JPH05270973A - Determination of magnetic field to be applied in pulling of single crystal - Google Patents
Determination of magnetic field to be applied in pulling of single crystalInfo
- Publication number
- JPH05270973A JPH05270973A JP9874692A JP9874692A JPH05270973A JP H05270973 A JPH05270973 A JP H05270973A JP 9874692 A JP9874692 A JP 9874692A JP 9874692 A JP9874692 A JP 9874692A JP H05270973 A JPH05270973 A JP H05270973A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- single crystal
- resistivity
- silicon
- pulling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000002019 doping agent Substances 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 57
- 239000010703 silicon Substances 0.000 abstract description 57
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 54
- 239000010453 quartz Substances 0.000 abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 10
- 239000001301 oxygen Substances 0.000 abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- 150000003376 silicon Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000004033 diameter control Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、MCZ法(Magnetic f
ield applied Czochralski crystal growthmethod)に
よる単結晶引き上げの印加磁場決定方法に関するもので
ある。The present invention relates to the MCZ method (Magnetic f
The present invention relates to a method for determining an applied magnetic field for pulling a single crystal by the ield applied Czochralski crystal growth method.
【0002】[0002]
【従来の技術】従来、CZ法によりシリコン単結晶棒を
引き上げ、このシリコン単結晶棒にスライス加工などを
施してシリコンウェーハは製造されている。CZ法は、
石英坩堝内のシリコン融液にシリコン単結晶の種子結晶
を浸し、この種子結晶と石英坩堝とをそれぞれ逆に回転
させながら、種子結晶を徐々に引き上げ、種子結晶と同
じ結晶方位の大口径のシリコン単結晶棒を成長させるも
のである。そして、面内での抵抗率分布の良いシリコン
ウェーハを得るため、シリコン単結晶棒の引き上げに際
して、(結晶回転速度)/(坩堝回転速度)の値を大き
くする方法が用いられている。2. Description of the Related Art Conventionally, a silicon wafer is manufactured by pulling a silicon single crystal ingot by the CZ method and subjecting this silicon single crystal ingot to slicing. The CZ method is
Immersing a silicon single crystal seed crystal in a silicon melt in a quartz crucible, while rotating the seed crystal and the quartz crucible in reverse, the seed crystal is gradually pulled up, and a large-diameter silicon with the same crystal orientation as the seed crystal. This is for growing a single crystal rod. Then, in order to obtain a silicon wafer having a good in-plane resistivity distribution, a method of increasing the value of (crystal rotation speed) / (crucible rotation speed) is used when pulling the silicon single crystal rod.
【0003】また、CZ法の引上装置に磁場を印加した
MCZ法は、石英坩堝内のシリコン融液の熱対流現象を
抑制し、石英坩堝からシリコン融液への不純物(酸素な
ど)の混入を大幅に低減し、シリコン単結晶棒とシリコ
ン融液との固液界面をより静的な状態に保って、シリコ
ン単結晶棒中の酸素濃度を減少させている。、または、
坩堝回転速度を変化させることにより酸素濃度を制御す
ることが可能である。このように、MCZ法において
は、ドーパントを添加しないシリコン単結晶棒の引き上
げに際し、その結晶回転速度および坩堝回転速度の調整
により、その酸素濃度の制御が可能であることが知られ
ている。Further, the MCZ method in which a magnetic field is applied to a pulling apparatus of the CZ method suppresses a thermal convection phenomenon of a silicon melt in a quartz crucible and mixes impurities (oxygen etc.) from the quartz crucible into the silicon melt. Is significantly reduced, the solid-liquid interface between the silicon single crystal rod and the silicon melt is kept in a more static state, and the oxygen concentration in the silicon single crystal rod is reduced. , Or
It is possible to control the oxygen concentration by changing the crucible rotation speed. As described above, in the MCZ method, it is known that the oxygen concentration can be controlled by adjusting the crystal rotation speed and the crucible rotation speed when pulling a silicon single crystal rod without adding a dopant.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
CZ法で、シリコンウェーハの面内抵抗率分布を完全に
均一にするには、坩堝回転速度に対して結晶回転速度を
10倍以上に設定しなければならいと予想されている
が、現実的には、このような条件で、酸素濃度の水準制
御が行えなくなるため、未だこのCZ法では面内抵抗率
の完全な均一化は達成されていない。一方、MCZ法を
用いたシリコンウェーハでは、酸素濃度の制御は精密に
可能になったものの、シリコンウェーハの面内での抵抗
率分布を完全に均一にできるかどうかは確かめられてい
なかった。However, in the conventional CZ method, in order to make the in-plane resistivity distribution of the silicon wafer completely uniform, the crystal rotation speed is set to be 10 times or more the rotation speed of the crucible. Although it is expected that it will be necessary, in reality, under such conditions, the level control of the oxygen concentration cannot be performed, so that the CZ method has not yet achieved complete homogenization of the in-plane resistivity. .. On the other hand, in the silicon wafer using the MCZ method, although the oxygen concentration can be precisely controlled, it has not been confirmed whether the resistivity distribution within the surface of the silicon wafer can be made completely uniform.
