JPH05272833A - Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output - Google Patents
Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing outputInfo
- Publication number
- JPH05272833A JPH05272833A JP6633492A JP6633492A JPH05272833A JP H05272833 A JPH05272833 A JP H05272833A JP 6633492 A JP6633492 A JP 6633492A JP 6633492 A JP6633492 A JP 6633492A JP H05272833 A JPH05272833 A JP H05272833A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- cold water
- adsorbent
- adsorption
- refrigerant vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims description 16
- 238000007710 freezing Methods 0.000 title description 3
- 230000008014 freezing Effects 0.000 title description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 108
- 239000003463 adsorbent Substances 0.000 claims abstract description 69
- 239000003507 refrigerant Substances 0.000 claims abstract description 41
- 239000007787 solid Substances 0.000 claims abstract description 10
- 238000005057 refrigeration Methods 0.000 abstract description 12
- 230000008859 change Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000498 cooling water Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 230000007704 transition Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000003230 hygroscopic agent Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
(57)【要約】
【目的】吸着式冷凍機の冷凍出力を制御する。
【構成】固体吸着剤を充填し、交互に吸着器及び再生器
として動作させる複数の吸着剤熱交換器3と、共通の凝
縮器11及び蒸発器10とから構成する吸着式冷凍機に
於いて、蒸発器から吸着剤熱交換器への冷媒蒸気量を冷
媒蒸気経路に設けた制御弁18により制御して冷凍出力
を制御する。
【効果】
バッファ水槽なしで冷水の供給温度をほぼ一定に維
持することができるようになり、従って容量の大きなバ
ッファ水槽又は全くバッファ水槽が必要でなくなる。こ
のため設備及び運用が簡素化される。
冷凍出力を低下させた運転時に於ける冷水系統の負
荷の増加に対しては、迅速に冷凍出力を大きくすること
ができ、急激な負荷の変化に適切に対応させることがで
きる。
(57) [Summary] [Purpose] To control the refrigeration output of an adsorption refrigerator. An adsorption refrigerating machine comprising a plurality of adsorbent heat exchangers 3 which are filled with a solid adsorbent and alternately operate as an adsorber and a regenerator, and a common condenser 11 and evaporator 10. The amount of refrigerant vapor from the evaporator to the adsorbent heat exchanger is controlled by the control valve 18 provided in the refrigerant vapor path to control the refrigeration output. [Effect] The supply temperature of cold water can be maintained substantially constant without a buffer water tank, and therefore, a large capacity buffer water tank or no buffer water tank is required. This simplifies equipment and operation. With respect to the increase in the load of the cold water system during the operation in which the refrigerating output is reduced, the refrigerating output can be rapidly increased, and it is possible to appropriately respond to a sudden load change.
Description
【0001】[0001]
【産業上の利用分野】本発明は空調用や工場プロセス用
等の冷水を発生させるための吸着式冷凍機に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption type refrigerating machine for generating cold water for air conditioning and factory processes.
【0002】[0002]
【従来の技術】廃熱等の熱源を利用して冷水を発生させ
ることのできる従来の代表的な冷水発生装置としては、
塩化リチウム等の液状吸湿剤を使用する吸収式冷凍機
や、シリカゲル、ゼオライト、活性炭等の固体吸着剤を
使用する吸着式冷凍機がある。2. Description of the Related Art As a conventional typical cold water generator capable of generating cold water by utilizing a heat source such as waste heat,
There are absorption refrigerators that use liquid hygroscopic agents such as lithium chloride, and adsorption refrigerators that use solid adsorbents such as silica gel, zeolite, and activated carbon.
【0003】吸着式冷凍機は、固体吸着剤を充填し、交
互に吸着器及び再生器として動作させる複数の吸着剤熱
交換器と、共通の凝縮器及び蒸発器とから構成され、一
方側の吸着剤熱交換器の吸着剤により冷媒蒸気を吸着し
ている間に他方側の吸着剤熱交換器に再生用熱源として
の温水を流して吸着剤の再生を行うバッチサイクルを交
互に繰り返して冷水を発生させるものであり、この吸着
式冷凍機では、吸着剤の容量、バッチサイクルの時間、
即ちサイクルタイムそして運転条件によって冷凍出力が
変化し、定常運転に於ける各バッチサイクル中にも冷凍
出力が変動する。そして各バッチサイクルの切り替え時
点には一時的に冷凍機能が停止する。The adsorption type refrigerator comprises a plurality of adsorbent heat exchangers which are filled with a solid adsorbent and alternately operate as an adsorber and a regenerator, and a common condenser and evaporator. While adsorbing the refrigerant vapor by the adsorbent of the adsorbent heat exchanger, hot water as a heat source for regeneration is flowed to the adsorbent heat exchanger on the other side to regenerate the adsorbent. In this adsorption type refrigerator, the capacity of the adsorbent, the time of the batch cycle,
That is, the refrigeration output changes depending on the cycle time and operating conditions, and the refrigeration output also fluctuates during each batch cycle in steady operation. Then, the freezing function is temporarily stopped at the time of switching each batch cycle.
【0004】図3はこのようなバッチサイクルに於ける
冷凍出力の変動を蒸発器の冷水出口側の温度の推移によ
り表したものである。尚、この図3に示す運転は冷水入
口側で14℃程度の水を冷却して冷水出口側で目標とし
て9℃程度の冷水を発生させるもので、図中の実線は全
負荷時の運転の場合、また破線は後述するように部分負
荷時にサイクルタイムを変更して冷凍出力の制御を行っ
て運転した場合に対応するもので、この図に於いて、符
号T1、T2、T3;T1’、T2’、T3’は各バッチサイ
クルの切り替え時点を示し、そしてこれらの各時点間の
時間t1、t2、t3;t1’、t2’、t3’が各サイクル
タイムである。FIG. 3 shows the fluctuation of the refrigerating output in such a batch cycle by the transition of the temperature on the cold water outlet side of the evaporator. The operation shown in FIG. 3 is to cool water at about 14 ° C. at the cold water inlet side and generate cold water at about 9 ° C. at the cold water outlet side. The solid line in the figure indicates the operation at full load. In this case, the broken line corresponds to the case where the cycle time is changed and the refrigerating output is controlled to operate during partial load, as will be described later. In this figure, the symbols T 1 , T 2 , T 3 ; T 1 ′, T 2 ′, T 3 ′ indicate the switching time points of each batch cycle, and the time t 1 , t 2 , t 3 between each of these time points is t 1 ′, t 2 ′, t 3 ′. Each cycle time.
