[go: up one dir, main page]

JPH05277322A - Pressure fluctuation adsorption device reducing operation method - Google Patents

Pressure fluctuation adsorption device reducing operation method

Info

Publication number
JPH05277322A
JPH05277322A JP4074785A JP7478592A JPH05277322A JP H05277322 A JPH05277322 A JP H05277322A JP 4074785 A JP4074785 A JP 4074785A JP 7478592 A JP7478592 A JP 7478592A JP H05277322 A JPH05277322 A JP H05277322A
Authority
JP
Japan
Prior art keywords
amount
adsorption
pressure
regeneration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4074785A
Other languages
Japanese (ja)
Other versions
JP3143758B2 (en
Inventor
Masahito Kawai
雅人 川井
Shin Hayashi
伸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP04074785A priority Critical patent/JP3143758B2/en
Publication of JPH05277322A publication Critical patent/JPH05277322A/en
Application granted granted Critical
Publication of JP3143758B2 publication Critical patent/JP3143758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

(57)【要約】 【目的】 吸着塔を真空再生法で行う圧力変動吸着装置
において、その減量運転状態においても所定の濃度の製
品ガスを安定して製造するとともに、消費動力を低減さ
せることのできる運転方法を提供する。 【構成】 真空再生工程を行う圧力変動吸着装置を減量
運転するにあたり、前記真空再生を行っている吸着塔に
導入するパージガス量を、製品ガスの減量程度に応じて
増量する。
(57) [Summary] [Purpose] In a pressure fluctuation adsorption device in which the adsorption tower is vacuum-regenerated, it is possible to stably produce a product gas of a predetermined concentration even in the reduction operation state and to reduce power consumption. Provide a driving method that can be done. [Structure] When the pressure fluctuation adsorption device performing the vacuum regeneration step is operated in a reduced amount, the purge gas amount introduced into the adsorption tower performing the vacuum regeneration is increased according to the reduction amount of the product gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力変動吸着装置の減
量運転方法に関し、詳しくは、吸着塔を真空再生法で行
う圧力変動吸着装置において、その減量運転状態におい
ても所定の濃度の製品ガスを安定して製造するととも
に、消費動力を低減させることのできる運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing the pressure of a pressure fluctuation adsorption device, and more particularly, to a pressure fluctuation adsorption device in which an adsorption tower is operated by a vacuum regeneration method. The present invention relates to an operating method capable of stably manufacturing a vehicle and reducing power consumption.

【0002】[0002]

【従来の技術】圧力変動吸着装置(以下PSA装置とい
う)は、各種ガスの分離あるいは精製法として広く用い
られており、特に窒素を優先的に吸着するゼオライト等
の吸着剤を用いて原料空気中から酸素ガスを分離製造す
る酸素製造装置として多く用いられている。
2. Description of the Related Art A pressure fluctuation adsorption device (hereinafter referred to as PSA device) is widely used as a method for separating or purifying various gases. Particularly, an adsorbent such as zeolite that preferentially adsorbs nitrogen is used in the feed air. It is widely used as an oxygen production device that separates and produces oxygen gas from water.

【0003】図5は、3基の吸着塔を使用したPSA酸
素製造装置の一例を示すものである(特開平2−784
15号公報参照)。
FIG. 5 shows an example of a PSA oxygen production apparatus using three adsorption towers (JP-A-2-784).
(See Japanese Patent Publication No. 15).

【0004】このPSA装置1は、3基の吸着塔2a,
2b,2c、原料ガスを供給する送風機3、製品ガスを
送出する圧縮機4、吸着塔の再生,充圧工程に用いられ
る流量調節機構5a,5bと真空再生を行うための真空
ポンプ6及び各吸着塔2a,2b,2cを吸着,再生,
充圧の各工程に順次切換えるための多数の弁により構成
されている。
This PSA apparatus 1 comprises three adsorption towers 2a,
2b, 2c, a blower 3 for supplying a raw material gas, a compressor 4 for delivering a product gas, flow rate adjusting mechanisms 5a, 5b used for regeneration and charging steps of an adsorption tower, and a vacuum pump 6 for performing vacuum regeneration and each. Adsorption and regeneration of the adsorption towers 2a, 2b, 2c,
It is composed of a large number of valves for sequentially switching to each step of charging.

【0005】ここで、第一の吸着塔2aが吸着工程、第
二の吸着塔2bが充圧工程、第三の吸着塔2cが再生工
程にある場合について説明する。
Here, the case where the first adsorption tower 2a is in the adsorption step, the second adsorption tower 2b is in the charging step, and the third adsorption tower 2c is in the regeneration step will be described.