【0005】[0005]
【課題を解決するための知見】本願発明者は、坩堝回転
速度と結晶回転速度とを実現可能な速度で回転しなが
ら、石英坩堝内のシリコン融液に印加される磁場強度を
いろいろ変更した結果、酸素濃度を制御し、なおかつ、
シリコンウェーハの面内での抵抗率分布を完全に均一に
できる磁場強度が存在するという知見を得た。DISCLOSURE OF THE INVENTION The inventors of the present application have variously changed the magnetic field strength applied to the silicon melt in the quartz crucible while rotating the crucible rotation speed and the crystal rotation speed at a feasible speed. , The oxygen concentration is controlled, and
It was found that there is a magnetic field strength that can make the resistivity distribution in the plane of the silicon wafer completely uniform.
【0006】[0006]
【発明の目的】そこで、本発明の目的は、酸素濃度を制
御し、なおかつ、シリコンウェーハの面内での抵抗率分
布を完全に均一にできる単結晶引き上げの印加磁場決定
方法を提供することである。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for determining an applied magnetic field for pulling a single crystal which can control the oxygen concentration and can make the resistivity distribution in the plane of a silicon wafer completely uniform. is there.
【0007】[0007]
【課題を解決するための手段】本発明の単結晶引き上げ
の印加磁場決定方法においては、MCZ法で得られドー
パントを添加した単結晶棒の横断面の面内抵抗率を、複
数の異なった磁場強度に対して、それぞれ測定し、その
相関関係を基に上記面内抵抗率の分布の小さい磁場強度
を決定するものである。In the method for determining an applied magnetic field for pulling a single crystal according to the present invention, the in-plane resistivity of a transverse section of a single crystal rod doped with a dopant obtained by the MCZ method is determined by a plurality of different magnetic fields. The strength is measured, and the magnetic field strength having a small distribution of the in-plane resistivity is determined based on the correlation.
【0008】[0008]
【作用】本発明に係る単結晶引き上げの印加磁場決定方
法にあっては、MCZ法で単結晶棒を引き上げる。この
ときの印加磁場強度に対して、単結晶棒の横断面の面内
抵抗率分布を、例えばグラフ上にプロットする。このプ
ロットをMCZ法の印加磁場を変更して複数回行う。こ
の結果、当該引き上げ条件における上記面内抵抗率が完
全に均一になる磁場強度を決定できる。In the method for determining the applied magnetic field for pulling a single crystal according to the present invention, the single crystal rod is pulled by the MCZ method. With respect to the applied magnetic field strength at this time, the in-plane resistivity distribution of the cross section of the single crystal rod is plotted, for example, on a graph. This plot is performed multiple times by changing the applied magnetic field of the MCZ method. As a result, it is possible to determine the magnetic field strength at which the in-plane resistivity under the pulling condition is completely uniform.