【0005】図に示すようにバッチサイクルの切り替え
時点では一時的に冷凍機能が停止するため冷水温度は上
昇する。次いで所定の切り替えが完了して再生した吸着
剤による吸着が始まると、最初は吸着能力が高いので、
冷媒蒸気の吸着量、従って蒸発器に於ける冷媒蒸気の蒸
発量が多く、冷水温度は急速に低下する。そして目標と
する冷水温度9℃よりも低くなってしまう。次いで運転
時間の経過と共に吸着剤の吸着能力が次第に低下すると
冷水温度も次第に上昇し、バッチサイクルの終わりに近
づくと今度は目標とする冷水温度よりも高くなってしま
う。As shown in the figure, at the time of switching the batch cycle, the refrigerating function is temporarily stopped so that the cold water temperature rises. Then, when the predetermined switching is completed and the adsorption by the regenerated adsorbent begins, the adsorption capacity is high at first,
The adsorbed amount of the refrigerant vapor, that is, the evaporated amount of the refrigerant vapor in the evaporator is large, and the cold water temperature rapidly decreases. Then, the target cold water temperature becomes lower than 9 ° C. Next, the cold water temperature gradually rises as the adsorption capacity of the adsorbent gradually decreases with the lapse of operating time, and when the end of the batch cycle is approached, the cold water temperature becomes higher than the target cold water temperature.
【0006】このようなバッチサイクル中の冷凍出力の
変動を緩衝して負荷に供給する冷水温度の一定化を図る
ために、従来はバッファ水槽を設けて使用するのが一般
的である。In order to buffer the fluctuation of the refrigerating output during such a batch cycle and make the temperature of the cold water to be supplied to the load constant, conventionally, a buffer water tank is generally provided and used.
【0007】ところが冷凍負荷が低下した場合、即ち部
分負荷時に於いて冷凍出力の制御を行わずに定格冷凍出
力の運転を継続すると、蒸発器の出口側の冷水温度は低
下し続け、これと共にバッファ水槽内の水温も次第に低
下していって、いずれ低下しすぎた状態となるので、緩
衝作用が働かなくなってしまい、このため冷水負荷側か
ら蒸発器に流入する冷水温度も次第に低下していく。こ
のように蒸発器に流入する冷水温度が低下すると冷媒圧
力の低下をまねき、冷媒駆動量が減少して効率が低下す
ると共に蒸発温度も低下し、0℃以下になると結氷によ
る運転不能、蒸発器の伝熱管の破損等の恐れも生じてく
る。このため負荷の変動に伴う冷凍出力の制御を行う必
要がある。However, when the refrigerating load decreases, that is, when the operation of the rated refrigerating output is continued without controlling the refrigerating output at the partial load, the cold water temperature at the outlet side of the evaporator continues to decrease, and the buffer Since the water temperature in the water tank gradually decreases and eventually becomes too low, the buffering function ceases to work, and therefore the cold water temperature flowing into the evaporator from the cold water load side also gradually decreases. When the temperature of the chilled water flowing into the evaporator decreases, the pressure of the refrigerant decreases, the amount of the refrigerant driven decreases, the efficiency decreases, and the evaporation temperature decreases. There is a risk of damage to the heat transfer tubes. For this reason, it is necessary to control the refrigeration output according to the load fluctuation.
【0008】ところで、上述した吸収式冷凍機は吸湿剤
が液であるため、冷凍出力は吸湿液の循環量や温度等の
吸湿条件を変化させることにより、負荷の変動に応じて
容易に連続的に制御できるのであるが、固体吸着剤を用
いる従来の吸着式冷凍機では、吸着剤熱交換器に於ける
吸着剤の冷媒蒸気の吸脱着量、即ち冷媒駆動量は、各部
の温度条件を設定すると固定的に決まってしまうので、
冷媒駆動量を変化させることによる冷凍出力の連続的制
御は困難であった。そこで従来、吸着式冷凍機では負荷
の変動に伴う冷凍出力の制御を次のような方法により行
っている。By the way, since the above-mentioned absorption refrigerating machine uses a liquid as a hygroscopic agent, the refrigerating output can be easily and continuously changed according to the fluctuation of the load by changing the hygroscopic conditions such as the circulating amount and temperature of the hygroscopic liquid. In a conventional adsorption refrigerator using a solid adsorbent, the adsorbent / desorption amount of the refrigerant vapor of the adsorbent in the adsorbent heat exchanger, that is, the refrigerant driving amount, sets the temperature conditions of each part. Then, it will be fixedly decided,
It was difficult to continuously control the refrigeration output by changing the refrigerant driving amount. Therefore, conventionally, in the adsorption refrigerator, the refrigerating output is controlled according to the change of load by the following method.
【0009】 サイクルタイムは変化させず、吸着剤
の再生用熱源としての温水の温度または流量を調節して
吸着剤を所望の吸着能力に見合った状態まで再生する。 部分負荷時にバッチサイクルの切り替えを一時停止
してサイクルタイムを延長するようにサイクルタイムを
変化させる。この方法の運転状態は上述したように図3
中の破線で示されるものである。 尚、これらの、の方法は例えば特開平3−7859
号公報に開示されている。The cycle time is not changed, and the temperature or flow rate of hot water as a heat source for regenerating the adsorbent is adjusted to regenerate the adsorbent to a state corresponding to the desired adsorption capacity. The cycle time is changed so that the batch cycle switching is temporarily stopped and the cycle time is extended at the time of partial load. The operating state of this method is as shown in FIG.
It is shown by a broken line in the inside. Incidentally, these methods are described in, for example, Japanese Patent Laid-Open No. 3-7859.