【0006】原料ガスは、送風機3から切換弁7aを経
て吸着塔2aに導入され、該吸着塔2a内で窒素が吸着
剤に吸着する吸着分離が行われて吸着塔2aの出口から
製品ガスである酸素ガスが流出する。この製品酸素ガス
は、切換弁8a,弁9を経て圧縮機4に送られ、消費先
に圧送される。
The raw material gas is introduced into the adsorption tower 2a from the blower 3 through the switching valve 7a, and the adsorption separation in which the nitrogen is adsorbed by the adsorbent is performed in the adsorption tower 2a, and the product gas is discharged from the outlet of the adsorption tower 2a. Some oxygen gas flows out. This product oxygen gas is sent to the compressor 4 via the switching valve 8a and the valve 9, and is pressure-fed to the consumer.

【0007】このとき、第二の吸着塔2bには、その両
端の切換弁10b,11bから第三の吸着塔2c内のガ
スが導入される均圧工程が行われ、次いで両切換弁10
b,11bが閉じられるとともに、出口側の切換弁12
bが開かれて流量調整機構5aから所定流量で酸素ガス
が導入され、所定の圧力に加圧される。
At this time, the second adsorption tower 2b is subjected to a pressure equalizing step in which the gas in the third adsorption tower 2c is introduced from the switching valves 10b and 11b at both ends of the second adsorption tower 2b.
b and 11b are closed, and the outlet side switching valve 12
b is opened, oxygen gas is introduced from the flow rate adjusting mechanism 5a at a predetermined flow rate, and pressurized to a predetermined pressure.

【0008】また第三の吸着塔2cは、再生工程を構成
する各工程、即ち、前記均圧工程と、該均圧工程を終え
た後に切換弁13cを開いて真空ポンプ6により塔内の
排気減圧を行う真空再生工程と、該塔内が所定の真空度
になったところで切換弁15cを開いて流量調整機構5
bから所定量の製品ガスを塔出口側から塔内に導入する
パ―ジ再生工程が順次行われる。
In the third adsorption tower 2c, each step constituting the regeneration step, that is, the pressure equalizing step, and the switching valve 13c is opened after the pressure equalizing step is completed and the vacuum pump 6 exhausts the inside of the tower. A vacuum regeneration step of decompressing, and when the inside of the tower reaches a predetermined vacuum degree, the switching valve 15c is opened to open the flow rate adjusting mechanism 5.
A purge regeneration step of introducing a predetermined amount of product gas into the tower from the tower outlet side is sequentially performed from b.

【0009】以下、順次切換弁7a,7b,7c,8
a,8b,8c,10a,10b,10c,11a,1
1b,11c,12a,12b,12c,13a,13
b,13c,14,15a,15b,15cをそれぞれ
所定の順序で切換開閉することにより、第一の吸着塔2
aが再生工程、第二の吸着塔2bが吸着工程、第三の吸
着塔2cが充圧工程となるサイクル、及び第一の吸着塔
2aが充圧工程、第二の吸着塔2bが再生工程、第三の
吸着塔2cが吸着工程となるサイクルが繰返されて行わ
れる。
Hereinafter, the sequential switching valves 7a, 7b, 7c, 8
a, 8b, 8c, 10a, 10b, 10c, 11a, 1
1b, 11c, 12a, 12b, 12c, 13a, 13
b, 13c, 14, 15a, 15b, 15c are respectively opened and closed in a predetermined order to open and close the first adsorption tower 2
a is a regeneration step, the second adsorption tower 2b is an adsorption step, the third adsorption tower 2c is a charging step, and the first adsorption tower 2a is a charging step, and the second adsorption tower 2b is a regeneration step. The cycle in which the third adsorption tower 2c is in the adsorption step is repeated.

【0010】このように構成されたPSA装置1は、各
サイクルの時間を、吸着工程にある吸着塔2aの吸着工
程所要時間をもとにして決定され、例えば60秒サイク
ルで吸着,再生,充圧が順次各塔に切換えられる。この
とき再生工程にある吸着塔2cでは、例えば均圧工程を
10秒間,真空再生工程を20秒間,パ―ジ再生工程を
30秒間として行われている。また、充圧工程にある吸
着塔2bでは、均圧工程が前記のごとく10秒間行われ
た後に、製品ガスによる充圧が50秒間行われる。
In the PSA apparatus 1 thus constructed, the time of each cycle is determined based on the time required for the adsorption process of the adsorption tower 2a in the adsorption process, and the adsorption, regeneration, and charging are performed in a cycle of 60 seconds, for example. The pressure is switched to each tower in sequence. At this time, in the adsorption tower 2c in the regeneration step, for example, the pressure equalizing step is performed for 10 seconds, the vacuum regeneration step is performed for 20 seconds, and the page regeneration step is performed for 30 seconds. In the adsorption tower 2b in the charging step, the pressure equalizing step is performed for 10 seconds as described above, and then the charging with the product gas is performed for 50 seconds.