【0009】[0009]
【実施例】以下、本発明の一実施例を説明する。本実施
例に用いる単結晶引上装置は従来周知の構成のMCZ法
の単結晶引上装置と同様である。この単結晶引上装置
は、N極およびS極が所定間隔離れて対向配設された磁
場装置と、この磁場装置の両極間に設けられたチャンバ
と、を有している。この磁場装置は、N極よりS極に向
かって水平方向に磁界を発生するものである。このチャ
ンバの中央部には、モータで回転する坩堝軸が設けられ
ている。この坩堝軸の上端には、有底円筒状の黒鉛サセ
プタが取り付けられている。この黒鉛サセプタ内に、石
英坩堝が着脱可能に保持されている。この石英坩堝も、
略半球形状をなしている。この石英坩堝内にはシリコン
融液が保持されている。EXAMPLE An example of the present invention will be described below. The single crystal pulling apparatus used in this embodiment is the same as the MCZ method single crystal pulling apparatus having a conventionally known structure. This single crystal pulling apparatus has a magnetic field device in which an N pole and an S pole are opposed to each other at a predetermined distance, and a chamber provided between both poles of the magnetic field device. This magnetic field device generates a magnetic field in the horizontal direction from the N pole toward the S pole. A crucible shaft rotated by a motor is provided at the center of the chamber. A cylindrical graphite susceptor with a bottom is attached to the upper end of the crucible shaft. A quartz crucible is detachably held in the graphite susceptor. This quartz crucible also
It has a substantially hemispherical shape. A silicon melt is held in the quartz crucible.
【0010】黒鉛サセプタの外側には、シリコン融液の
加熱用ヒータおよび熱シールド部材がこの黒鉛サセプタ
を取り囲むように配設されている。さらに、チャンバの
上部には、引上機構が設けられている。この引上機構に
よって、引上ワイヤが石英坩堝の上方で、石英坩堝と反
対方向に回転しつつ上下動するように構成されている。
この引上ワイヤの先端には、シードチャックを介してシ
リコン単結晶の種子結晶が取り付けられている。この種
子結晶を、シリコン融液に浸した後上昇させると、種子
結晶を始点として順次成長し、この種子結晶と結晶方位
が同じシリコン単結晶棒がアルゴン雰囲気中で引き上げ
られるものである。A heater for heating the silicon melt and a heat shield member are arranged outside the graphite susceptor so as to surround the graphite susceptor. Further, a pulling mechanism is provided on the upper part of the chamber. With this pulling mechanism, the pulling wire is configured to move up and down above the quartz crucible while rotating in a direction opposite to the quartz crucible.
A seed crystal of a silicon single crystal is attached to the tip of the pulling wire via a seed chuck. When this seed crystal is immersed in a silicon melt and then raised, the seed crystal grows sequentially starting from the seed crystal, and a silicon single crystal rod having the same crystal orientation as this seed crystal is pulled in an argon atmosphere.
【0011】次に、上記単結晶引上装置を使用した単結
晶引き上げの印加磁場決定方法を説明する。引き上げに
先立って、黒鉛サセプタ内にある石英坩堝内に高純度多
結晶シリコン、および、リンを高濃度にドープしたシリ
コン結晶の小片を入れる。これら全体を坩堝軸に取り付
ける。チャンバ内を真空装置で真空にしてから、チャン
バ内へアルゴンガスを供給し、チャンバ内を10〜20
Torrのアルゴン雰囲気にする。磁場装置を用いて、
1000ガウスの磁場を水平方向に印加しながら、ヒー
タに直接通電して石英坩堝を加熱し原料のシリコン等を
溶融する。Next, a method for determining an applied magnetic field for pulling a single crystal using the above single crystal pulling apparatus will be described. Prior to the pulling, a high-purity polycrystalline silicon and a small piece of a silicon crystal highly doped with phosphorus are put in a quartz crucible in a graphite susceptor. All of these are attached to the crucible shaft. After the inside of the chamber is evacuated by a vacuum device, argon gas is supplied into the chamber so that the inside of the chamber is 10 to 20.
Argon atmosphere of Torr. Using a magnetic field device,
While applying a magnetic field of 1000 gauss in the horizontal direction, the heater is directly energized to heat the quartz crucible and melt the raw material such as silicon.
【0012】次いで、シードチャックに、結晶方位<1
00>のシリコン単結晶の種子結晶を取り付け、この種
子結晶をシリコン融液の液面の中心部に接触させる。こ
の接触と同時に、モータで坩堝軸を5回転/分の坩堝回
転速度で左方向に回転させるとともに、引上機構によ
り、10回転/分の結晶回転速度で右方向に回転させな
がら、種子結晶をゆっくり上昇させる。この結果、種子
結晶からシリコン単結晶棒が成長して引き上げられてい
く。そして、石英坩堝の斜め上方にある直径制御用光セ
ンサでシリコン単結晶棒の直径を監視し、引上機構の引
き上げ速度を変化(平均1.4〜1.7mm/分)させ
て、その直径が常に6インチになるように引き上げる。
シリコン単結晶棒の直胴部の長さが600mmになった
ら、シリコン単結晶棒にテイル処理を施し、結晶方位が
<100>でN型のシリコン単結晶棒を単結晶引上装置
より取り出す。Then, the crystal orientation <1 is set on the seed chuck.
00> silicon single crystal seed crystal is attached, and this seed crystal is brought into contact with the central portion of the liquid surface of the silicon melt. Simultaneously with this contact, the motor rotates the crucible shaft to the left at a rotation speed of 5 rotations / minute, and the pulling mechanism rotates to the right at a rotation speed of the crystal of 10 rotations / minute to move the seed crystals. Raise slowly. As a result, a silicon single crystal ingot grows and is pulled up from the seed crystal. Then, the diameter of the silicon single crystal ingot was monitored by an optical sensor for diameter control diagonally above the quartz crucible, and the pulling rate of the pulling mechanism was changed (average 1.4 to 1.7 mm / min) to obtain the diameter. Is always 6 inches.
When the length of the straight body portion of the silicon single crystal ingot reaches 600 mm, the silicon single crystal ingot is subjected to tail treatment, and the N-type silicon single crystal ingot having the crystal orientation <100> is taken out from the single crystal pulling apparatus.
【0013】次に、取り出したシリコン単結晶棒を長手
方向に縦割にし、結晶径方向の中心部、周辺部における
抵抗率を四探針法により、シリコンウェーハとしての面
内均一性を評価する。この評価は、{(周辺部の抵抗率
−中心部の抵抗率)/中心部の抵抗率}×100(%)
の式に代入して行い、長手方向において各々10ヶ所の
測定値を平均して、シリコン単結晶棒の代表値とした。
このようにして求めた代表値および印加磁場の1000
ガウスを図1に●印でプロットする。図1のグラフは、
縦軸が抵抗率の面内均一性、横軸が印加磁場強度であ
る。Next, the taken out silicon single crystal ingot is longitudinally split, and the in-plane uniformity as a silicon wafer is evaluated by the four-point probe method for the resistivity at the central portion and the peripheral portion in the crystal radial direction. .. This evaluation is {(peripheral resistivity-central resistivity) / central resistivity} × 100 (%)
Was performed by substituting into the equation (1), and the measured values at 10 points in the longitudinal direction were averaged to obtain a representative value of the silicon single crystal ingot.
The typical value and the applied magnetic field of 1000 thus obtained
Gauss is plotted in Fig. 1 by ●. The graph in Figure 1
The vertical axis represents the in-plane uniformity of resistivity, and the horizontal axis represents the applied magnetic field strength.
【0014】次いで、他の引き上げ条件は一定のまま、
MCZ法の印加磁場を2000ガウス、3500ガウ
ス、0ガウスとそれぞれ変化させ、それぞれシリコン単
結晶棒を引き上げ、それぞれ面内抵抗率を測定し、図1
のグラフにそれぞれ●印でプロットする。この結果、1
700ガウスの磁場強度近傍に、N型シリコンウェーハ
の面内抵抗率を完全に均一にできる磁場強度があると決
定できる。なお、いずれの場合にも、シリコン単結晶棒
中の酸素濃度は、充分所定の範囲に制御されていること
を、本願出願人により確かめられている。Next, while keeping the other pulling conditions constant,
The applied magnetic field of the MCZ method was changed to 2000 Gauss, 3500 Gauss, and 0 Gauss, and the silicon single crystal rods were pulled up, and the in-plane resistivity was measured, respectively.
Plot each symbol with a ● mark. As a result, 1
It can be determined that there is a magnetic field strength in the vicinity of the magnetic field strength of 700 gauss that can make the in-plane resistivity of the N-type silicon wafer completely uniform. The applicant of the present invention has confirmed that the oxygen concentration in the silicon single crystal ingot is controlled within a predetermined range in each case.
【0015】次に、他の引き上げ条件は一定のまま、1
900ガウスの磁場を印加して、MCZ法でシリコン単
結晶棒を引き上げる。このシリコン単結晶棒のからシリ
コンウェーハを製造し、このシリコンウェーハの面内抵
抗率を測定すると、シリコンウェーハの面内の中心部お
よび周辺部の抵抗率が共に同一になっている。したがっ
て、面内抵抗率分布が完全に均一なシリコンウェーハを
製造することができるものである。Next, with the other pulling conditions kept constant, 1
A magnetic field of 900 gauss is applied to pull up the silicon single crystal ingot by the MCZ method. When a silicon wafer is manufactured from this silicon single crystal ingot and the in-plane resistivity of this silicon wafer is measured, both the central portion and the peripheral portion of the in-plane surface of the silicon wafer have the same resistivity. Therefore, a silicon wafer having a completely uniform in-plane resistivity distribution can be manufactured.
【0016】次いで、ボロンをドープしたP型のシリコ
ン単結晶棒をMCZ法で引き上げる。このときの印加す
る磁場を、0ガウス、1000ガウス、2000ガウ
ス、3500ガウスに変化させる。それぞれ引き上げた
シリコン単結晶棒からシリコンウェーハを製造し、抵抗
率分布を測定し、図1に■印でプロットする。この結
果、P型シリコンウェーハの面内抵抗率を完全に均一に
できる磁場強度を決定できる。この2000ガウスの磁
場を印加して、MCZ法で引き上げたシリコン単結晶棒
から製造したシリコンウェーハの面内抵抗率は、中心
部、周辺部で同一であり、完全に均一になっている。同
様にして、アンチモン、ヒ素などをドープした場合につ
いても同様の実験を行い、一般にシリコンウェーハの面
内抵抗率分布を±5%以内に制御するには、印加される
磁場強度は1500〜2500ガウスが好適であること
を確かめている。Next, the boron-doped P-type silicon single crystal ingot is pulled up by the MCZ method. The magnetic field applied at this time is changed to 0 gauss, 1000 gauss, 2000 gauss, and 3500 gauss. A silicon wafer is manufactured from each of the pulled silicon single crystal rods, and the resistivity distribution is measured and plotted with a black square in FIG. As a result, it is possible to determine the magnetic field strength that can make the in-plane resistivity of the P-type silicon wafer completely uniform. The in-plane resistivity of the silicon wafer manufactured from the silicon single crystal ingot pulled by the MCZ method by applying this 2000 gauss magnetic field is the same in the central portion and the peripheral portion, and is completely uniform. Similarly, the same experiment is performed for the case of doping with antimony, arsenic, etc. In general, in order to control the in-plane resistivity distribution of a silicon wafer within ± 5%, the applied magnetic field strength is 1500 to 2500 gauss. Has been confirmed to be suitable.
【0017】[0017]
【発明の効果】以上説明してきたように本発明に係る単
結晶引き上げの印加磁場決定方法によれば、面内抵抗率
が完全に均一なウェーハを製造できる単結晶棒の引き上
げ条件が決定できる。As described above, according to the method for determining an applied magnetic field for pulling a single crystal according to the present invention, pulling conditions for a single crystal rod capable of producing a wafer having a completely uniform in-plane resistivity can be determined.
【図1】本発明の一実施例に係る単結晶引き上げの印加
磁場決定方法で利用するグラフある。FIG. 1 is a graph used in a method of determining an applied magnetic field for pulling a single crystal according to an embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新行内 隆之 埼玉県大宮市北袋町一丁目297番地 三菱 マテリアル株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Shinnai 1-297, Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Corporation Central Research Laboratory
Claims (1)
単結晶棒の横断面の面内抵抗率を、複数の異なった磁場
強度に対して、それぞれ測定し、 その相関関係を基に上記面内抵抗率の分布の小さい磁場
強度を決定することを特徴とする単結晶引き上げの印加
磁場決定方法。1. The in-plane resistivity of a cross section of a single crystal ingot obtained by the MCZ method and doped with a dopant is measured for each of a plurality of different magnetic field intensities, and the in-plane resistivity is determined based on the correlation. A method for determining an applied magnetic field for pulling a single crystal, which comprises determining a magnetic field strength having a small distribution of resistivity.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9874692A JP2807594B2 (en) | 1992-03-25 | 1992-03-25 | Method for determining applied magnetic field for single crystal pulling |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9874692A JP2807594B2 (en) | 1992-03-25 | 1992-03-25 | Method for determining applied magnetic field for single crystal pulling |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH05270973A true JPH05270973A (en) | 1993-10-19 |
| JP2807594B2 JP2807594B2 (en) | 1998-10-08 |
Family
ID=14228041
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9874692A Expired - Lifetime JP2807594B2 (en) | 1992-03-25 | 1992-03-25 | Method for determining applied magnetic field for single crystal pulling |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2807594B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6589871B2 (en) | 2000-12-18 | 2003-07-08 | Hitachi, Ltd. | Processing method, measuring method and producing method of semiconductor devices |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101400834B (en) | 2007-05-30 | 2012-06-27 | 胜高股份有限公司 | Silicon single crystal pulling device |
-
1992
- 1992-03-25 JP JP9874692A patent/JP2807594B2/en not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6589871B2 (en) | 2000-12-18 | 2003-07-08 | Hitachi, Ltd. | Processing method, measuring method and producing method of semiconductor devices |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2807594B2 (en) | 1998-10-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2142686B1 (en) | Method for producing a single crystal | |
| CA1336061C (en) | High-oxygen-content silicon monocrystal substrate for semiconductor devices and production method therefor | |
| US20100101485A1 (en) | Manufacturing method of silicon single crystal | |
| JPH07511B2 (en) | Method for manufacturing semiconductor silicon single crystal | |
| KR101942322B1 (en) | An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same | |
| JP7467362B2 (en) | Sample rod growth and resistivity measurement during single crystal silicon ingot production | |
| JP3086850B2 (en) | Method and apparatus for growing single crystal | |
| JP2807594B2 (en) | Method for determining applied magnetic field for single crystal pulling | |
| US7374614B2 (en) | Method for manufacturing single crystal semiconductor | |
| US20090293801A1 (en) | Production method of silicon single crystal | |
| TWI794522B (en) | Method for growth of plural sample rods to determine impurity build-up during production of single crystal silicon ingots | |
| US20080060572A1 (en) | Magnetic Field Applied Pulling Method for Pulling Silicon Single Crystal | |
| JP3132412B2 (en) | Single crystal pulling method | |
| JP2950332B1 (en) | Semiconductor crystal growing apparatus and growing method | |
| JPH05208887A (en) | Method for growing silicon single crystal rod by fz process and apparatus therefor | |
| JP2849537B2 (en) | Single crystal pulling method | |
| EP1375705A1 (en) | Silicon semiconductor single crystal manufacturing apparatus and manufacturing method | |
| JPH06279188A (en) | Silicon single crystal rod and drawing method for that | |
| JPH07277875A (en) | Crystal growth method | |
| KR100221087B1 (en) | Silicon single crystal growth method and silicon single crystal | |
| JP2951793B2 (en) | Single crystal pulling device | |
| JP2000239097A (en) | Method of pulling silicon single crystal for semiconductor | |
| JP3203343B2 (en) | Cooling control cylinder for single crystal production | |
| JPH0692776A (en) | Silicon single crystal pulling up device | |
| KR100831052B1 (en) | Oxygen concentration control method of silicon single crystal ingot, ingot manufactured using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980714 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080724 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090724 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090724 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100724 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100724 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110724 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110724 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 14 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 14 |