It is disclosed in the publication.
【0010】[0010]
【発明が解決しようとする課題】図3からわかるよう
に、及びの方法のいずれもバッチサイクル中の冷凍
出力の変動は制御することはできないので容量の大きな
バッファ水槽、及びこれと共に送水温度制御のための水
温調節弁等が不可欠であり、設備及びその運用が複雑で
あると共に、の方法では再生用熱源としての温水の流
量又は温度制御機構も必要であるため設備及びその運用
が更に複雑となる。本発明は以上のような課題を解決す
ることを目的とするものである。As can be seen from FIG. 3, neither the method nor the method can control the fluctuation of the refrigerating output during the batch cycle, so that the buffer water tank having a large capacity and the water supply temperature control together therewith can be controlled. A water temperature control valve, etc. is necessary, and the equipment and its operation are complicated. In addition, the method requires a flow rate of hot water as a heat source for regeneration or a temperature control mechanism, which further complicates the equipment and its operation. .. The present invention is intended to solve the above problems.
【0011】[0011]
【課題を解決するための手段】上述した課題を解決する
ために、まず本発明は、固体吸着剤を充填し、交互に吸
着器及び再生器として動作させる複数の吸着剤熱交換器
と、共通の凝縮器及び蒸発器とから構成する吸着式冷凍
機に於いて、蒸発器から吸着剤熱交換器への冷媒蒸気量
を、冷媒蒸気経路に設けた制御弁により制御して冷凍出
力を制御する方法を提案する。In order to solve the above-mentioned problems, first of all, the present invention is common with a plurality of adsorbent heat exchangers filled with a solid adsorbent and alternately operated as an adsorber and a regenerator. In an adsorption refrigerator composed of a condenser and an evaporator, the amount of refrigerant vapor from the evaporator to the adsorbent heat exchanger is controlled by a control valve provided in the refrigerant vapor path to control the refrigeration output. Suggest a method.
【0012】以上の制御方法に於いて、冷媒蒸気量は、
蒸発器を通る冷水系統の、蒸発器の出口側または入口側
の冷水温度を一定とするように制御することができる。In the above control method, the refrigerant vapor amount is
It is possible to control the cold water temperature at the outlet side or the inlet side of the evaporator of the cold water system passing through the evaporator to be constant.
【0013】そして本発明は以上の制御方法を適用する
装置として、固体吸着剤を充填し、交互に吸着器及び再
生器として動作させる複数の吸着剤熱交換器と、共通の
凝縮器及び蒸発器とから構成する吸着式冷凍機に於いて
蒸発器から夫々の吸着剤熱交換器に至る冷媒蒸気経路に
開閉機能と流量制御機能を有する制御弁を設けると共
に、蒸発器を通る冷水系統の、蒸発器の出口側または入
口側に冷水温度センサを設け、このセンサにより測定し
た出口側または入口側の冷水温度に基づいて前記制御弁
を制御する制御手段を構成した吸着式冷凍機を提案す
る。As a device to which the above control method is applied, a plurality of adsorbent heat exchangers filled with a solid adsorbent and alternately operated as an adsorber and a regenerator, and a common condenser and evaporator are provided. In the adsorption type refrigerating machine composed of and, a control valve having an opening / closing function and a flow rate control function is provided in the refrigerant vapor path from the evaporator to each of the adsorbent heat exchangers, and the evaporation of the cold water system passing through the evaporator is An adsorbing refrigerator having a cold water temperature sensor provided on the outlet side or the inlet side of the container and comprising control means for controlling the control valve based on the cold water temperature on the outlet side or the inlet side measured by the sensor is proposed.
【0014】[0014]
【作用】冷凍機の運転時に於いて、吸着器として動作さ
せる吸着剤熱交換器に充填している吸着剤の吸着能力が
冷水系統の負荷に対して相対的に大きい場合には、蒸発
器から吸着剤熱交換器への冷媒蒸気量を制御弁により制
限すれば蒸発器に於いて蒸発する冷媒量を制限すること
ができ、こうして冷凍出力を低下させることができる。
また冷凍出力を低下させた運転時に於ける冷水系統の負
荷の増加に対しては、制御弁の開度を大きくすることに
より、迅速に冷凍出力を大きくすることができる。[Operation] When the adsorbent filled in the adsorbent heat exchanger that operates as an adsorber has a relatively large adsorbing capacity with respect to the load of the cold water system during operation of the refrigerator, the adsorbent is removed from the evaporator. If the amount of refrigerant vapor to the adsorbent heat exchanger is limited by the control valve, the amount of refrigerant evaporated in the evaporator can be limited, and thus the refrigeration output can be reduced.
Further, with respect to the increase in the load of the cold water system during the operation in which the refrigerating output is reduced, the refrigerating output can be rapidly increased by increasing the opening degree of the control valve.
【0015】制御弁による冷媒蒸気量の制御は、蒸発器
を通る冷水系統の、蒸発器の出口側または入口側の冷水
温度に基づき、この冷水温度を所望の一定値とするよう
に行えば上述した冷凍出力の制御を冷水系統の負荷に対
応させて適切に行うことができる。The control of the amount of refrigerant vapor by the control valve is carried out based on the cold water temperature at the outlet side or the inlet side of the evaporator of the cold water system passing through the evaporator so that the cold water temperature is set to a desired constant value. The control of the refrigeration output can be appropriately performed according to the load of the cold water system.
【0016】[0016]
【実施例】次に本発明の実施例を図について説明する。
図1は本発明を適用する吸着式冷凍機の実施例の構成を
表した系統説明図である。図に於いて符号1は真空容器
であり、この真空容器1は仕切板2により分割された2
室を備えており、夫々の室内に吸着剤熱交換器3a、3
bを設置している。吸着剤熱交換器3a、3bは熱交換
器を構成する伝熱管(図示省略)の伝熱面にシリカゲル
等の固体吸着剤を充填した構成であり、これらの伝熱管
に接続する供給管4a、4bは切替機構5を介して冷却
水供給系統6と温水供給系統7に接続している。切替機
構5は冷却水供給系統6及び温水供給系統7と各吸着剤
熱交換器3a、3bに至る供給管4a、4bの接続を切
り替える4つの切替弁8a、8b、9a、9cを用いて
構成している。Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 is a system explanatory view showing the configuration of an embodiment of an adsorption type refrigerator to which the present invention is applied. In the figure, reference numeral 1 is a vacuum container, and this vacuum container 1 is divided by a partition plate 2.
Each of the chambers has an adsorbent heat exchanger 3a, 3a.
b is installed. The adsorbent heat exchangers 3a and 3b have a structure in which a heat transfer surface of a heat transfer tube (not shown) constituting the heat exchanger is filled with a solid adsorbent such as silica gel, and a supply pipe 4a connected to these heat transfer tubes. 4b is connected to the cooling water supply system 6 and the hot water supply system 7 via the switching mechanism 5. The switching mechanism 5 is configured using four switching valves 8a, 8b, 9a, 9c for switching the connection between the cooling water supply system 6 and the hot water supply system 7 and the supply pipes 4a, 4b leading to the adsorbent heat exchangers 3a, 3b. is doing.
【0017】これらの切替弁の機能を説明すると、切替
弁8a、8bは冷却水供給系統6の夫々往経路6a、還
経路6bを夫々の吸着剤熱交換器3a、3bの供給管4
a、4bに切り替えて接続する構成、また切替弁9a、
9cは温水供給系統7の夫々往経路7a、還経路7bを
夫々の吸着剤熱交換器3a、3bの供給管4a、4bに
切り替えて接続する構成であって、これらの切替弁は、
冷却水供給系統6の往経路6a及び還経路6bが一方側
の吸着剤熱交換器3a(3b)の供給管4a(4b)に
接続状態の場合には、他方側の吸着剤熱交換器3b(3
a)の供給管4b(4a)には温水供給系統7の往経路
7a及び還経路7bが接続状態となるように配管されて
いる。Explaining the functions of these switching valves, the switching valves 8a and 8b are the forward path 6a and the return path 6b of the cooling water supply system 6, respectively, and the supply pipes 4 of the adsorbent heat exchangers 3a and 3b.
a, 4b are switched and connected, and the switching valve 9a,
9c is a configuration in which the forward path 7a and the return path 7b of the hot water supply system 7 are switched and connected to the supply pipes 4a and 4b of the adsorbent heat exchangers 3a and 3b, respectively.
When the forward path 6a and the return path 6b of the cooling water supply system 6 are connected to the supply pipe 4a (4b) of the adsorbent heat exchanger 3a (3b) on one side, the adsorbent heat exchanger 3b on the other side is connected. (3
The forward path 7a and the return path 7b of the hot water supply system 7 are connected to the supply pipe 4b (4a) of a) so as to be in a connected state.
【0018】符号10は蒸発器、11は凝縮器であり、
これらの蒸発器10、凝縮器11は夫々冷媒蒸気経路を
介して夫々の吸着剤熱交換器3a、3bと接続してい
る。そして蒸発器10内には冷水系統12に連なる伝熱
管13を設置すると共に凝縮器11内には前記冷却水供
給系統6に連なる伝熱管14を設置している。また凝縮
器11と蒸発器10間には膨張弁15を設けた冷媒供給
管16を設置している。Reference numeral 10 is an evaporator, 11 is a condenser,
The evaporator 10 and the condenser 11 are connected to the adsorbent heat exchangers 3a and 3b via refrigerant vapor paths. A heat transfer tube 13 connected to the cold water system 12 is installed in the evaporator 10, and a heat transfer tube 14 connected to the cooling water supply system 6 is installed in the condenser 11. Further, a refrigerant supply pipe 16 provided with an expansion valve 15 is installed between the condenser 11 and the evaporator 10.
【0019】凝縮器11と夫々の吸着剤熱交換器3a、
3b間の冷媒蒸気経路には開閉弁17a、17bを設け
ており、また蒸発器10と夫々の吸着剤熱交換器3a、
3b間の冷媒蒸気経路には開閉機能と流量制御機能を有
する制御弁18a、18bを設けている。A condenser 11 and respective adsorbent heat exchangers 3a,
On-off valves 17a, 17b are provided in the refrigerant vapor path between the 3b, and the evaporator 10 and the respective adsorbent heat exchangers 3a,
Control valves 18a and 18b having an opening / closing function and a flow rate control function are provided in the refrigerant vapor path between the 3b.
【0020】符号19は制御手段、20は冷水系統12
の蒸発器10出口側、即ち冷水往経路12aに設けた冷
水温度センサである。制御手段19は前記4つの切替弁
8a、8b、9a、9c、開閉弁17a、17b及び制
御弁18a、18bの開閉機能を制御して前記吸着剤熱
交換器3a、3bを交互に吸着器及び再生器として動作
させる運転切り替えを行うと共に、切り替え後は、冷水
温度センサ20により測定した蒸発器10の出口側の冷
水温度に基づいて制御弁18a、18bの流量制御機能
を制御する構成としている。Reference numeral 19 is a control means, and 20 is a cold water system 12.
The cold water temperature sensor provided on the outlet side of the evaporator 10, that is, on the cold water outgoing path 12a. The control means 19 controls the opening / closing functions of the four switching valves 8a, 8b, 9a, 9c, the opening / closing valves 17a, 17b, and the control valves 18a, 18b to alternately connect the adsorbent heat exchangers 3a, 3b to adsorbers and The operation is switched to operate as a regenerator, and after switching, the flow rate control function of the control valves 18a and 18b is controlled based on the cold water temperature on the outlet side of the evaporator 10 measured by the cold water temperature sensor 20.
【0021】図1は吸着剤熱交換器3aを吸着器、吸着
剤熱交換器3bを再生器として動作させているバッチサ
イクルの運転状態を表したもので、この運転状態では図
中実線で示すように、冷却水供給系統6に対応する切替
弁8a、8bは吸着剤熱交換器3a側、温水供給系統7
に対応する切替弁9a、9bは吸着剤熱交換器3b側に
切り替わっている。また吸着剤熱交換器3a側の開閉弁
17aは閉、制御弁18aは開となっており、そして吸
着剤熱交換器3bの開閉弁17bは開、制御弁18bは
閉となっている。尚、閉となっている開閉弁17aと制
御弁18bは図中ハッチングを付している。FIG. 1 shows an operating state of a batch cycle in which the adsorbent heat exchanger 3a is operated as an adsorber and the adsorbent heat exchanger 3b is operated as a regenerator. In this operating state, a solid line is shown in the figure. As described above, the switching valves 8a and 8b corresponding to the cooling water supply system 6 are provided on the adsorbent heat exchanger 3a side and the hot water supply system 7 side.
The switching valves 9a and 9b corresponding to No. 3 are switched to the adsorbent heat exchanger 3b side. Further, the open / close valve 17a on the side of the adsorbent heat exchanger 3a is closed and the control valve 18a is open, and the open / close valve 17b of the adsorbent heat exchanger 3b is open and the control valve 18b is closed. The on-off valve 17a and the control valve 18b which are closed are hatched in the figure.
【0022】以上のバッチサイクルでは、吸着剤熱交換
器3bの吸着剤は、切替弁9a、9bを経て温水供給系
統7から伝熱管に供給される温水により加熱されて冷媒
蒸気を放出する。この冷媒蒸気は図中矢印で示すように
開閉弁17bを経て凝縮器11に至り、この凝縮器11
内の伝熱管14を流れる冷却水供給系統6の冷却水と熱
交換して凝縮し、凝縮液は冷媒供給管16に流入し、膨
張弁15を経て蒸発器10に供給される。このようにし
て吸着剤熱交換器3b側では吸着剤の再生が行われる。In the above batch cycle, the adsorbent of the adsorbent heat exchanger 3b is heated by the hot water supplied from the hot water supply system 7 to the heat transfer tube through the switching valves 9a and 9b to release the refrigerant vapor. This refrigerant vapor reaches the condenser 11 through the on-off valve 17b as shown by the arrow in the figure, and the condenser 11
The cooling water of the cooling water supply system 6 flowing through the internal heat transfer tube 14 is heat-exchanged and condensed, and the condensate flows into the refrigerant supply tube 16 and is supplied to the evaporator 10 via the expansion valve 15. In this way, the adsorbent is regenerated on the adsorbent heat exchanger 3b side.
【0023】一方、吸着剤熱交換器3a側では、吸着剤
は前のバッチサイクルに於いて上述と同様な再生が行わ
れているため、制御弁18aを介して蒸発器10内の冷
媒蒸気を吸引して吸着する。この際に発生する吸着熱は
切替弁8a、8bを経て冷却水供給系統6から供給され
る冷却水により除去される。そして上述したように冷媒
供給管16を経て供給される冷媒液は蒸発器10に於い
て蒸発し、この際、伝熱管13を流れている冷水系統1
2の冷水から熱を奪い、これを冷却する。On the other hand, on the adsorbent heat exchanger 3a side, since the adsorbent is regenerated in the previous batch cycle in the same manner as described above, the refrigerant vapor in the evaporator 10 is discharged through the control valve 18a. Aspirate and adsorb. The heat of adsorption generated at this time is removed by the cooling water supplied from the cooling water supply system 6 via the switching valves 8a and 8b. Then, as described above, the refrigerant liquid supplied through the refrigerant supply pipe 16 evaporates in the evaporator 10, and at this time, the cold water system 1 flowing through the heat transfer pipe 13
Heat is taken from the cold water of 2 and cooled.
【0024】以上のバッチサイクルの間中、制御弁18
aが全開に維持されているすると、冷水系統12の負荷
が小さい場合、即ち部分負荷時や、全負荷時に於いても
バッチサイクルの切り替え直後のように相対的に吸着剤
の吸着能力が高い場合には、蒸発器10に於ける冷媒の
蒸発量も多くなり、従って冷水系統12の冷水から奪う
熱量も多くなるので必要以上冷却してしまうという不都
合が生じる。During the above batch cycle, the control valve 18
When a is kept fully open, when the load on the cold water system 12 is small, that is, when the adsorbent has a relatively high adsorbing capacity even during partial load or full load, such as immediately after switching the batch cycle. In this case, the amount of evaporation of the refrigerant in the evaporator 10 also increases, and the amount of heat taken from the cold water in the cold water system 12 also increases, so that there is a disadvantage that the cooling is performed more than necessary.
【0025】そこで制御手段19は以上の運転動作に於
いて冷水温度センサ20により蒸発器10の出口側の冷
水温度を監視し、この冷水温度が設定温度、例えば9℃
となるように制御弁18aの流量制御機能を制御する。
即ち、冷水温度が設定温度よりも低下する傾向を示した
場合には制御弁18aの開度を小さくし、その後、設定
温度よりも上昇する傾向を示した場合には制御弁18b
の開度を大きくする。Therefore, the control means 19 monitors the chilled water temperature at the outlet side of the evaporator 10 by the chilled water temperature sensor 20 in the above operation, and this chilled water temperature is set to a set temperature, for example, 9 ° C.
The flow rate control function of the control valve 18a is controlled so that
That is, when the cold water temperature tends to be lower than the set temperature, the opening degree of the control valve 18a is reduced, and when the cold water temperature tends to be higher than the set temperature, the control valve 18b is lowered.
Increase the opening of.
【0026】このように制御弁18aの開度を小さくし
て冷媒蒸気経路10aを流れる冷媒蒸気量を制限するこ
とにより、上述した場合のように吸着剤の吸着能力が冷
水系統12の負荷に対して相対的に大きい場合でも蒸発
器10に於ける冷媒の蒸発量を適正に制限することがで
き、こうして冷凍出力を冷水系統の負荷に対応させて適
正に制御することができる。By thus reducing the opening degree of the control valve 18a and limiting the amount of the refrigerant vapor flowing through the refrigerant vapor path 10a, the adsorption capacity of the adsorbent with respect to the load of the cold water system 12 as in the case described above. Therefore, the evaporation amount of the refrigerant in the evaporator 10 can be appropriately limited even in the case of a relatively large amount, and thus the refrigeration output can be appropriately controlled in accordance with the load of the cold water system.
【0027】従って冷水系統12の負荷が小さい場合
や、バッチサイクルの切り替え直後にも、冷水の過度の
冷却を防止することができる。またこのように冷媒蒸気
量を制御することにより、吸着剤に対しての冷媒蒸気の
過度の吸着を防いで、長時間に渡る吸着能力の維持を図
ることができる。更に、以上のバッチサイクルのサイク
ルタイムは変化させる必要がないので、各吸着剤熱交換
器3a、3bの定格吸着能力は従来の通常の運転時と変
わらず、従って冷水系統12の負荷が増えた場合には、
冷凍出力を必要に応じて迅速に定格出力まで上昇するこ
とができる。Therefore, even when the load of the cold water system 12 is small or immediately after the batch cycle is switched, it is possible to prevent excessive cooling of the cold water. Further, by controlling the amount of the refrigerant vapor in this way, it is possible to prevent the refrigerant vapor from being excessively adsorbed to the adsorbent and to maintain the adsorption ability for a long time. Further, since it is not necessary to change the cycle time of the above batch cycle, the rated adsorption capacity of each of the adsorbent heat exchangers 3a and 3b is the same as that in the conventional normal operation, and therefore the load of the cold water system 12 is increased. in case of,
The refrigeration output can be quickly raised to the rated output as needed.
【0028】図2は以上の制御動作を行った場合の蒸発
器10の出口側の冷水温度の推移を示すもので、実線が
全負荷時の運転に於ける冷水温度の推移、破線が部分負
荷時の運転に於ける冷水温度の推移を示すものである。FIG. 2 shows the transition of the cold water temperature at the outlet side of the evaporator 10 when the above control operation is performed. The solid line shows the transition of the cold water temperature during full load operation, and the broken line shows the partial load. It shows the transition of the cold water temperature during the operation.
【0029】この図に示すように本発明の制御動作を適
用すると、全負荷時及び部分負荷時の運転のいずれに於
いても、蒸発器10の出口側の冷水温度は、バッチサイ
クルの切り替え時には従来と同様に一時的な冷凍機能の
停止により上昇するものの、その後は急速に設定温度9
℃まで下降し、そして以降、この設定温度に維持される
ことがわかる。尚、図では全負荷時の運転に於いて各バ
ッチサイクルの終わりに近づくと冷水温度が設定温度よ
りも上昇しているが、かかる温度の上昇は吸着剤の充填
量やサイクルタイム等を調節することにより防ぐことが
できる。このように本発明の制御動作を適用した吸着式
冷凍機では冷水温度を一定に制御することができるの
で、バッファ水槽の容量を従来と比較して大幅に減少さ
せたり、またはバッファ水槽を全くなくすことも可能で
ある。As shown in this figure, when the control operation of the present invention is applied, the chilled water temperature at the outlet side of the evaporator 10 is changed at the time of batch cycle switching in both full load operation and partial load operation. Although the temperature rises due to a temporary stop of the refrigeration function as in the conventional case, the set temperature rapidly increases thereafter.
It can be seen that the temperature drops to 0 ° C and is maintained at this set temperature thereafter. In the figure, the cold water temperature rises above the set temperature near the end of each batch cycle in full load operation, but such rise in temperature adjusts the adsorbent filling amount, cycle time, etc. This can be prevented. In this way, in the adsorption type refrigerator to which the control operation of the present invention is applied, the cold water temperature can be controlled to be constant, so that the capacity of the buffer water tank can be greatly reduced compared to the conventional one, or the buffer water tank can be eliminated altogether. It is also possible.
【0030】以上説明した制御動作は、蒸発器10の出
口側の冷水温度を一定とすることにより冷凍出力を冷水
系統の負荷に対応して制御するものであるが、これとは
逆に蒸発器10の入口側に冷水温度センサにより測定
し、この入口側の冷水温度を一定の温度とするようにし
ても、冷水系統の負荷に対応した冷凍出力の制御を行う
ことができる。The control operation described above controls the refrigerating output in accordance with the load of the cold water system by keeping the cold water temperature at the outlet side of the evaporator 10 constant. Even if the cold water temperature sensor measures the temperature at the inlet side of 10 and the cold water temperature at the inlet side is kept constant, the refrigerating output can be controlled in accordance with the load of the cold water system.
【0031】尚、本発明の制御動作を適用する吸着式冷
凍機は、以上に説明した図示の構成の他、制御弁18
a、18bの構成を除き、従来等の適宜の構成のものを
用いることができる。また制御弁18a、18bは、開
閉機能と流量制御機能を有する限りに於いては、図示の
ように単独の弁で構成する他、開閉弁と流量制御弁を組
合せて構成することもできる。The adsorption type refrigerator to which the control operation of the present invention is applied has a control valve 18 in addition to the above-described configuration shown in the drawings.
With the exception of the configurations of a and 18b, those having an appropriate configuration such as a conventional one can be used. As long as the control valves 18a and 18b have an opening / closing function and a flow rate control function, they may be configured by a single valve as shown in the figure, or may be configured by combining an on / off valve and a flow rate control valve.
【0032】[0032]
【発明の効果】本発明は以上の通り、蒸発器から吸着剤
熱交換器への冷媒蒸気量を制御弁により制御して冷凍出
力を制御するので、以下に示すような効果がある。 バッファ水槽なしで冷水の供給温度をほぼ一定に維
持することができるようになり、従って容量の大きなバ
ッファ水槽又は全くバッファ水槽が必要でなくなる。こ
のため設備及び運用が簡素化される。 冷凍出力を低下させた運転時に於ける冷水系統の負
荷の増加に対しては、迅速に冷凍出力を大きくすること
ができ、急激な負荷の変化に適切に対応させることがで
きる。As described above, the present invention controls the refrigerating output by controlling the refrigerant vapor amount from the evaporator to the adsorbent heat exchanger by the control valve, and therefore has the following effects. It becomes possible to maintain the supply temperature of cold water almost constant without a buffer water tank, so that a large capacity buffer water tank or no buffer water tank is required. This simplifies equipment and operation. With respect to the increase in the load of the cold water system during the operation in which the refrigerating output is reduced, the refrigerating output can be rapidly increased, and it is possible to appropriately respond to a sudden load change.
【図1】本発明を適用する吸着式冷凍機の実施例の構成
を表した系統説明図である。FIG. 1 is a system explanatory diagram showing the configuration of an embodiment of an adsorption refrigerator according to the present invention.
【図2】本発明の制御動作を行った運転に於ける、冷水
系統の蒸発器の出口側の冷水温度の推移を示す説明図で
ある。FIG. 2 is an explanatory diagram showing a transition of the cold water temperature on the outlet side of the evaporator of the cold water system in the operation in which the control operation of the present invention is performed.
【図3】従来の吸着式冷凍機の制御動作による運転に於
ける冷水系統の蒸発器の出口側の冷水温度の推移を示す
説明図である。FIG. 3 is an explanatory diagram showing a transition of the cold water temperature at the outlet side of the evaporator of the cold water system in the operation by the control operation of the conventional adsorption refrigerator.
1 真空容器 2 仕切板 3a、3b 吸着剤熱交換器 4a、4b 供給管 5 切替機構 6 冷却水供給系統 7 温水供給系統 8a、8b 切替弁 9a、9b 切替弁 10 蒸発器 11 凝縮器 12 冷水系統 13、14 伝熱管 15 膨張弁 16 冷媒供給管 17a、17b 開閉弁 18a、18b 制御弁 19 制御手段 20 冷水温度センサ 1 Vacuum Container 2 Partition Plates 3a, 3b Adsorbent Heat Exchanger 4a, 4b Supply Pipe 5 Switching Mechanism 6 Cooling Water Supply System 7 Hot Water Supply System 8a, 8b Switching Valve 9a, 9b Switching Valve 10 Evaporator 11 Condenser 12 Cold Water System 13, 14 Heat transfer pipe 15 Expansion valve 16 Refrigerant supply pipe 17a, 17b Open / close valve 18a, 18b Control valve 19 Control means 20 Cold water temperature sensor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺沢 秀彰 埼玉県大宮市盆栽町478 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Terasawa 478 Bonsai Town, Omiya City, Saitama Prefecture
Claims (5)
再生器として動作させる複数の吸着剤熱交換器と、共通
の凝縮器及び蒸発器とから構成する吸着式冷凍機に於い
て、蒸発器から吸着剤熱交換器への冷媒蒸気量を、冷媒
蒸気経路に設けた制御弁により制御して冷凍出力を制御
することを特徴とする吸着式冷凍機の冷凍出力制御方法1. An adsorption refrigerating machine comprising a plurality of adsorbent heat exchangers filled with a solid adsorbent and alternately operating as an adsorber and a regenerator, and a common condenser and evaporator. Refrigerating output control method for adsorption refrigerator, characterized in that the refrigerating output is controlled by controlling the refrigerant vapor amount from the evaporator to the adsorbent heat exchanger by a control valve provided in the refrigerant vapor path.
量は、蒸発器を通る冷水系統の、蒸発器の出口側の冷水
温度を一定とするように制御することを特徴とする吸着
式冷凍機の冷凍出力制御方法2. The adsorption method according to claim 1, wherein the amount of the refrigerant vapor is controlled so that the cold water temperature at the outlet side of the evaporator of the cold water system passing through the evaporator is kept constant. Method for controlling refrigerating output of rotary refrigerator
量は、蒸発器を通る冷水系統の、蒸発器の入口側の冷水
温度を一定とするように制御することを特徴とする吸着
式冷凍機の冷凍出力制御方法3. The adsorption method according to claim 1, wherein the amount of refrigerant vapor is controlled so that the cold water temperature at the inlet side of the evaporator of the cold water system passing through the evaporator is constant. Method for controlling refrigerating output of rotary refrigerator
再生器として動作させる複数の吸着剤熱交換器と、共通
の凝縮器及び蒸発器とから構成する吸着式冷凍機に於い
て、蒸発器から夫々の吸着剤熱交換器に至る冷媒蒸気経
路に、開閉機能と流量制御機能を有する制御弁を設ける
と共に、蒸発器を通る冷水系統の、蒸発器の出口側に冷
水温度センサを設け、このセンサにより測定した出口側
の冷水温度に基づいて前記制御弁を制御する制御手段を
構成したことを特徴とする吸着式冷凍機4. An adsorption refrigerating machine comprising a plurality of adsorbent heat exchangers filled with a solid adsorbent and alternately operating as an adsorber and a regenerator, and a common condenser and evaporator. A control valve having an opening / closing function and a flow rate control function is provided in the refrigerant vapor path from the evaporator to each of the adsorbent heat exchangers, and a cold water temperature sensor is provided at the outlet side of the evaporator in the cold water system that passes through the evaporator. An adsorption refrigerator having a control means for controlling the control valve based on the outlet-side cold water temperature measured by the sensor.
再生器として動作させる複数の吸着剤熱交換器と、共通
の凝縮器及び蒸発器とから構成する吸着式冷凍機に於い
て、蒸発器から夫々の吸着剤熱交換器に至る冷媒蒸気経
路に、開閉機能と流量制御機能を有する制御弁を設ける
と共に、蒸発器を通る冷水系統の、蒸発器入口側に冷水
温度センサを設け、このセンサにより測定した蒸発器の
入口側の冷水温度に基づいて前記弁を制御する制御手段
を構成したことを特徴とする吸着式冷凍機5. An adsorption refrigerator comprising a plurality of adsorbent heat exchangers filled with a solid adsorbent and alternately operating as an adsorber and a regenerator, and a common condenser and evaporator, In the refrigerant vapor path from the evaporator to each of the adsorbent heat exchanger, a control valve having an opening and closing function and a flow rate control function is provided, and a cold water system of the cold water system passing through the evaporator is provided with a cold water temperature sensor on the evaporator inlet side, An adsorption refrigerator comprising a control means for controlling the valve based on the cold water temperature on the inlet side of the evaporator measured by this sensor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP06633492A JP3353839B2 (en) | 1992-03-24 | 1992-03-24 | Refrigeration output control method of adsorption chiller and adsorption chiller capable of refrigeration output control |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP06633492A JP3353839B2 (en) | 1992-03-24 | 1992-03-24 | Refrigeration output control method of adsorption chiller and adsorption chiller capable of refrigeration output control |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH05272833A true JPH05272833A (en) | 1993-10-22 |
| JP3353839B2 JP3353839B2 (en) | 2002-12-03 |
Family
ID=13312855
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP06633492A Expired - Fee Related JP3353839B2 (en) | 1992-03-24 | 1992-03-24 | Refrigeration output control method of adsorption chiller and adsorption chiller capable of refrigeration output control |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3353839B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995014898A1 (en) * | 1993-11-29 | 1995-06-01 | Mayekawa Mfg. Co., Ltd. | Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same |
| JP2004333039A (en) * | 2003-05-08 | 2004-11-25 | Chubu Electric Power Co Inc | Operating method of adsorption refrigerator |
| JP2011510247A (en) * | 2007-12-20 | 2011-03-31 | ゾルテッヒ アーゲー | Method and apparatus for controlling the output of a sorption refrigeration system |
| JP2012506987A (en) * | 2008-10-24 | 2012-03-22 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Systems that use unused heat for cooling and / or power generation |
| JP2012513008A (en) * | 2008-12-19 | 2012-06-07 | インベンソール ゲーエムベーハー | Depressurization element for diverting recooling volume flow in sorption machines (Sorption Machines) |
| WO2012052011A3 (en) * | 2010-09-28 | 2013-01-17 | Invensor Gmbh | Condensate recirculation system in an adsorption refrigeration machine |
| JP2018515735A (en) * | 2015-04-28 | 2018-06-14 | ロッキー・リサーチ | System and method for controlling a refrigeration cycle |
-
1992
- 1992-03-24 JP JP06633492A patent/JP3353839B2/en not_active Expired - Fee Related
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5732569A (en) * | 1993-11-29 | 1998-03-31 | Mayekawa Mfg. Co., Ltd. | Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in the same |
| US6041617A (en) * | 1993-11-29 | 2000-03-28 | Mayekawa Mfg. Co., Ltd. | Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same |
| WO1995014898A1 (en) * | 1993-11-29 | 1995-06-01 | Mayekawa Mfg. Co., Ltd. | Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same |
| JP2004333039A (en) * | 2003-05-08 | 2004-11-25 | Chubu Electric Power Co Inc | Operating method of adsorption refrigerator |
| JP2011510247A (en) * | 2007-12-20 | 2011-03-31 | ゾルテッヒ アーゲー | Method and apparatus for controlling the output of a sorption refrigeration system |
| US9097445B2 (en) | 2008-10-24 | 2015-08-04 | Exxonmobil Research And Engineering Company | System using unutilized heat for cooling and/or power generation |
| JP2012506987A (en) * | 2008-10-24 | 2012-03-22 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Systems that use unused heat for cooling and / or power generation |
| JP2012513008A (en) * | 2008-12-19 | 2012-06-07 | インベンソール ゲーエムベーハー | Depressurization element for diverting recooling volume flow in sorption machines (Sorption Machines) |
| JP2013539005A (en) * | 2010-09-28 | 2013-10-17 | インベンソール ゲーエムベーハー | Condensate recirculation system in adsorption refrigerator |
| AU2011317943B2 (en) * | 2010-09-28 | 2015-04-23 | Invensor Gmbh | Condensate recirculation system in an adsorption refrigeration machine |
| WO2012052011A3 (en) * | 2010-09-28 | 2013-01-17 | Invensor Gmbh | Condensate recirculation system in an adsorption refrigeration machine |
| AU2011317943C1 (en) * | 2010-09-28 | 2015-10-08 | Invensor Gmbh | Condensate recirculation system in an adsorption refrigeration machine |
| JP2018515735A (en) * | 2015-04-28 | 2018-06-14 | ロッキー・リサーチ | System and method for controlling a refrigeration cycle |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3353839B2 (en) | 2002-12-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4192385B2 (en) | Adsorption type refrigerator | |
| US5966955A (en) | Heat pump device and desiccant assisted air conditioning system | |
| US5333471A (en) | Adsorption cooling system | |
| JPH0765816B2 (en) | Adsorption refrigerator and its operating method | |
| WO1995014898A1 (en) | Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same | |
| US6314744B1 (en) | Air-conditioning system and operation control method thereof | |
| WO2011142352A1 (en) | Air conditioning device for vehicle | |
| JPH09303900A (en) | Adsorption type freezing device | |
| JP3592374B2 (en) | Adsorption type cooling device and method for controlling cooling output thereof | |
| JP2015048987A (en) | Air conditioner | |
| JP3353839B2 (en) | Refrigeration output control method of adsorption chiller and adsorption chiller capable of refrigeration output control | |
| JPH0961001A (en) | Adsorption-cooling apparatus | |
| JP3831964B2 (en) | Adsorption type refrigerator | |
| JP2017009173A (en) | Adsorption refrigerator and operation method thereof | |
| KR102097783B1 (en) | Adsorption type air conditioning apparatus for automotive vehicles | |
| JP2005098586A (en) | Air conditioner | |
| JP4066485B2 (en) | Refrigeration equipment | |
| JP2002162130A (en) | Air conditioner | |
| JPH05126432A (en) | Adsorption air conditioner | |
| JP2002250573A (en) | Air conditioner | |
| JP4069691B2 (en) | Air conditioner for vehicles | |
| JPH05296599A (en) | Adsorption type heat accumulator and heat accumulation operating control method | |
| JP2000039224A (en) | Air conditioning system | |
| JPH09196493A (en) | Adsorption refrigerating apparatus | |
| JPH04143562A (en) | Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080927 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080927 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090927 |
|
| LAPS | Cancellation because of no payment of annual fees |