【0011】このように、PSAを使用した酸素製造装
置は、ゼオライト等の吸着剤を充填した複数の吸着塔
を、それぞれ吸着,真空再生,充圧の各工程に順次切換
えて連続的に製品酸素ガスを製造するものであるが、こ
のような酸素製造装置では、酸素を消費する装置の操業
状態に応じて酸素の製造量を増減させる必要がある。
As described above, in the oxygen production apparatus using PSA, a plurality of adsorption towers filled with an adsorbent such as zeolite are sequentially switched to respective steps of adsorption, vacuum regeneration and charging, so that product oxygen is continuously produced. Gas is produced, but in such an oxygen production apparatus, it is necessary to increase or decrease the production amount of oxygen according to the operating state of the apparatus that consumes oxygen.

【0012】一般に上記酸素製造量の調整は、製品酸素
導出量を制御するとともに、上記吸着,再生,充圧の各
工程の切換え時間を制御することにより行われている。
例えば50%の減量運転を行う場合には、酸素導出量を
1/2に絞るとともに各工程の切換時間(サイクルタイ
ム)を2倍としている。
Generally, the adjustment of the oxygen production amount is performed by controlling the product oxygen derivation amount and controlling the switching time of each of the steps of adsorption, regeneration and charging.
For example, when a 50% reduction operation is performed, the oxygen derivation amount is reduced to 1/2 and the switching time (cycle time) of each process is doubled.

【0013】この減量運転中の動力費を、製品量に応じ
て低減させる一つの手段として、特開昭60−1935
20号公報に記載された圧力変動吸着法によるタ―ンダ
ウン制御方法には、吸着工程にある吸着塔から導出され
ている富酸素ガスの流れ特性(富酸素ガスの量,速度,
濃度,圧力等)を監視し、この流れ特性があらかじめ設
定された所定の値に達するまで吸着工程以外の工程(ス
テップ)を停止させ、その間原料空気を供給する圧縮機
の能力を調節するとともに、真空再生工程に使用する真
空ポンプをアンロ―ド状態とすることが示されている。
As one means for reducing the power cost during the reduction operation according to the quantity of products, Japanese Patent Laid-Open No. 60-1935.
In the turndown control method by the pressure fluctuation adsorption method described in Japanese Patent Publication No. 20, the flow characteristics of the oxygen-rich gas derived from the adsorption tower in the adsorption step (amount, velocity of oxygen-rich gas, velocity,
(Concentration, pressure, etc.) is monitored, and steps (steps) other than the adsorption step are stopped until this flow characteristic reaches a predetermined value set in advance, while adjusting the capacity of the compressor that supplies the raw material air, It is shown that the vacuum pump used in the vacuum regeneration process is in an unloading state.

【0014】また、特開平2−78415号公報には、
再生工程中に、減量運転に見合う所定時間の待機工程を
設けて真空ポンプをアンロ―ド状態とし、これによって
消費動力の低減を図る方法が記載されている。
Further, Japanese Patent Laid-Open No. 2-78415 discloses that
A method is described in which during the regeneration process, a standby process for a predetermined time corresponding to the reduction operation is provided to bring the vacuum pump into an unloading state, thereby reducing the power consumption.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上述の
タ―ンダウン制御方法では、吸着工程にある吸着塔にお
けるガス流量に大きな差を生じるために運転状態が安定
せず、吸着圧力が大きく変動して吸着能力にも悪影響を
及ぼす。
However, in the above-described turndown control method, the operation state is not stable because the gas flow rate in the adsorption tower in the adsorption step is greatly different, and the adsorption pressure fluctuates greatly. It also adversely affects the adsorption capacity.

【0016】例えば、通常運転の場合、製品ガス量を1
とすれば、一般に原料空気量は10,加圧ガス量は5の
割合となる。そして50%の減量運転を行うと、製品ガ
ス量が0.5となり、上記充圧工程が行われている間の
吸着塔においては、10の流入量に対して5.5の流出
量となる。
For example, in the case of normal operation, the product gas amount is 1
Then, generally, the ratio of the raw material air amount is 10, and the amount of the pressurized gas is 5. Then, when a 50% reduction operation is performed, the product gas amount becomes 0.5, and in the adsorption tower during the charging step, the outflow amount is 5.5 with respect to the inflow amount of 10. ..

【0017】次いで充圧が終了して待機工程に入ると、
加圧ガスが不要になるため流出量が製品ガスのみとなり
0.5に急激に低下することになる。
Then, when the charging is completed and the standby process is started,
Since pressurizing gas is not required, the outflow amount is only the product gas, and it rapidly drops to 0.5.

【0018】このように、流入量に対して流出量が急激
に低下した場合には、塔内圧力が急激に上昇することに
なる。そのため上記方法では、塔内圧力に応じて作動す
る圧力スイッチにより圧縮機のON−OFFを行い、塔
内を所定の圧力に保つようにしている。
As described above, when the outflow rate sharply decreases with respect to the inflow rate, the column pressure rapidly rises. Therefore, in the above method, the compressor is turned on and off by a pressure switch that operates according to the pressure in the tower to keep the inside of the tower at a predetermined pressure.

【0019】しかし、このような圧力スイッチは、接点
切換のためにある程度の圧力差が必要であり、吸着塔内
の圧力は、この圧力差分だけ頻繁に圧力変動を繰返すこ
とになる。上記明細書では、この圧力変動は、系の性能
に対しては何らの支障も来たさないと述べられている
が、このような圧力変動が系の性能に影響するというこ
とは既知のことである。
However, such a pressure switch requires a certain pressure difference for switching the contacts, and the pressure in the adsorption tower frequently repeats pressure fluctuations by this pressure difference. Although it is stated in the above-mentioned specification that this pressure fluctuation does not cause any hindrance to system performance, it is known that such pressure fluctuation affects system performance. Is.

【0020】さらに、圧縮機のタイプによっては、圧縮
機の回転数を制御することにより原料ガス供給量を調節
することができると述べられているが、制御系が複雑に
なり装置のコストアップを招く。
Further, it is described that depending on the type of compressor, the feed gas supply amount can be adjusted by controlling the rotation speed of the compressor, but the control system becomes complicated and the cost of the device increases. Invite.

【0021】また、上記方法においては、製品である富
酸素ガスの量,速度,濃度,圧力等の富酸素ガスの流れ
特性の少なくとも1種を監視して、この特性が所定の値
に達することによって工程を促進させる条件としてい
る。しかしながら、製品の使用量が頻繁に変化するよう
な場合には、上記特性が所定の値に達するまでの時間が
その時々で変化するため、極端な場合には、各サイクル
ごとに切換時間が違ってくることがある。従って、吸着
塔内のガス濃度分布帯の位置がその都度違うことにな
り、安定した製品濃度で運転することが困難となる。
Further, in the above method, at least one of the flow characteristics of the oxygen-rich gas as a product, such as the amount, velocity, concentration and pressure of the oxygen-rich gas, is monitored, and this characteristic reaches a predetermined value. The conditions are to accelerate the process. However, when the usage amount of the product changes frequently, the time until the above characteristics reach the predetermined value changes from time to time, so in extreme cases, the switching time differs for each cycle. May come. Therefore, the position of the gas concentration distribution zone in the adsorption tower is different each time, and it becomes difficult to operate with a stable product concentration.

【0022】また、後者の待機工程を設けるものは、上
記のような不都合は生じないが、吸着塔内が真空状態の
ときに弁を閉じて待機させるため、特に大型のPSA装
置では、使用する弁の口径が大きいため、ガスの完全封
止が困難であり、例えば、減量運転の度合いが50%以
上になると、待機時間が長くなるため、ガスの漏洩が無
視できない量になることがある。
The latter, which is provided with the standby step, does not cause the above-mentioned inconvenience, but is used especially in a large PSA apparatus because the valve is closed to stand by when the inside of the adsorption tower is in a vacuum state. Since the valve has a large diameter, it is difficult to completely seal the gas. For example, when the degree of the volume reduction operation is 50% or more, the standby time becomes long, and the gas leakage may be a non-negligible amount.

【0023】また、サイクルタイムを延長した場合の問
題として、通常より長い時間の吸着工程において、原料
空気が吸着剤層を通過し、僅かづつ酸素が取出されるた
め、吸着剤層における空気の流通が遅くなり、吸着にお
ける境膜抵抗が無視できなくなる。
Further, as a problem when the cycle time is extended, in the adsorption process for a longer time than usual, the raw material air passes through the adsorbent layer and oxygen is taken out little by little. Becomes slower, and the film resistance in adsorption cannot be ignored.

【0024】このことは、いわゆる吸着帯を長くするよ
うに作用するため、サイクルタイム延長における時間と
量の関係を狂わせ、本来延長できる時間より短い時間で
サイクルを切換えなければならなくなる。これは、消費
動力を削減できる割合が減ることを意味する。
Since this acts to lengthen the so-called adsorption zone, the relationship between the time and the amount in extending the cycle time is disturbed, and the cycle must be switched in a time shorter than the originally extendable time. This means that the rate at which power consumption can be reduced decreases.

【0025】そこで本発明は、上述のような真空ポンプ
を用いて真空再生を行うPSAにおいて、真空ポンプの
特性及びPSAの運転方法の特性を考え合わせて、減量
運転を効率よく行い、減量運転中の消費動力の低減を図
れる圧力変動吸着装置の減量運転方法を提供することを
目的としている。
Therefore, in the present invention, in the PSA for performing vacuum regeneration using the above-mentioned vacuum pump, the weight reduction operation is efficiently performed by considering the characteristics of the vacuum pump and the characteristics of the operating method of the PSA, and during the weight reduction operation. It is an object of the present invention to provide a reduction operation method of a pressure fluctuation adsorption device capable of reducing the power consumption of the device.

【0026】[0026]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の圧力変動吸着装置の減量運転方法は、原
料ガス中の特定成分を優先的に吸着する吸着剤を充填し
た複数の吸着塔を、吸着工程と真空再生工程と充圧工程
とに順次切換えて連続的に製品ガスを製造する圧力変動
吸着装置を減量運転するにあたり、前記真空再生を行っ
ている吸着塔に導入するパージガス量を、製品ガスの減
量程度に応じて増量することを特徴としている。
In order to achieve the above-mentioned object, the method for reducing the amount of pressure fluctuation adsorption device of the present invention comprises a plurality of adsorptions filled with an adsorbent which preferentially adsorbs a specific component in the raw material gas. The amount of purge gas to be introduced into the adsorption tower performing the vacuum regeneration when the pressure fluctuation adsorption device for continuously producing the product gas by sequentially switching the adsorption step, the vacuum regeneration step, and the charging step to the volume reduction operation is performed. Is increased according to the amount of decrease in the product gas.

【0027】[0027]

【作 用】上記のように、減量運転時に、真空再生を行
っている吸着塔へのパージガス量を増量することによ
り、真空ポンプの負担が軽減され、消費動力が低減す
る。
[Operation] As described above, the load on the vacuum pump is reduced and the power consumption is reduced by increasing the amount of purge gas to the adsorption tower performing vacuum regeneration during the reduction operation.

【0028】即ち、図1に示すように、サイクルタイム
が60秒の3塔式PSAにおいて、吸着工程時の塔内圧
力を760Torr,通常運転時の再生圧力を230T
orrとした場合、例えば75%の減量運転を行ってい
るときには、真空再生中の吸着塔内に導入するパージガ
ス量を増量し、真空再生時の塔内圧力、即ち再生圧力が
340Torr程度になるようにする。
That is, as shown in FIG. 1, in a three-column PSA with a cycle time of 60 seconds, the pressure inside the column during the adsorption process was 760 Torr and the regeneration pressure during normal operation was 230 T.
In the case of orrr, for example, when performing a 75% reduction operation, the amount of purge gas introduced into the adsorption tower during vacuum regeneration is increased so that the internal pressure during vacuum regeneration, that is, the regeneration pressure is about 340 Torr. To

【0029】一般に、大型の真空再生式PSA(以下V
SAという)に用いられている真空ポンプは、ルーツ型
のものであるが、このタイプの真空ポンプは、図2に示
すような特性、即ち、圧力が低くなり、真空度が高まる
に従って消費動力が増加するという特性を有している。
Generally, a large vacuum regenerative PSA (hereinafter referred to as V
The vacuum pump used in (SA) is of the roots type, but this type of vacuum pump has the characteristics shown in FIG. 2, that is, the power consumption decreases as the pressure decreases and the degree of vacuum increases. It has the property of increasing.

【0030】したがって、再生圧力を高くすれば、真空
ポンプの消費動力を低減できることがわかる。なお、V
SAにおいては、原料ガスの圧力が大気圧より僅かに高
い程度であるため、原料空気を吸着塔に送り込むための
送風機の消費動力は小さく、VSAの消費動力の大半
は、真空ポンプの消費動力であるといえる。
Therefore, it can be seen that the power consumption of the vacuum pump can be reduced by increasing the regeneration pressure. Note that V
In SA, since the pressure of the raw material gas is slightly higher than the atmospheric pressure, the power consumption of the blower for feeding the raw material air into the adsorption tower is small, and most of the power consumption of VSA is the power consumption of the vacuum pump. It can be said that there is.

【0031】また、VSAの運転において、再生圧力と
の製品回収率とは、図3に示すように、再生圧力を低く
するほど製品回収率が向上するという関係になってい
る。この両者の関係は、製品回収率が上の方で略直線的
であり、通常運転時、再生圧力230Torrでの製品
回収率を基準量とすると、再生圧力を約460Torr
にしたとき、製品回収率は基準量の約50%になる。
In the VSA operation, the regeneration pressure and the product recovery rate have a relationship that the lower the regeneration pressure, the higher the product recovery rate, as shown in FIG. The relationship between the two is substantially linear when the product recovery rate is higher, and when the product recovery rate at a regeneration pressure of 230 Torr during normal operation is taken as a reference amount, the regeneration pressure is about 460 Torr.
When this is set, the product recovery rate will be about 50% of the standard amount.

【0032】また、先に述べたVSAのサイクルにおけ
る再生工程においては、単に真空ポンプで排気するだけ
ではなく、製品酸素ガスの一部を用いて吸着剤の洗浄を
行っている。
Further, in the above-mentioned regeneration process in the VSA cycle, the adsorbent is washed by using not only the vacuum pump but also a part of the product oxygen gas.

【0033】上記洗浄の効果としては、吸着剤の雰囲気
の酸素分圧を高くすることにより、吸着工程で吸着剤に
吸着した窒素が吸着剤から脱着して酸素が替わりに吸着
する、いわゆる置換脱着の作用を利用するものである。
The effect of the above cleaning is that by increasing the oxygen partial pressure in the atmosphere of the adsorbent, nitrogen adsorbed on the adsorbent in the adsorption step is desorbed from the adsorbent and oxygen is adsorbed instead, so-called substitution desorption. The action of is used.

【0034】このときの酸素パージ量が少なければ、吸
着塔上部のパージガスの入口付近の吸着剤しか上記置換
脱着が行われないことになり、逆にパージ量が多すぎる
と吸着剤は完全に置換脱着できるが、酸素が真空ポンプ
側に流出するというロスを生じることになる。
If the oxygen purge amount at this time is small, the above-mentioned substitution and desorption will be performed only for the adsorbent near the inlet of the purge gas at the upper part of the adsorption tower. Conversely, if the purge amount is too large, the adsorbent will be completely replaced. It can be desorbed, but it causes a loss of oxygen flowing out to the vacuum pump side.

【0035】このようなことから、パージガス量には最
適値が存在し、通常の運転においては、この最適値を保
って運転が行われている。
Therefore, there is an optimum value for the purge gas amount, and in normal operation, the optimum value is maintained.

【0036】一方、パージガス量を多くしていくと、同
時に再生時の真空度が悪くなるという傾向があるが、こ
の傾向を意識的に実施することにより、前述の再生圧力
と製品回収率との関係から、サイクルタイムを変更する
ことなく減量運転を行うことが可能となる。
On the other hand, when the amount of purge gas is increased, the degree of vacuum at the time of regeneration tends to deteriorate at the same time. By consciously implementing this tendency, the above-mentioned regeneration pressure and product recovery rate are reduced. From the relationship, it becomes possible to perform the reduction operation without changing the cycle time.

【0037】即ち、通常の運転状態から、製品使用量が
減ったことを製品流量計で検知したら、パージガスを増
量して再生圧力を高め、製品回収率を低くすることによ
り、製品量を使用量に合わせて減量することができる。
That is, when the product flow meter detects that the product usage amount has decreased from the normal operating condition, the purge gas is increased to increase the regeneration pressure and the product recovery rate to decrease the product amount. You can reduce the dose according to.

【0038】上記パージガスの増量割合は、例えば、図
4に示すように、製品発生量比が0.7になったらパー
ジ量の増加割合を1.3とし、製品発生量比が0.5に
なったらパージ量の増加割合を1.5とするように設定
することができる。
As for the increase rate of the purge gas, for example, as shown in FIG. 4, when the product generation rate ratio becomes 0.7, the purge rate increase rate is set to 1.3 and the product generation rate ratio becomes 0.5. Then, the increase rate of the purge amount can be set to 1.5.

【0039】このパージ量の制御は、製品量を流量計で
検出し、検出された製品流量を演算器に入力して対応す
るパージ量あるいは弁開度を算出し、これに基づいて流
量調節機構、即ち、パージガスの流量を制御する流量制
御弁の開度を調節する信号を出力するようにすればよ
い。
The control of the purge amount is carried out by detecting the product amount with a flow meter, inputting the detected product flow rate into a calculator to calculate the corresponding purge amount or valve opening, and based on this, the flow rate adjusting mechanism. That is, a signal for adjusting the opening of the flow rate control valve that controls the flow rate of the purge gas may be output.

【0040】このようにパージガス量を増量して再生圧
力を高めることにより、前記図2に示した真空ポンプの
特性から明らかなように、真空ポンプの消費動力を低減
することが可能になる。
By increasing the amount of purge gas and increasing the regeneration pressure in this way, it becomes possible to reduce the power consumption of the vacuum pump, as is clear from the characteristics of the vacuum pump shown in FIG.

【0041】なお、真空再生工程においてパージガスを
増量する期間は、該真空再生工程全体としてもよいが、
図1に破線で示すように、吸着筒内が所定の真空度に達
したところで増量するようにしてもよい。
The period of increasing the purge gas in the vacuum regeneration process may be the entire vacuum regeneration process,
As shown by the broken line in FIG. 1, the amount may be increased when the inside of the adsorption cylinder reaches a predetermined degree of vacuum.

【0042】また、VSAの構成は、製品ガスの種類や
量に応じて適宜最適な構成を採用することが可能であ
り、塔数も任意である。
Further, the VSA can have an optimal structure depending on the type and amount of the product gas, and the number of columns is arbitrary.

【0043】[0043]

【実施例】前記図5に示した構成のPSA酸素製造装置
を使用して基準製品量での運転と、製品量を75%に減
らした減量運転とを行い、単に製品量を減らすだけの減
量運転と、本発明方法による減量運転との単位製品量当
たりの電力消費量を比較した。
[Example] Using the PSA oxygen production apparatus having the configuration shown in FIG. 5, a standard product amount operation and a weight reduction operation in which the product amount is reduced to 75% are performed, and the weight reduction amount is simply reduced. The electric power consumption per unit product amount was compared between the operation and the reduction operation by the method of the present invention.

【0044】なお、サイクルタイムは60秒、通常運転
時の再生圧力は230Torrであり、本発明方法によ
る減量運転においては、真空再生時に吸着筒内に導入す
るパージガス量を通常時の1.28倍とし、再生圧力を
340Torrとした。
The cycle time is 60 seconds, the regeneration pressure during normal operation is 230 Torr, and in the volume reduction operation according to the method of the present invention, the amount of purge gas introduced into the adsorption cylinder during vacuum regeneration is 1.28 times the normal amount. And the regeneration pressure was 340 Torr.

【0045】その結果、基準製品量発生時の単位製品量
当たりの電力消費量を100とした場合、本発明方法で
は、これを82にすることができたのに対し、単に製品
量を減らすだけの減量運転では、133であった。
As a result, when the power consumption amount per unit product amount when the reference product amount is generated is 100, in the method of the present invention, this can be 82, whereas the product amount is simply reduced. In the weight reduction operation of No. 133, it was 133.

【0046】[0046]

【発明の効果】以上説明したように、本発明の圧力変動
吸着装置の減量運転方法は、真空再生工程を行う圧力変
動吸着装置を減量運転するにあたり、前記真空再生を行
っている吸着塔に導入するパージガス量を、製品ガスの
減量程度に応じて増量するようにしたから、減量運転時
における再生工程中の吸着筒内の圧力が高くなって真空
ポンプの消費動力が低減し、減量運転時の製品コストを
低減することができる。
As described above, the method for reducing the pressure fluctuation adsorption device according to the present invention introduces the pressure fluctuation adsorption device which performs the vacuum regeneration step into the adsorption tower which is performing the vacuum regeneration when the pressure fluctuation adsorption device performs the volume reduction operation. The amount of purge gas to be used is increased according to the reduction amount of the product gas.Therefore, the pressure in the adsorption cylinder during the regeneration process during the reduction operation increases and the power consumption of the vacuum pump decreases. Product cost can be reduced.

【0047】即ち、本発明方法によれば、減量運転時に
は、通常運転時と同じサイクルタイムで、製品回収率を
低めて製品量に対応させ、同時に真空ポンプの消費動力
を低減させることができるので、サイクルタイムを延長
したときに生じる不都合を生じることがなくなり、効率
のよい減量運転を行うことができる。
That is, according to the method of the present invention, during the reduction operation, the product recovery rate can be lowered to correspond to the product amount and the power consumption of the vacuum pump can be reduced at the same cycle time as in the normal operation. Therefore, the inconvenience that occurs when the cycle time is extended does not occur, and efficient weight reduction operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】塔内圧力の変化を説明する図である。FIG. 1 is a diagram illustrating a change in column pressure.

【図2】ルーツ型真空ポンプにおける圧力と消費動力の
関係を示す図である。
FIG. 2 is a diagram showing a relationship between pressure and power consumption in a roots type vacuum pump.

【図3】再生圧力と製品回収率の関係を示す図である。FIG. 3 is a diagram showing a relationship between a regeneration pressure and a product recovery rate.

【図4】製品発生量比とパージ量の増加割合の関係を示
す図である。
FIG. 4 is a diagram showing a relationship between a product generation amount ratio and an increase ratio of a purge amount.

【図5】真空再生を行う圧力変動吸着装置の一例を示す
系統図である。
FIG. 5 is a system diagram showing an example of a pressure fluctuation adsorption device that performs vacuum regeneration.

【符号の説明】[Explanation of symbols]

2a,2b,2c…吸着塔 3…送風機 6…真空
ポンプ
2a, 2b, 2c ... Adsorption tower 3 ... Blower 6 ... Vacuum pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料ガス中の特定成分を優先的に吸着す
る吸着剤を充填した複数の吸着塔を、吸着工程と真空再
生工程と充圧工程とに順次切換えて連続的に製品ガスを
製造する圧力変動吸着装置を減量運転するにあたり、前
記真空再生を行っている吸着塔に導入するパージガス量
を、製品ガスの減量程度に応じて増量することを特徴と
する圧力変動吸着装置の減量運転方法。
1. A product gas is continuously produced by sequentially switching a plurality of adsorption towers filled with an adsorbent that preferentially adsorbs a specific component in a raw material gas to an adsorption step, a vacuum regeneration step and a charging step. In reducing the pressure fluctuation adsorption device, the amount of purge gas introduced into the adsorption tower performing the vacuum regeneration is increased according to the reduction amount of the product gas. ..
JP04074785A 1992-03-30 1992-03-30 Weight loss operation method of pressure fluctuation adsorption device Expired - Fee Related JP3143758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04074785A JP3143758B2 (en) 1992-03-30 1992-03-30 Weight loss operation method of pressure fluctuation adsorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04074785A JP3143758B2 (en) 1992-03-30 1992-03-30 Weight loss operation method of pressure fluctuation adsorption device

Publications (2)

Publication Number Publication Date
JPH05277322A true JPH05277322A (en) 1993-10-26
JP3143758B2 JP3143758B2 (en) 2001-03-07

Family

ID=13557295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04074785A Expired - Fee Related JP3143758B2 (en) 1992-03-30 1992-03-30 Weight loss operation method of pressure fluctuation adsorption device

Country Status (1)

Country Link
JP (1) JP3143758B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270556B1 (en) * 1998-11-09 2001-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PSA or VSA unit having jointly-controlled production output and production pressure
KR20040021138A (en) * 2002-09-02 2004-03-10 삼성전자주식회사 Oxygen generator
JP2010502423A (en) * 2006-08-28 2010-01-28 アールアイシー インヴェストメンツ,エルエルシー System and method for concentrating oxygen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017600A1 (en) * 2014-11-27 2016-06-02 Linde Aktiengesellschaft Method and device for quantity and purity control in pressure swing adsorption plants

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270556B1 (en) * 1998-11-09 2001-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PSA or VSA unit having jointly-controlled production output and production pressure
KR20040021138A (en) * 2002-09-02 2004-03-10 삼성전자주식회사 Oxygen generator
JP2010502423A (en) * 2006-08-28 2010-01-28 アールアイシー インヴェストメンツ,エルエルシー System and method for concentrating oxygen
US7771511B2 (en) * 2006-08-28 2010-08-10 Ric Investments, Llc Oxygen concentration system and method
US8535412B2 (en) 2006-08-28 2013-09-17 Ric Investments, Llc Oxygen concentration system and method
US9095811B2 (en) 2006-08-28 2015-08-04 Ric Investments, Llc Oxygen concentration system and method

Also Published As

Publication number Publication date
JP3143758B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JP3506601B2 (en) Energy recovery system in vacuum pressure fluctuation type adsorption equipment
US4561865A (en) Single bed pressure swing adsorption gas separation system
JP3172646B2 (en) Improved vacuum swing adsorption method
US4168149A (en) Gas separation
US5772737A (en) Process for treating a gas mixture by pressure swing adsorption
JPH05228324A (en) Pressure swing adsorbing system
JP2002143630A (en) Adsorption system whose air gap volume is small and its application
EP1459798B1 (en) Gas separation method and device
AU731395B2 (en) Process for gas separation by adsorption with variable production rate
TW201637706A (en) Purification method and purification system for helium gas
JPH05277322A (en) Pressure fluctuation adsorption device reducing operation method
JPH02157011A (en) Method for controlling reduced-load operation in pressure swing adsorption process
JP5864994B2 (en) Gas separation apparatus and method
WO2013114707A1 (en) Product gas supply method and product gas supply system
JP3661884B2 (en) Gas separation device
JPH067899B2 (en) Turndown control method by pressure fluctuation adsorption method
JP2910776B2 (en) High pressure gas production equipment
JP2001276550A (en) Method and device for pressure swing adsorption and separation
JPH0278415A (en) Reduced-capacity operating method of pressure swinging adsorber
JPH10180027A (en) Pressure control method when switching adsorption towers
JP2004089892A (en) Gas separation device
JPH0938443A (en) Gas separation device
JPH08173745A (en) Operating method of pressure fluctuation adsorption separation device
JPH1157375A (en) Gas separation method
JPH0780231A (en) Operation method of pressure swing adsorption equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees