[go: up one dir, main page]

JPH05271766A - Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance - Google Patents

Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance

Info

Publication number
JPH05271766A
JPH05271766A JP4074285A JP7428592A JPH05271766A JP H05271766 A JPH05271766 A JP H05271766A JP 4074285 A JP4074285 A JP 4074285A JP 7428592 A JP7428592 A JP 7428592A JP H05271766 A JPH05271766 A JP H05271766A
Authority
JP
Japan
Prior art keywords
steel
less
resistance
high strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4074285A
Other languages
Japanese (ja)
Other versions
JP2647302B2 (en
Inventor
Hiroshi Tamehiro
博 為広
Yoshinori Ogata
佳紀 尾形
Yuzuru Yoshida
譲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13542702&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05271766(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4074285A priority Critical patent/JP2647302B2/en
Publication of JPH05271766A publication Critical patent/JPH05271766A/en
Application granted granted Critical
Publication of JP2647302B2 publication Critical patent/JP2647302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】 耐HIC性、耐SSC性の優れた高強度鋼板
(API規格X80級鋼)の製造方法。 【構成】 連続鋳造スラブの中心偏析を改善するため、
低C−低Mn−Nb−微量Ti鋼ベースに、それぞれ
0.3%以下のCr,Moを複合添加した鋼を制御圧延
・加速冷却する。これによって高強度・高靭性と優れた
耐HIC性・耐SSC性を同時に達成することが可能と
なった。 【効果】 耐HIC性・耐SSC性の優れたX80級鋼
の製造ができるようになり、パイプラインの安全性のほ
か、鋼管の薄肉化により現地での溶接施工能率が大幅に
向上した。
(57) [Abstract] [Purpose] A method for producing a high strength steel plate (API standard X80 grade steel) having excellent HIC resistance and SSC resistance. [Constitution] In order to improve the center segregation of the continuous casting slab,
A steel in which 0.3% or less of Cr and Mo are added together to a low C-low Mn-Nb-trace Ti steel base is subjected to controlled rolling and accelerated cooling. This has made it possible to achieve high strength and high toughness and excellent HIC resistance and SSC resistance at the same time. [Effect] X80 grade steel with excellent HIC resistance and SSC resistance can now be manufactured, and in addition to the safety of the pipeline, the thinning of the steel pipe has significantly improved the local welding work efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐水素誘起割れ(HI
C)性の優れたパイプライン用高強度鋼板(米国石油協
会(API)規格X80級以上の強度、厚み40mm以
下)の製造法に関するものである。
FIELD OF THE INVENTION The present invention relates to hydrogen-induced cracking (HI).
The present invention relates to a method for producing a high-strength steel sheet for pipelines having excellent properties (American Petroleum Institute (API) standard X80 grade or higher strength, thickness 40 mm or less).

【0002】[0002]

【従来の技術】寒冷地、オフショアーにおける原油、天
然ガス輸送用大径ラインパイプに対しては高強度ととも
に優れた低温靭性、現地溶接性が要求されるが、海水の
注入による原油・ガス井戸のサワー化や劣質資源の開発
にともなって水素誘起割れ(HIC)に対する優れた抵
抗も同時に求められるようになった。一方最近、薄肉化
による鋼材使用量の低減、現地溶接施工の向上などを目
的としてアメリカ石油協会(API)規格5L−X80
(引張強さ620MPa 以上)の超高強度鋼管の使用が増
加してきた。その結果、X80の高強度と優れた耐HI
C性が要求されるケースが次第に増えつつある。
2. Prior Art Crude oil in cold regions, offshore, and large-diameter line pipes for transporting natural gas require high strength as well as excellent low temperature toughness and field weldability. With the development of sour and inferior resources, excellent resistance to hydrogen induced cracking (HIC) has also been demanded. On the other hand, recently, for the purpose of reducing the amount of steel used by reducing the wall thickness and improving on-site welding construction, American Petroleum Institute (API) standard 5L-X80
The use of ultra-high strength steel pipes (tensile strength of 620 MPa or more) has increased. As a result, the high strength of X80 and excellent HI resistance
The number of cases requiring C-characteristics is gradually increasing.

【0003】従来、優れた耐HIC性を有するサワーラ
インパイプは、鋼の高純化、介在物の低減、硫化物
系介在物のCa添加による形態制御、連続鋳造時の軽
圧下や加速冷却による中心偏析の改善、などの技術の総
合化によって製造されてきた(たとえば特公昭63−0
013695号、特開昭62−112722号公報)。
しかし、X80のような高強度鋼管を従来技術のみによ
って製造することはできない。そのもっとも大きな理由
は高強度鋼では、必然的に合金元素量、とくにMn量
(通常X80では1.8〜2.0%添加される)が多く
なる結果、連続鋳造スラブの中心偏析帯に偏析、硬化組
織を生成して耐HIC性を著しく劣化させるからであ
る。
Conventionally, sour line pipes having excellent HIC resistance are mainly produced by high purity steel, reduction of inclusions, morphology control by addition of Ca of sulfide inclusions, light pressure reduction during continuous casting and accelerated cooling. It has been manufactured by integrating technologies such as improvement of segregation (for example, Japanese Patent Publication No. 63-0.
013695, JP-A-62-112722).
However, high-strength steel pipes such as X80 cannot be manufactured only by conventional techniques. The main reason for this is that in high-strength steel, the amount of alloying elements, especially Mn (usually 1.8 to 2.0% is added in X80) inevitably increases, resulting in segregation in the central segregation zone of the continuous casting slab. This is because a hardened structure is generated and HIC resistance is significantly deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明は耐HIC性、
耐硫化物応力腐食割れ(SSC)性の優れたAPI規格
5L−X80級以上の強度を有する鋼板の製造法を提供
するものである。
SUMMARY OF THE INVENTION The present invention provides HIC resistance,
It is intended to provide a method for producing a steel sheet having strength of API standard 5L-X80 class or higher, which is excellent in sulfide stress corrosion corrosion cracking (SSC) resistance.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は重量%
で、C:0.02〜0.08、Si:0.6以下、M
n:1.00〜1.40、P:0.010以下、S:
0.0015以下、Nb:0.01〜0.06、Cr:
0.10〜0.50、Mo:0.10〜0.30、T
i:0.005〜0.025、Al:0.06以下、C
a:0.001〜0.005、N:0.001〜0.0
05、O:0.003以下に必要に応じて、さらにV:
0.01〜0.10、Ni:0.05〜0.50、C
u:0.05〜0.50の1種または2種以上を含有さ
せ、かつ0.5≦〔Ca〕(1−124〔O〕)/1.
25〔S〕≦7.0を満足する残部が鉄および不可避的
不純物からなる鋼を1100℃〜1280℃の温度範囲
に加熱して、950℃以下の累積圧下量60%以上、圧
延終了温度680℃〜900℃で圧延を行なった後、冷
却速度3〜40℃/秒で350℃〜600℃まで水冷、
その後放冷することである。
The gist of the present invention is% by weight.
C: 0.02 to 0.08, Si: 0.6 or less, M
n: 1.00 to 1.40, P: 0.010 or less, S:
0.0015 or less, Nb: 0.01 to 0.06, Cr:
0.10 to 0.50, Mo: 0.10 to 0.30, T
i: 0.005-0.025, Al: 0.06 or less, C
a: 0.001-0.005, N: 0.001-0.0
05, O: 0.003 or less, and further V:
0.01-0.10, Ni: 0.05-0.50, C
u: 0.05 to 0.50, one kind or two or more kinds contained, and 0.5 ≦ [Ca] (1-124 [O]) / 1.
A steel having the balance of 25 [S] ≦ 7.0 and consisting of iron and unavoidable impurities as the balance is heated to a temperature range of 1100 ° C. to 1280 ° C., a cumulative rolling reduction of 950 ° C. or less 60% or more, a rolling end temperature 680. After rolling at ℃ ~ 900 ℃, water cooling to 350 ℃ ~ 600 ℃ at a cooling rate of 3 ~ 40 ℃ / second,
Then let it cool down.

【0006】以下、本発明について詳細に説明する。高
強度、優れた低温靭性、現地溶接性とともに優れた耐H
IC性を得るためには、まず第1に鋼の化学成分を限定
する必要がある。このためC,Mn量を従来のX80鋼
よりも大幅に低減し、その代替としてCr,Moを複合
添加した。この理由は連続鋳造(CC)スラブの中心偏
析を改善し、HICの発生・伝播を防止するためであ
る。
The present invention will be described in detail below. High strength, excellent low-temperature toughness, excellent weldability along with excellent H resistance
In order to obtain IC property, first of all, it is necessary to limit the chemical composition of steel. Therefore, the amounts of C and Mn were significantly reduced compared to the conventional X80 steel, and Cr and Mo were added in combination as a substitute. The reason for this is to improve the center segregation of the continuous casting (CC) slab and prevent the generation and propagation of HIC.

【0007】X80鋼のような高強度鋼では必然的にM
n量が高くなるが、MnはPなどとともにCCスラブの
中心偏析帯に偏析し、硬化組織の生成を助長して耐HI
C性を著しく低下させる。これを防止するため、Mn量
の上限は1.40%としなければならない。Mn量の下
限1.0%は強度・靭性を確保するための最小量であ
る。
In high strength steel such as X80 steel, inevitably M
Although the n content becomes high, Mn segregates with P etc. in the central segregation zone of the CC slab, promoting the formation of a hardened structure and resisting HI
Remarkably lowers C property. In order to prevent this, the upper limit of the amount of Mn must be 1.40%. The lower limit of 1.0% of the amount of Mn is the minimum amount for ensuring strength and toughness.

【0008】またC量の低減はMn,Pの中心偏析を軽
減するとともに、中心偏析帯に生成する硬化組織の絶対
量を低減し、硬化組織の微細化にも有効である。このた
め上限を0.08%に限定した。C量の低減はCr,M
oを複合添加する本発明鋼において、母材および溶接熱
影響部(HAZ)の低温靭性や現地溶接性の改善の上で
も必須である。C量の下限0.02%は母材・溶接部の
強度を確保するための最小量である。
Further, the reduction of the amount of C reduces the central segregation of Mn and P, and also reduces the absolute amount of the hardened structure formed in the center segregated zone, which is effective for making the hardened structure finer. Therefore, the upper limit is limited to 0.08%. The amount of C is reduced by Cr, M
In the steel of the present invention in which o is added in a complex manner, it is essential for improving the low temperature toughness of the base metal and the weld heat affected zone (HAZ) and the field weldability. The lower limit of 0.02% of the amount of C is the minimum amount for ensuring the strength of the base metal / welded portion.

【0009】C,Mn量の低減はCCスラブの中心偏析
改善に大きな効果がある。しかし、このような低C,M
n量ではX80のような高強度を得ることはできない。
そこで本発明者らは鋭意研究の結果、Cr,Moの複合
添加が極めて有効であることを発明した。
Reducing the amounts of C and Mn has a great effect on improving the center segregation of the CC slab. However, such low C, M
With the n amount, it is not possible to obtain high strength such as X80.
Therefore, as a result of earnest research, the present inventors have invented that the combined addition of Cr and Mo is extremely effective.

【0010】CrはCCスラブにおいても中心偏析し難
く、かつ制御圧延・加速冷却プロセスにおいて低C−低
Mn鋼の高強度に有効で、しかも低温靭性や現地溶接性
を損なわないことが明らかになった。またMoは低C−
低Mn鋼における中心偏析帯の組織の均一化(硬化組織
の微細分散化)に大きな効果を有し、耐HIC性を改善
することがわかった。Cr,Mo複合添加による優れた
相乗効果を得るためには、Cr,Moはそれぞれ0.1
0%が最低必要である。しかし、添加量が多過ぎるとH
AZ靭性、現地溶接性に有害であり、Cr,Mo量はそ
れぞれ0.50%,0.30%を上限としなければなら
ない。
It is clear that center segregation of Cr is difficult even in CC slabs, it is effective for high strength of low C-low Mn steel in the controlled rolling / accelerated cooling process, and the low temperature toughness and field weldability are not impaired. It was Also, Mo is low C-
It was found that it has a great effect on the homogenization of the structure of the central segregation zone (fine dispersion of the hardened structure) in the low Mn steel and improves the HIC resistance. In order to obtain an excellent synergistic effect due to the addition of Cr and Mo, Cr and Mo are each 0.1
0% is the minimum requirement. However, if too much is added, H
It is harmful to AZ toughness and field weldability, and the upper limits of Cr and Mo contents should be 0.50% and 0.30%, respectively.

【0011】本発明鋼は必須の元素としてNb:0.0
1〜0.06%、Ti:0.005〜0.025%を含
有する。Nbは制御圧延における結晶粒の微細化や析出
硬化に寄与し、鋼を強靭化する。またTi添加は微細な
TiNを形成し、スラブ加熱時、溶接時のγ粒粗大化を
抑制して母材靭性、HAZ靭性の改善に効果がある。C
rを添加すると制御圧延鋼においてもシャルピー衝撃試
験などの破面にセパレーションが発生しにくくなり、低
温靭性の劣化をきたすので、とくに本発明鋼では、低温
靭性確保の観点からNb,Ti添加は必須であることが
わかった。Nb,Ti量の下限は、これらの元素がその
効果を発揮するための最小量であり、その上限はHAZ
靭性や現地溶接性を劣化させない添加量の限界である。
The steel of the present invention contains Nb: 0.0 as an essential element.
1-0.06%, Ti: 0.005-0.025% is contained. Nb contributes to grain refinement and precipitation hardening in controlled rolling, and strengthens steel. Further, the addition of Ti forms fine TiN, and is effective in improving the toughness of the base material and the HAZ toughness by suppressing γ grain coarsening during slab heating and welding. C
When r is added, separation is less likely to occur on the fracture surface such as in the Charpy impact test even in controlled rolled steel, which causes deterioration of low temperature toughness. Therefore, particularly in the present invention steel, addition of Nb and Ti is essential from the viewpoint of ensuring low temperature toughness. I found out. The lower limits of the amounts of Nb and Ti are the minimum amounts for these elements to exert their effects, and the upper limits thereof are HAZ.
This is the limit of the additive amount that does not deteriorate the toughness and field weldability.

【0012】つぎに、その他元素の限定理由について説
明する。Siは多く添加すると現地溶接性、HAZ靭性
を劣化させるため、その上限を0.6%とした。鋼の脱
酸はAl,Tiのみでも十分であり、Siは必ずしも添
加する必要はない。
Next, the reasons for limiting other elements will be described. If a large amount of Si is added, the field weldability and HAZ toughness deteriorate, so the upper limit was made 0.6%. Only Al and Ti are sufficient for deoxidizing steel, and Si is not necessarily added.

【0013】本発明鋼においては不純物であるP,Sを
それぞれ0.010%,0.0015%以下とし、かつ
Caを添加して、0.5≦〔Ca〕(1−124
〔O〕)/1.25〔S〕≦7.0とする。PはCCス
ラブの中心偏析を助長し、硬化組織を形成してHICの
発生・伝播を容易にするため、P量は0.010%以下
に限定した。
In the steel of the present invention, P and S, which are impurities, are set to 0.010% and 0.0015% or less, respectively, and Ca is added so that 0.5≤ [Ca] (1-124).
[O]) / 1.25 [S] ≦ 7.0. P promotes the center segregation of the CC slab and forms a hardened structure to facilitate the generation and propagation of HIC, so the P content was limited to 0.010% or less.

【0014】またSはMnS系介在物を形成し、MnS
は圧延で伸長してHICの発生起点となる。これを防止
するには介在物の絶対量を低減するとともに硫化物の形
態を制御して圧延で制御し難いCaSとしなければなら
ない。
S forms MnS-based inclusions, and MnS
Is elongated by rolling and becomes a starting point of HIC generation. In order to prevent this, the absolute amount of inclusions must be reduced and the form of sulfide must be controlled to make CaS difficult to control by rolling.

【0015】そこでS量は0.0015%以下(望まし
くは0.0010%以下)とし、Caを0.001〜
0.005%添加した。Caによる硫化物の形態制御を
十分に行なうため、ESSP=〔Ca〕(1−124
〔O〕)/1.25〔S〕≧0.5とした。しかもES
SPが大きすぎると、Ca系介在物が増加、HICの発
生起点となるので、その上限を7.0とした。
Therefore, the amount of S is set to 0.0015% or less (desirably 0.0010% or less), and Ca is set to 0.001% to 0.001%.
0.005% was added. In order to sufficiently control the morphology of sulfide by Ca, ESSP = [Ca] (1-124
[O]) / 1.25 [S] ≧ 0.5. Moreover, ES
If the SP is too large, Ca-based inclusions increase and become a starting point of HIC generation, so the upper limit was set to 7.0.

【0016】上記に関連してO量を0.003%以下に
限定した。これはHICの起点となる酸化物系介在物を
低減するとともに少ないCa量で硫化物の形態制御を行
なうためである。
In relation to the above, the amount of O is limited to 0.003% or less. This is to reduce the oxide inclusions that are the origin of HIC and to control the morphology of sulfide with a small amount of Ca.

【0017】Alは脱酸元素として鋼に含まれる元素で
あるが、脱酸はTiあるいはSiでも可能であり、必ず
しも添加する必要はない。Al量が0.06%以上にな
るとAl系非金属介在物が増加して鋼の清浄度を害する
ので、その上限を0.06%とした。
Al is an element contained in steel as a deoxidizing element, but deoxidizing can be performed with Ti or Si, and it is not always necessary to add it. When the amount of Al is 0.06% or more, Al-based nonmetallic inclusions increase and impair the cleanliness of steel, so the upper limit was made 0.06%.

【0018】NはTiNを形成しスラブ再加熱時や溶接
時のγ粒の粗大化抑制を通じて母材、HAZ靭性を向上
させる。このために必要な最小量は0.001%であ
る。しかし多過ぎるとスラブ表面疵や固溶NによるHA
Z靭性劣化の原因となるので、その上限は0.005%
以下に抑える必要がある。
N forms TiN and improves the base metal and HAZ toughness by suppressing coarsening of γ grains during slab reheating and welding. The minimum amount required for this is 0.001%. However, if it is too much, HA will be caused by slab surface defects and solid solution N
Since it causes deterioration of Z toughness, its upper limit is 0.005%.
It is necessary to keep below.

【0019】つぎにV,Ni,Cuを添加する理由につ
いて説明する。基本となる成分に、さらにこれらの元素
を添加する主たる目的は本発明鋼の優れた特徴を損なう
ことなく、強度・靭性などの特性向上をはかるためであ
る。したがって、その添加量は自ら制限される性質のも
のである。
Next, the reason for adding V, Ni and Cu will be described. The main purpose of adding these elements to the basic composition is to improve the properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is limited by itself.

【0020】VはほぼNbと同様な効果を有し、ミクロ
組織の微細化による低温靭性の向上や焼入性の増大、析
出硬化による高強度化などに効果がある。その効果を発
揮するための最小量は、0.01%である。しかし、添
加量が多過ぎると現地溶接性やHAZ靭性の劣化を招く
ので、その上限を0.10%とした。
V has almost the same effect as Nb, and is effective in improving the low temperature toughness by increasing the microstructure, increasing the hardenability, and increasing the strength by precipitation hardening. The minimum amount for exerting the effect is 0.01%. However, if the addition amount is too large, on-site weldability and HAZ toughness are deteriorated, so the upper limit was made 0.10%.

【0021】Niは現地溶接性、HAZ靭性に悪影響を
およぼすことなく、強度、靭性をともに向上させるほ
か、Cu添加時の熱間割れ防止にも効果がある。その効
果を発揮するための最小量は、0.05%である。しか
し0.5%を超えると経済性の点で好ましくないため、
その上限を0.5%とした。
Ni improves both strength and toughness without adversely affecting the on-site weldability and HAZ toughness, and is also effective in preventing hot cracking when Cu is added. The minimum amount for exerting the effect is 0.05%. However, if it exceeds 0.5%, it is not preferable from the economical point of view.
The upper limit was 0.5%.

【0022】Cuは耐食性、耐HIC性にも効果があ
る。その効果を発揮するための最小量は、0.05%で
ある。しかし、0.5%を超えると熱間圧延時にCu−
クラックが生じ、製造が困難になる。このため上限を
0.5%とした。
Cu is also effective in corrosion resistance and HIC resistance. The minimum amount for exerting the effect is 0.05%. However, if it exceeds 0.5%, Cu-
Cracks occur, making manufacturing difficult. Therefore, the upper limit is set to 0.5%.

【0023】上記のようなCr添加鋼において母材の低
温靭性を改善するためには、さらに製造法が適切でなけ
ればならない。このため鋼(スラブ)の再加熱、圧延、
冷却条件を限定する必要がある。まず再加熱温度を11
00〜1280℃の範囲に限定する。再加熱温度はNb
析出物を固溶させ、かつ圧延終了温度を確保するために
1100℃以上としなければならない(望ましくは11
50〜1200℃である)。しかし再加熱熱温度が12
80℃以上では、γ粒が著しく粗大化し圧延によっても
完全に微細化できないため、優れた低温靭性が得られな
い。このため再加熱温度を1280℃以下とした。
In order to improve the low temperature toughness of the base metal in the Cr-added steel as described above, the manufacturing method must be further appropriate. For this reason, steel (slab) reheating, rolling,
It is necessary to limit the cooling conditions. First, set the reheating temperature to 11
It is limited to the range of 00 to 1280 ° C. Reheating temperature is Nb
In order to form a solid solution with the precipitate and to secure the rolling end temperature, the temperature must be 1100 ° C or higher (desirably 11
50-1200 ° C). However, the reheating heat temperature is 12
At 80 ° C. or higher, the γ grains are significantly coarsened and cannot be completely refined even by rolling, so that excellent low temperature toughness cannot be obtained. Therefore, the reheating temperature is set to 1280 ° C or lower.

【0024】さらに950℃以下の累積圧下量を60%
以上、圧延終了温度を680〜900℃としなければな
らない。これは再結晶域圧延で微細化したγ粒を低温圧
延によって延伸化し、フェライト粒径の徹底的な微細化
をはかって低温靭性を改善するためである。累積圧下量
が60%未満ではγ組織の伸延化が不十分で、微細なフ
ェライト粒が得られない。また圧延終了温度が900℃
以上では、たとえ累積圧下量が60%以上でも微細なフ
ェライト粒は達成できない。しかし圧延終了温度が低下
し過ぎると過度の(γ+α)2相域圧延となり、低温靭
性の劣化を招くので、圧延終了温度の下限を680℃と
した。
Furthermore, the cumulative rolling reduction below 950 ° C. is 60%.
As described above, the rolling end temperature must be 680 to 900 ° C. This is to improve the low temperature toughness by stretching the γ grains refined by the recrystallization region rolling by the low temperature rolling to thoroughly refine the ferrite grain size. If the cumulative reduction amount is less than 60%, the elongation of the γ structure is insufficient and fine ferrite grains cannot be obtained. The rolling end temperature is 900 ° C.
With the above, fine ferrite grains cannot be achieved even if the cumulative reduction amount is 60% or more. However, if the rolling end temperature is too low, the rolling will be excessive (γ + α) two-phase region rolling and the low temperature toughness will be deteriorated. Therefore, the lower limit of the rolling end temperature was set to 680 ° C.

【0025】圧延後、鋼板を加速冷却することが必須で
ある。加速冷却は中心偏析帯を含めたミクロ組織の改善
に有効で、靭性を損なわずに強度の増加、耐HIC性の
向上を可能にする。加速冷却の条件として圧延後、ただ
ちに冷却速度3〜40℃/sec で350℃以上600℃
以下の温度まで冷却、その後空冷しなければならない。
冷却速度が遅すぎたり、冷却停止温度が高すぎると加速
冷却の効果が十分に得られず、適正なミクロ組織を得る
ことができない。一方、冷却速度が大きすぎたり、停止
温度が低すぎると硬化組織が生成して低温靭性や耐HI
C性が大幅に劣化する。
After rolling, it is essential to accelerate the steel sheet. Accelerated cooling is effective in improving the microstructure including the central segregation zone, and makes it possible to increase strength and HIC resistance without impairing toughness. As a condition for accelerated cooling, immediately after rolling, immediately after cooling, a cooling rate of 3 to 40 ° C / sec and a temperature of 350 ° C to 600 ° C
It must be cooled to the following temperature and then air cooled.
If the cooling rate is too slow or the cooling stop temperature is too high, the effect of accelerated cooling cannot be obtained sufficiently and an appropriate microstructure cannot be obtained. On the other hand, if the cooling rate is too high or the stopping temperature is too low, a hardened structure is formed, resulting in low temperature toughness and HI resistance.
C property is significantly deteriorated.

【0026】なお、この鋼を製造後、焼戻、脱水素など
の目的でAc1 点以下の温度で再加熱処理しても本発明
の特徴を損なうものではない。また省エネルギーなどを
目的としてCCスラブを加熱炉にホットチャージ、圧延
してもよい。
It should be noted that the characteristics of the present invention will not be impaired if the steel is reheated at a temperature below the Ac 1 point for the purpose of tempering, dehydrogenation, etc. after the steel is manufactured. The CC slab may be hot-charged and rolled in a heating furnace for the purpose of energy saving.

【0027】本発明は厚板ミルに適用することがもっと
も好ましいが、ホットコイルにも適用できる。また、こ
の方法で製造した鋼板は低温靭性、現地溶接性も優れて
いるので、寒冷地におけるパイプラインのほか圧力容器
などにも適する。
The present invention is most preferably applied to thick plate mills, but can also be applied to hot coils. Further, the steel sheet produced by this method is excellent in low temperature toughness and field weldability, and is therefore suitable not only for pipelines in cold regions but also for pressure vessels.

【0028】[0028]

【実施例】転炉−連続鋳造−厚板工程で種々の鋼成分の
鋼板(厚み12〜30mm)を製造し、その強度、低温靭
性、HAZ靭性および耐HIC性を調査した。表1に実
施例を示す。
EXAMPLES Steel sheets (thickness: 12 to 30 mm) of various steel components were manufactured in a converter-continuous casting-thick plate process, and their strength, low temperature toughness, HAZ toughness and HIC resistance were investigated. Examples are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】本発明法にしたがって製造した鋼板(本発
明鋼)はすべて良好な特性を有する。これに対して本発
明によらない比較鋼は、強度、低温靭性、HAZ靭性、
耐HIC性のいずれかが劣る。
The steel sheets manufactured according to the method of the invention (steel of the invention) all have good properties. On the other hand, the comparative steels not according to the present invention have strength, low temperature toughness, HAZ toughness,
Either of the HIC resistance is inferior.

【0032】比較鋼7〜14において、鋼7,8および
9はそれぞれC量、Mn,Mo量あるいはCr量が高す
ぎるために、HAZ靭性、耐HIC性がともに劣る。比
較鋼10はS量が多く、かつESSPが小さいために、
耐HIC性が劣る。比較鋼11〜14は成分は本発明鋼
と同様であるが、製造条件が適当でないために、母材強
度、靭性あるいは耐HIC性が劣る。鋼11は圧延後の
冷却速度が遅すぎ、鋼12はスラブの再加熱温度が低
く、鋼13は水冷停止温度が高く、鋼14は950℃以
下の累積圧下量が小さい。
In Comparative Steels 7 to 14, Steels 7, 8 and 9 are inferior in both HAZ toughness and HIC resistance because the amounts of C, Mn, Mo or Cr are too high. Comparative Steel 10 has a large amount of S and a small ESSP,
The HIC resistance is poor. The comparative steels 11 to 14 have the same composition as the steel of the present invention, but are inferior in base material strength, toughness or HIC resistance because the manufacturing conditions are not appropriate. Steel 11 has a too slow cooling rate after rolling, steel 12 has a low slab reheating temperature, steel 13 has a high water cooling stop temperature, and steel 14 has a small cumulative reduction of 950 ° C. or less.

【0033】[0033]

【発明の効果】本発明により、耐HIC性の優れた超高
強度X80鋼を安価に大量生産することが可能となっ
た。その結果、現場での溶接施工能率やパイプラインの
安全性が著しく向上した。
Industrial Applicability According to the present invention, it becomes possible to mass-produce ultra-high strength X80 steel excellent in HIC resistance at low cost. As a result, the on-site welding work efficiency and the safety of the pipeline were significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.02〜0.08、 Si:0.6以下、 Mn:1.00〜1.40、 P :0.010以
下、 S :0.0015以下、 Nb:0.01〜
0.06、 Cr:0.10〜0.50、 Mo:0.10〜
0.30、 Ti:0.005〜0.025、 Al:0.06以
下、 Ca:0.001〜0.005、 N :0.001〜
0.005、 O :0.003以下 に必要に応じて、さらに V :0.01〜0.10、 Ni:0.05〜
0.50、 Cu:0.05〜0.50 の1種または2種以上を含有し、かつ0.5≦〔Ca〕
(1−124〔O〕)/1.25〔S〕≦7.0を満足
する残部が鉄および不可避的不純物からなる鋼を110
0℃〜1280℃の温度範囲に加熱して、950℃以下
の累積圧下量60%以上、圧延終了温度680℃〜90
0℃で圧延を行なった後、冷却速度3〜40℃/秒で3
50℃〜600℃まで水冷、その後放冷することを特徴
とする耐水素誘起割れ性の優れた高強度鋼板の製造方
法。
1. By weight%, C: 0.02 to 0.08, Si: 0.6 or less, Mn: 1.00 to 1.40, P: 0.010 or less, S: 0.0015 or less, Nb: 0.01-
0.06, Cr: 0.10 to 0.50, Mo: 0.10
0.30, Ti: 0.005-0.025, Al: 0.06 or less, Ca: 0.001-0.005, N: 0.001-
0.005, O: 0.003 or less, and if necessary, V: 0.01-0.10, Ni: 0.05-
0.50, Cu: 0.05 to 0.50, containing 1 or 2 or more and 0.5 ≦ [Ca]
A steel having a balance of iron and unavoidable impurities that satisfies (1-124 [O]) / 1.25 [S] ≦ 7.0 is 110
Heating to a temperature range of 0 ° C to 1280 ° C, a cumulative rolling reduction of 950 ° C or less 60% or more, a rolling end temperature 680 ° C to 90 ° C.
After rolling at 0 ° C, cooling rate is 3 to 40 ° C / sec.
A method for producing a high-strength steel sheet excellent in hydrogen-induced cracking resistance, which comprises water cooling to 50 ° C. to 600 ° C. and then cooling.
JP4074285A 1992-03-30 1992-03-30 Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking Expired - Fee Related JP2647302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074285A JP2647302B2 (en) 1992-03-30 1992-03-30 Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074285A JP2647302B2 (en) 1992-03-30 1992-03-30 Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking

Publications (2)

Publication Number Publication Date
JPH05271766A true JPH05271766A (en) 1993-10-19
JP2647302B2 JP2647302B2 (en) 1997-08-27

Family

ID=13542702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074285A Expired - Fee Related JP2647302B2 (en) 1992-03-30 1992-03-30 Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking

Country Status (1)

Country Link
JP (1) JP2647302B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935197B2 (en) 2002-02-07 2011-05-03 Jfe Steel Corporation High strength steel plate
US7959745B2 (en) 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
WO2013114519A1 (en) 2012-02-02 2013-08-08 Nippon Steel & Sumitomo Metal Corporation Uoe steel pipe for line pipe
WO2014141632A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014141633A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
KR20200051745A (en) 2017-09-28 2020-05-13 제이에프이 스틸 가부시키가이샤 High strength steel pipe for internal sour line pipe and manufacturing method thereof, and high strength steel pipe using high strength steel plate for internal sour line pipe
KR20200058490A (en) 2017-10-19 2020-05-27 제이에프이 스틸 가부시키가이샤 High strength steel plate for internal sour line pipe and high strength steel pipe using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700741B2 (en) * 2009-02-18 2011-06-15 新日本製鐵株式会社 Manufacturing method of steel plate for thick-walled sour line pipe with excellent toughness
JP4700740B2 (en) * 2009-02-18 2011-06-15 新日本製鐵株式会社 Manufacturing method of steel plate for sour line pipe
WO2014115549A1 (en) 2013-01-24 2014-07-31 Jfeスチール株式会社 Hot-rolled steel plate for high-strength line pipe
KR20150088320A (en) 2013-01-24 2015-07-31 제이에프이 스틸 가부시키가이샤 HOT-ROLLED STEEL PLATE FOR HIGH-STRENGTH LINE PIPE AND HAVING TENSILE STRENGTH OF AT LEAST 540 MPa

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243221A (en) * 1987-03-30 1988-10-11 Sumitomo Metal Ind Ltd Method for producing high-strength, high-toughness steel plate with hydrogen-induced cracking resistance
JPH0364414A (en) * 1989-07-31 1991-03-19 Nkk Corp Method for manufacturing high-tensile and high-toughness steel plate with excellent HIC resistance
JPH03236420A (en) * 1990-02-13 1991-10-22 Nippon Steel Corp Method for manufacturing steel sheets with excellent hydrogen-induced cracking resistance, sulfide stress corrosion cracking resistance, and low-temperature toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243221A (en) * 1987-03-30 1988-10-11 Sumitomo Metal Ind Ltd Method for producing high-strength, high-toughness steel plate with hydrogen-induced cracking resistance
JPH0364414A (en) * 1989-07-31 1991-03-19 Nkk Corp Method for manufacturing high-tensile and high-toughness steel plate with excellent HIC resistance
JPH03236420A (en) * 1990-02-13 1991-10-22 Nippon Steel Corp Method for manufacturing steel sheets with excellent hydrogen-induced cracking resistance, sulfide stress corrosion cracking resistance, and low-temperature toughness

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959745B2 (en) 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
US7935197B2 (en) 2002-02-07 2011-05-03 Jfe Steel Corporation High strength steel plate
EP2420586A1 (en) 2002-02-07 2012-02-22 JFE Steel Corporation High strength steel plate and method for manufacturing the same
US8147626B2 (en) 2002-02-07 2012-04-03 Jfe Steel Corporation Method for manufacturing high strength steel plate
WO2013114519A1 (en) 2012-02-02 2013-08-08 Nippon Steel & Sumitomo Metal Corporation Uoe steel pipe for line pipe
WO2014141633A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014141632A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP5618037B1 (en) * 2013-03-12 2014-11-05 Jfeスチール株式会社 Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP5618036B1 (en) * 2013-03-12 2014-11-05 Jfeスチール株式会社 Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
US10023946B2 (en) 2013-03-12 2018-07-17 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
US10036079B2 (en) 2013-03-12 2018-07-31 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
KR20200051745A (en) 2017-09-28 2020-05-13 제이에프이 스틸 가부시키가이샤 High strength steel pipe for internal sour line pipe and manufacturing method thereof, and high strength steel pipe using high strength steel plate for internal sour line pipe
KR20200058490A (en) 2017-10-19 2020-05-27 제이에프이 스틸 가부시키가이샤 High strength steel plate for internal sour line pipe and high strength steel pipe using the same

Also Published As

Publication number Publication date
JP2647302B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
EP1025272B1 (en) Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
CN101965414B (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JPH07173536A (en) Manufacturing method of steel plate for high strength line pipe with excellent sour resistance
JPH11140580A (en) Continuous cast slab for high-strength steel with excellent low-temperature toughness and its manufacturing method, and high-strength steel with excellent low-temperature toughness
JP2020509181A (en) Sour-resistant thick steel plate excellent in low-temperature toughness and post-heat treatment characteristics and method for producing the same
JP3747724B2 (en) 60 kg class high strength steel excellent in weldability and toughness and method for producing the same
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3817887B2 (en) High toughness high strength steel and method for producing the same
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
JPH0941074A (en) Ultra high strength steel with excellent low temperature toughness
JP2711163B2 (en) Method for producing high corrosion resistant low alloy linepipe steel with excellent corrosion resistance
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JPH08104922A (en) Method for producing high strength steel pipe with excellent low temperature toughness
JPH07292416A (en) Manufacturing method of steel plate for ultra high strength line pipe
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JPH059575A (en) Manufacturing method of high strength steel plate with excellent corrosion resistance
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JPH08311549A (en) Ultra high strength steel pipe manufacturing method
JP2009161824A (en) Manufacturing method of high yield strength and high toughness thick steel plate
JPH06136440A (en) Manufacturing method of high strength steel sheet with excellent sour resistance
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH07242944A (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees