the case of a three-group zoom according to the present invention.

【図44】本発明の4群ズ−ムのときの基本構成を示す
FIG. 44 is a diagram showing a basic configuration of a four-group zoom according to the present invention.

【図45】第1レンズ群の前群および後群への軸外光線
の入射状況を示す図。
FIG. 45 is a diagram showing how off-axis rays are incident on the front group and the rear group of the first lens group.

【図46】第1レンズ群広角端における近軸での光線の
状況を示す図。
FIG. 46 is a diagram showing the state of paraxial rays at the wide-angle end of the first lens group.

【図47】第1レンズ望遠端における近軸での光線の状
況を示す図。
FIG. 47 is a diagram showing a situation of paraxial rays at the telephoto end of the first lens.

【図48】第1レンズ群広角端における厚肉レンズでの
光線の状況を示す図。
FIG. 48 is a diagram showing a state of light rays at a thick lens at the wide-angle end of the first lens group.

【図49】第1レンズ群における近軸での光線の状況を
示す図。
FIG. 49 is a diagram showing a situation of paraxial rays in the first lens group.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月7日[Submission date] April 7, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図43】 FIG. 43

【図44】 FIG. 44

【図45】 FIG. 45

【図3】 [Figure 3]

【図9】 [Figure 9]

【図10】 [Figure 10]

【図34】 FIG. 34

【図38】 FIG. 38

【図46】 FIG. 46

【図4】 [Figure 4]

【図5】 [Figure 5]

【図11】 FIG. 11

【図12】 [Fig. 12]

【図47】 FIG. 47

【図49】 FIG. 49

【図6】 [Figure 6]

【図13】 [Fig. 13]

【図14】 FIG. 14

【図48】 FIG. 48

【図15】 FIG. 15

【図16】 FIG. 16

【図17】 FIG. 17

【図18】 FIG. 18

【図19】 FIG. 19

【図20】 FIG. 20

【図21】 FIG. 21

【図22】 FIG. 22

【図23】 FIG. 23

【図24】 FIG. 24

【図25】 FIG. 25

【図26】 FIG. 26

【図27】 FIG. 27

【図28】 FIG. 28

【図29】 FIG. 29

【図30】 FIG. 30

【図31】 FIG. 31

【図32】 FIG. 32

【図33】 FIG. 33

【図35】 FIG. 35

【図36】 FIG. 36

【図37】 FIG. 37

【図39】 FIG. 39

【図40】 FIG. 40

【図41】 FIG. 41

【図42】 FIG. 42

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力の第1レンズ
群と、正の屈折力の第2レンズ群と、負の屈折力の第3
レンズ群とよりなり、第1レンズ群と第2レンズ群の間
隔および第2レンズ群と第3レンズ群の間隔を変えるこ
とによって変倍を行なうもので、第1レンズ群を次の条
件(1)を満足する前群,後群の二つの群で構成したこ
とを特徴とする広角ズームレンズ。 (1)|φf/φ1 |<6.0 ただしφf は前記前群の屈折力、φ1 は前記第1レンズ
群の屈折力である。
1. A first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power in order from the object side.
The second lens group and the third lens group are changed to change the distance between the first lens group and the second lens group, and the first lens group is changed to the following condition (1 ) A wide-angle zoom lens characterized by being composed of two groups, a front group and a rear group, which satisfy the above condition. (1) | φf / φ1 | <6.0 where φf is the refracting power of the front group and φ1 is the refracting power of the first lens group.
【請求項2】物体側より順に、正の屈折力の第1レンズ
群と正の屈折力の第2レンズ群と、正の屈折力の第3レ
ンズ群と、負の屈折力を有する第4レンズ群とよりな
り、第1レンズ群と第2レンズ群の間隔と第2レンズ群
と第3レンズ群の間隔と第3レンズ群と第4レンズ群の
間隔とを変えることによって変倍を行なうもので、第1
レンズ群を次の条件(1)を満足する前群と後群との二
つの群からなることを特徴とする広角ズームレンズ。 (1)|φf/φ1 |<6.0 ただしφ1 は第1レンズ群の屈折力、φf は前記前群の
屈折力である。
2. A first lens unit having a positive refracting power, a second lens unit having a positive refracting power, a third lens unit having a positive refracting power, and a fourth lens unit having a negative refracting power in order from the object side. The lens unit is configured to change the distance between the first lens unit and the second lens unit, the distance between the second lens unit and the third lens unit, and the distance between the third lens unit and the fourth lens unit. The first one
A wide-angle zoom lens characterized in that the lens unit comprises two groups, a front group and a rear group, which satisfy the following condition (1). (1) | φf / φ1 | <6.0 where φ1 is the refractive power of the first lens group and φf is the refractive power of the front group.
JP04051592A 1991-03-04 1992-01-31 Wide-angle zoom lens Expired - Fee Related JP3260798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04051592A JP3260798B2 (en) 1991-03-04 1992-01-31 Wide-angle zoom lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6107791 1991-03-04
JP3-61077 1991-03-04
JP04051592A JP3260798B2 (en) 1991-03-04 1992-01-31 Wide-angle zoom lens

Publications (2)

Publication Number Publication Date
JPH05264903A true JPH05264903A (en) 1993-10-15
JP3260798B2 JP3260798B2 (en) 2002-02-25

Family

ID=26379979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04051592A Expired - Fee Related JP3260798B2 (en) 1991-03-04 1992-01-31 Wide-angle zoom lens

Country Status (1)

Country Link
JP (1) JP3260798B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06250088A (en) * 1993-02-25 1994-09-09 Canon Inc Small zoom lens
JPH08179215A (en) * 1994-12-22 1996-07-12 Canon Inc Zoom lens
US6215600B1 (en) 1997-09-30 2001-04-10 Canon Kabushiki Kaisha Zoom lens
US6480341B2 (en) 1999-12-20 2002-11-12 Nikon Corporation Variable focal length lens system
US6701072B2 (en) 2002-01-31 2004-03-02 Olympus Corporation Three-lens-unit zoom optical system
JP2011197413A (en) * 2010-03-19 2011-10-06 Nikon Corp Photographic lens, optical apparatus having the photographic lens, and method for manufacturing the photographic lens
CN103885161A (en) * 2012-12-21 2014-06-25 佳能株式会社 Imaging Optical System And Image Pickup Apparatus Including The Same
JP2019200339A (en) * 2018-05-17 2019-11-21 株式会社タムロン Optical system and imaging device
CN114185160A (en) * 2021-12-20 2022-03-15 福建福光股份有限公司 Diaphragm-preposed continuous zooming visible light optical system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137813A (en) * 1982-02-10 1983-08-16 Konishiroku Photo Ind Co Ltd Small-sized zoom lens
JPS58224322A (en) * 1982-06-23 1983-12-26 Konishiroku Photo Ind Co Ltd Small-sized three-group zoom lens
JPS6152620A (en) * 1984-08-23 1986-03-15 Canon Inc Small-sized zoom lens
JPS63148223A (en) * 1986-12-12 1988-06-21 Nikon Corp zoom lens
JPH0193713A (en) * 1987-10-05 1989-04-12 Canon Inc small zoom lens
JPH0273211A (en) * 1988-09-08 1990-03-13 Asahi Optical Co Ltd High variable power zoom lens for compact camera
JPH02103014A (en) * 1988-10-12 1990-04-16 Minolta Camera Co Ltd Zoom lens having optical system for correcting camera-shake
JPH02135312A (en) * 1988-11-16 1990-05-24 Olympus Optical Co Ltd Compact zoom lens of high variable magnification
JPH0317609A (en) * 1989-06-15 1991-01-25 Olympus Optical Co Ltd Compact zoom lens with high variable power rate
JPH0331809A (en) * 1989-06-29 1991-02-12 Olympus Optical Co Ltd Zoom lens
JPH0350516A (en) * 1989-07-19 1991-03-05 Fuji Photo Optical Co Ltd Compact high-power zoom lens system
JPH0385508A (en) * 1989-08-30 1991-04-10 Fuji Photo Optical Co Ltd Compact and high magnification four-group zoom lens
JPH03208004A (en) * 1990-01-10 1991-09-11 Olympus Optical Co Ltd Wide angle zoom lens
JPH04338910A (en) * 1991-02-07 1992-11-26 Olympus Optical Co Ltd High variable power rate zoom lens with small short-distance aberration variation
JPH04362910A (en) * 1990-11-16 1992-12-15 Minolta Camera Co Ltd Zoom lens

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137813A (en) * 1982-02-10 1983-08-16 Konishiroku Photo Ind Co Ltd Small-sized zoom lens
JPS58224322A (en) * 1982-06-23 1983-12-26 Konishiroku Photo Ind Co Ltd Small-sized three-group zoom lens
JPS6152620A (en) * 1984-08-23 1986-03-15 Canon Inc Small-sized zoom lens
JPS63148223A (en) * 1986-12-12 1988-06-21 Nikon Corp zoom lens
JPH0193713A (en) * 1987-10-05 1989-04-12 Canon Inc small zoom lens
JPH0273211A (en) * 1988-09-08 1990-03-13 Asahi Optical Co Ltd High variable power zoom lens for compact camera
JPH02103014A (en) * 1988-10-12 1990-04-16 Minolta Camera Co Ltd Zoom lens having optical system for correcting camera-shake
JPH02135312A (en) * 1988-11-16 1990-05-24 Olympus Optical Co Ltd Compact zoom lens of high variable magnification
JPH0317609A (en) * 1989-06-15 1991-01-25 Olympus Optical Co Ltd Compact zoom lens with high variable power rate
JPH0331809A (en) * 1989-06-29 1991-02-12 Olympus Optical Co Ltd Zoom lens
JPH0350516A (en) * 1989-07-19 1991-03-05 Fuji Photo Optical Co Ltd Compact high-power zoom lens system
JPH0385508A (en) * 1989-08-30 1991-04-10 Fuji Photo Optical Co Ltd Compact and high magnification four-group zoom lens
JPH03208004A (en) * 1990-01-10 1991-09-11 Olympus Optical Co Ltd Wide angle zoom lens
JPH04362910A (en) * 1990-11-16 1992-12-15 Minolta Camera Co Ltd Zoom lens
JPH04338910A (en) * 1991-02-07 1992-11-26 Olympus Optical Co Ltd High variable power rate zoom lens with small short-distance aberration variation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06250088A (en) * 1993-02-25 1994-09-09 Canon Inc Small zoom lens
JPH08179215A (en) * 1994-12-22 1996-07-12 Canon Inc Zoom lens
US6215600B1 (en) 1997-09-30 2001-04-10 Canon Kabushiki Kaisha Zoom lens
US6480341B2 (en) 1999-12-20 2002-11-12 Nikon Corporation Variable focal length lens system
US6701072B2 (en) 2002-01-31 2004-03-02 Olympus Corporation Three-lens-unit zoom optical system
JP2011197413A (en) * 2010-03-19 2011-10-06 Nikon Corp Photographic lens, optical apparatus having the photographic lens, and method for manufacturing the photographic lens
CN103885161A (en) * 2012-12-21 2014-06-25 佳能株式会社 Imaging Optical System And Image Pickup Apparatus Including The Same
US9235025B2 (en) 2012-12-21 2016-01-12 Canon Kabushiki Kaisha Imaging optical system and image pickup apparatus including the same
JP2019200339A (en) * 2018-05-17 2019-11-21 株式会社タムロン Optical system and imaging device
CN110501810A (en) * 2018-05-17 2019-11-26 株式会社腾龙 Optical systems and cameras
CN110501810B (en) * 2018-05-17 2022-10-11 株式会社腾龙 Optical system and imaging apparatus
CN114185160A (en) * 2021-12-20 2022-03-15 福建福光股份有限公司 Diaphragm-preposed continuous zooming visible light optical system

Also Published As

Publication number Publication date
JP3260798B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP4626135B2 (en) Large aperture ratio internal focusing telephoto zoom lens
JP3196283B2 (en) Zoom lens device
US5189557A (en) High variable magnification range zoom lens
US5585969A (en) Zoom lens
US5111338A (en) Zoom Lens
JPH02201310A (en) Zoom lens with internal focus lens
JP3226297B2 (en) Zoom lens and camera with zoom lens
JPH05173071A (en) Wide angle zoom lens
US5528427A (en) Zoom lens
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
JPH07253542A (en) Zoom lens
JP5430130B2 (en) Zoom lens and imaging apparatus having the same
US5537259A (en) Zoom lens
JPH0634885A (en) Zoom lens
JP3260798B2 (en) Wide-angle zoom lens
JPH0651203A (en) Zoom lens with little near abberation fluctuation
JPH07151971A (en) Zoom lens
US4712883A (en) Rear focus zoom lens
US7075730B2 (en) Zoom lens system and image pickup apparatus including the same
JP3144153B2 (en) Zoom lens
JP3260836B2 (en) Wide-angle high zoom lens
JP3008711B2 (en) Small zoom lens
US4618219A (en) Zoom lens
JPH0682698A (en) Large-diameter wide-angle zoom lens
US4390248A (en) Wide angle zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees