JPH05291112A - Photomask flatness maintenance device - Google Patents
Photomask flatness maintenance deviceInfo
- Publication number
- JPH05291112A JPH05291112A JP8397692A JP8397692A JPH05291112A JP H05291112 A JPH05291112 A JP H05291112A JP 8397692 A JP8397692 A JP 8397692A JP 8397692 A JP8397692 A JP 8397692A JP H05291112 A JPH05291112 A JP H05291112A
- Authority
- JP
- Japan
- Prior art keywords
- reticle
- photomask
- deflection
- pressure
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70866—Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Projection-Type Copiers In General (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
(57)【要約】
【目的】フォトマスクの自重によるフォトマスクのたわ
みを精度良く補正し、より微細なフォトマスクパターン
の転写を可能とする。
【構成】外気から隔離された気密空間を形成するチャン
バー手段(1)をフォトマスク(R)の被照射面側に設
ける。そして、フォトマスクのたわみを検出手段(1
1,12)を用いて光学的に検出する。圧力調節手段
(13)は、検出手段からの出力信号(F)に基づい
て、気密空間内の圧力を調節する。
(57) [Abstract] [Purpose] The deflection of the photomask due to the weight of the photomask is accurately corrected, and a finer photomask pattern can be transferred. A chamber means (1) for forming an airtight space isolated from the outside air is provided on the irradiated surface side of a photomask (R). Then, the deflection of the photomask is detected by detecting means (1
1, 12) to optically detect. The pressure adjusting means (13) adjusts the pressure in the airtight space based on the output signal (F) from the detecting means.
Description
【0001】[0001]
【産業上の利用分野】本発明は、フォトリソグラフィに
用いられるフォトマスクの平面性を維持する装置に関す
るものである。更に詳しくは、重力によるフォトマスク
のたわみを補正する装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for maintaining the flatness of a photomask used in photolithography. More specifically, the present invention relates to a device for correcting the deflection of a photomask due to gravity.
【0002】[0002]
【従来の技術】半導体装置等は、その加工寸法が年々微
細化される傾向にある。このため、微細化した半導体装
置のフォトリソグラフィを行う縮小投影露光装置におい
て、その解像度を更に向上させるために、投影レンズの
開口数(NA)を上げることが行われている。2. Description of the Related Art Semiconductor devices and the like tend to be miniaturized year after year. Therefore, in a reduction projection exposure apparatus that performs photolithography on a miniaturized semiconductor device, the numerical aperture (NA) of the projection lens is increased in order to further improve the resolution.
【0003】[0003]
【発明が解決しようとする課題】ところが、投影レンズ
の開口数を上げると、この開口数の2乗に比例して、被
露光面上の焦点深度が浅くなる。しかも、投影露光の原
板としてのフォトマスクにおいて、自重によるたわみが
発生していると、露光面上のパターン面の一部が投影レ
ンズの焦点深度から外れるため、露光面上の一部の領域
しかマスクパターンが転写されない。However, when the numerical aperture of the projection lens is increased, the depth of focus on the surface to be exposed becomes shallow in proportion to the square of this numerical aperture. Moreover, in the photomask as the original plate for projection exposure, if the deflection due to its own weight occurs, part of the pattern surface on the exposure surface deviates from the depth of focus of the projection lens. The mask pattern is not transferred.
【0004】そこで、本発明は、上記の問題をすべて解
消し、フォトマスクの自重によるフォトマスクのたわみ
を精度良く補正し、より微細なフォトマスクパターンの
転写を可能とすることを目的とする。Therefore, an object of the present invention is to solve all the above problems, correct the deflection of the photomask due to the weight of the photomask with high accuracy, and enable the transfer of a finer photomask pattern.
【0005】[0005]
【課題を解決するための手段】上述の目的の達成のため
に、本発明のフォトマスク平面性維持装置は、例えば図
1に示される如く、フォトマスクを照明する照明光
(L)を透過させる透過部(1a)を有し、透過部とフ
ォトマスク(R)との間に外気から隔離された気密空間
を形成するチャンバー手段(1)と、フォトマスクのた
わみ量を光学的に検出する検出手段(11,12)と、
検出手段からの出力(F)に基づいて、気密空間内の圧
力を調節して、フォトマスクのたわみを補正する圧力調
節手段(13)とを有するように構成されている。To achieve the above object, the photomask flatness maintaining device of the present invention transmits an illumination light (L) for illuminating a photomask, as shown in FIG. 1, for example. Chamber means (1) having a transmissive part (1a) and forming an airtight space isolated from outside air between the transmissive part and the photomask (R), and detection for optically detecting the amount of deflection of the photomask Means (11, 12),
Pressure adjusting means (13) for adjusting the pressure in the airtight space to correct the deflection of the photomask on the basis of the output (F) from the detecting means.
【0006】[0006]
【作用】本発明では、フォトマスクの照明光源側にチャ
ンバー手段を設けることにより、チャンバー手段内とフ
ォトマスクとの間に外気から密閉された空間を形成して
おり、この空間内の圧力を調節することで、たわんだ
(湾曲した)フォトマスクを補正している。具体的に
は、まず、検出手段を用いて、フォトマスクのたわみ量
を光学的に検出する。次に、検出手段から出力されるフ
ォトマスクのたわみ量に基づいて、このたわみ量を補正
するように、圧力調節手段がチャンバー手段内の空間の
圧力を調節する。In the present invention, the chamber means is provided on the illumination light source side of the photomask to form a space sealed from the outside air between the chamber means and the photomask, and the pressure in this space is adjusted. By doing so, the bent (curved) photomask is corrected. Specifically, first, the amount of deflection of the photomask is optically detected by using the detection means. Next, based on the deflection amount of the photomask output from the detection unit, the pressure adjusting unit adjusts the pressure of the space inside the chamber unit so as to correct the deflection amount.
【0007】ここで、フォトマスクのたわみ量と圧力調
節手段が発生させる圧力差の関係について詳述する。
今、図4に示すように、単純支持はり40,41でフォ
トマスクRの両端が支持されているとすると、フォトマ
スクRに等分布荷重W〔kgf/m〕が掛かっていると
きのたわみ量vは、 v=5Wa4 /32Ebh3 である。 但し、a:単純支持はり40,41間の距離、 h:フォトマスクRの厚さ、 b:単純支持はり40,41の長手方向のフォトマスク
Rの長さ、 E:フォトマスクRのヤング率、 ここで、フォトマスクのたわみを補正するためには、等
分布荷重Wと逆向きの気圧差ΔPを掛ければ良い。即
ち、たわみを補正するための気圧差ΔPは、 ΔP=5va4 /32Ebh3 ‥‥(1) となる。このため、検出手段で検出するフォトマスクの
たわみ量vと外気圧とから、フォトマスクを補正できる
チャンバー手段内の空間の圧力が算出できる。そして、
圧力調節手段は、チャンバー手段内の空間の圧力が算出
された圧力になるように調節できる。Here, the relationship between the deflection amount of the photomask and the pressure difference generated by the pressure adjusting means will be described in detail.
Now, as shown in FIG. 4, assuming that both ends of the photomask R are supported by the simple support beams 40 and 41, the amount of deflection when the photomask R is subjected to an evenly distributed load W [kgf / m] v is v = 5Wa 4 / 32Ebh 3 . Here, a: distance between the simple supporting beams 40 and 41, h: thickness of the photomask R, b: length of the photomask R in the longitudinal direction of the simple supporting beams 40 and 41, E: Young's modulus of the photomask R Here, in order to correct the deflection of the photomask, the uniform distribution load W and the atmospheric pressure difference ΔP in the opposite direction may be applied. That is, the pressure difference ΔP for correcting the deflection is ΔP = 5va 4 / 32Ebh 3 (1). Therefore, the pressure of the space inside the chamber means capable of correcting the photomask can be calculated from the deflection amount v of the photomask detected by the detection means and the external atmospheric pressure. And
The pressure adjusting means can adjust the pressure of the space in the chamber means to the calculated pressure.
【0008】また、フォトマスクの自重によりフォトマ
スクをたわませる力と釣り合う力を外気圧とチャンバー
手段内の圧力との圧力差によって生じさせても良い。即
ち、外気圧とチャンバー手段内の圧力との圧力差は、以
下の(2)式を満足するようにすれば良い。 Pξ=mg ‥‥(2) 但し、Pξ:外気圧とチャンバー手段内の圧力との圧力
差 m:フォトマスクの単位面積当りの重量 g:重力加速度 である。Further, a force that balances the force for deflecting the photomask due to the weight of the photomask may be generated by the pressure difference between the external atmospheric pressure and the pressure in the chamber means. That is, the pressure difference between the atmospheric pressure and the pressure in the chamber means may satisfy the following expression (2). Pξ = mg (2) where Pξ is the pressure difference between the atmospheric pressure and the pressure in the chamber means, m is the weight per unit area of the photomask, and g is the gravitational acceleration.
【0009】従って、フォトマスクのたわみを補正すべ
きチャンバー手段内の空間の圧力Pηは、外気圧をPκ
とするとき、以下の(3)式を満足するようにすれば良
い。 Pη=mg−Pκ ‥‥(3) そして、チャンバー手段内の空間の圧力がこのPηとな
るように、圧力調節手段で調節すると、自重によるフォ
トマスクのたわみが補正される。Therefore, the pressure Pη of the space inside the chamber means for correcting the deflection of the photomask is the external pressure Pκ.
In this case, the following expression (3) should be satisfied. Pη = mg−Pκ (3) Then, when the pressure adjusting means adjusts the pressure of the space in the chamber means to this Pη, the deflection of the photomask due to its own weight is corrected.
【0010】[0010]
【実施例】以下に、図1を参照しながら本発明の実施例
を説明する。図1において、フォトマスク(以下、レチ
クルと記す)Rは、レチクルステージ4上に載置されて
いる。そして、このレチクルR上には、照明光を透過さ
せる石英等の素材で形成された透過部1aを有するチャ
ンバー1が載置されており、レチクルRと接するチャン
バー1の周縁部1bには、ゴム製の弾性体の気密部材2
が設けられている。これより、外気から遮断された気密
空間が形成される。Embodiments of the present invention will be described below with reference to FIG. In FIG. 1, a photomask (hereinafter referred to as a reticle) R is placed on a reticle stage 4. On the reticle R, a chamber 1 having a transmissive portion 1a formed of a material such as quartz that transmits illumination light is placed, and a peripheral portion 1b of the chamber 1 that is in contact with the reticle R has a rubber portion. Airtight member made of elastic material 2
Is provided. As a result, an airtight space that is shielded from the outside air is formed.
【0011】また、このチャンバー1側面には、通気孔
3が設けられており、この通気孔3には、圧力調節(吸
排気)を行なう圧力調節部13に接続されたチューブ5
が接続されている。さらに、レチクルRのたわみを光学
的に検出する検出系がレチクルステージの下側に設けら
れている。この検出系は、投光系11と受光系12とを
有し、レチクルRを介して反射する投光系11からの光
の位置を受光系で検出することで、正確かつ高精度なレ
チクルRのたわみを検出する。従って、圧力調節部13
は、受光系からのたわみ量の出力信号Fに基づいて、チ
ャンバー1内の空間の圧力を変化させて、レチクルRの
たわみを補正する。A vent hole 3 is provided on the side surface of the chamber 1, and a tube 5 connected to a pressure adjusting portion 13 for adjusting pressure (intake and exhaust) is provided in the vent hole 3.
Are connected. Further, a detection system that optically detects the deflection of the reticle R is provided below the reticle stage. This detection system has a light projecting system 11 and a light receiving system 12, and by detecting the position of light from the light projecting system 11 reflected via the reticle R by the light receiving system, an accurate and highly accurate reticle R can be obtained. Detect the deflection of. Therefore, the pressure adjusting unit 13
Changes the pressure of the space in the chamber 1 based on the deflection amount output signal F from the light receiving system to correct the deflection of the reticle R.
【0012】次に、図3を参照しながら、レチクルRの
たわみ検出について説明する。なお、図3において、説
明を簡単にするために、投光系11と受光系12との間
の光束は、主光線のみ代表させて示しており、レチクル
は、その裏面のみを示している。ここで、図3に示すよ
うに、レチクルの重力によるたわみは、レチクルのほぼ
中心付近で最大となる。従って、投光系11は、スリッ
ト112、投光レンズ113を経た光源111からの光
束BMをレチクルRのほぼ中心に向けて斜めに照射する
構成であり、レチクルの裏面Ra(Rb)には、スリッ
ト112の像が形成される。Next, the deflection detection of the reticle R will be described with reference to FIG. Note that in FIG. 3, for the sake of simplicity, only the chief ray of the light flux between the light projecting system 11 and the light receiving system 12 is representatively shown, and the reticle shows only the back surface thereof. Here, as shown in FIG. 3, the deflection of the reticle due to gravity is maximum near the center of the reticle. Therefore, the light projecting system 11 is configured to obliquely irradiate the light beam BM from the light source 111 that has passed through the slit 112 and the light projecting lens 113 toward the approximate center of the reticle R, and the back surface Ra (Rb) of the reticle is An image of the slit 112 is formed.
【0013】そして、この光束BMは、レチクルの裏面
Ra(Rb)で反射されて反射光束BRa(BRb)と
なり、受光系12に入射する。この受光系12は、レチ
クルの裏面Ra(Rb)に形成されたスリット像をリレ
ーレンズ系121,122によって、受光素子123上
に再結像させる光学系であり、レチクルのたわみを受光
素子123上の反射光束BRa(BRb)の受光位置の
変化を検出する構成となっている。そして、受光系12
は、反射光束BRa(BRb)の受光位置をたわみ量の
出力信号Fとして出力する。Then, this light beam BM is reflected by the back surface Ra (Rb) of the reticle to become a reflected light beam BRa (BRb), and enters the light receiving system 12. The light receiving system 12 is an optical system that re-images the slit image formed on the back surface Ra (Rb) of the reticle on the light receiving element 123 by the relay lens systems 121 and 122, and the deflection of the reticle on the light receiving element 123. Of the reflected light beam BRa (BRb) is detected. Then, the light receiving system 12
Outputs the light receiving position of the reflected light beam BRa (BRb) as the deflection amount output signal F.
【0014】ここで、レチクルRが平面であるとき、投
光系11からの光束BMは、レチクルの裏面Raで反射
されて反射光束BRaとなり、リレーレンズ系121,
122によって受光素子123上の点Paに結像する。
また、レチクルRがたわんでいるとき、投光系11から
の光束BMは、レチクルの裏面Rbで反射されて、反射
光束BRbとなり、リレーレンズ系121,122によ
って受光素子123上の点Pbに結像する。ここで、受
光素子123上で点Paと点Pbとの差がレチクルRの
たわみ量に対応する。Here, when the reticle R is a plane, the light beam BM from the light projecting system 11 is reflected by the back surface Ra of the reticle to become a reflected light beam BRa, and the relay lens system 121,
An image is formed at a point Pa on the light receiving element 123 by 122.
Further, when the reticle R is deflected, the light beam BM from the light projecting system 11 is reflected by the back surface Rb of the reticle and becomes a reflected light beam BRb, which is coupled to the point Pb on the light receiving element 123 by the relay lens systems 121 and 122. Image. Here, the difference between the point Pa and the point Pb on the light receiving element 123 corresponds to the deflection amount of the reticle R.
【0015】次に、図1に戻って、本実施例によるレチ
クル平面性維持装置のレチクルのたわみ補正動作の説明
を行う。まず、投光系11からレチクルRの裏面に向け
て光束BMを投光する。そして、光束BMは、レチクル
Rの裏面で反射されて光束BRとなり、受光系12に入
射する。受光系12は、その内部の受光素子上の光束B
Rの受光位置をレチクルRのたわみ量信号Fとして、圧
力調節部13に出力する。ここで、圧力調節部13は、
演算を行う演算部とデータ等の記憶を行うメモリー部と
を有しており、そのメモリー部に、例えば、上述の
(1)式のような演算式を記憶している。そして、圧力
調節部13内の演算部は、メモリー部に記憶された演算
式に基づいて、レチクルRのたわみ量の出力信号Fか
ら、レチクルRのたわみを補正するようなチャンバー1
内の空間の圧力を算出する。この算出された圧力になる
ように、圧力調節部13は、チャンバー1内の空間の圧
力を調節する。その後、再び、投光系11と受光系12
とを用いてレチクルRのたわみ量を測定する。そして、
レチクルRがたわんでいるときは、レチクルRのたわみ
が検出できなくなるまで、上述の動作を繰り返して実行
する。Next, returning to FIG. 1, the reticle deflection correction operation of the reticle flatness maintaining apparatus according to this embodiment will be described. First, the light beam BM is projected from the light projecting system 11 toward the back surface of the reticle R. Then, the light beam BM is reflected by the back surface of the reticle R to become a light beam BR, and enters the light receiving system 12. The light receiving system 12 has a light beam B on the light receiving element inside thereof.
The light receiving position of R is output to the pressure adjusting unit 13 as a deflection amount signal F of the reticle R. Here, the pressure adjusting unit 13
The memory unit has an arithmetic unit for performing arithmetic operations and a memory unit for storing data and the like, and the memory unit stores, for example, arithmetic expressions such as the above-mentioned equation (1). Then, the calculation unit in the pressure adjustment unit 13 corrects the deflection of the reticle R from the output signal F of the deflection amount of the reticle R based on the calculation formula stored in the memory unit.
Calculate the pressure of the space inside. The pressure adjusting unit 13 adjusts the pressure of the space inside the chamber 1 so that the calculated pressure is obtained. Then, again, the light projecting system 11 and the light receiving system 12
The deflection amount of the reticle R is measured using and. And
When the reticle R is deflected, the above operation is repeated until the deflection of the reticle R cannot be detected.
【0016】以上に示すレチクルRのたわみ補正動作に
より、レチクルRの重力によるたわみが補正される。ま
た、圧力調節部13は、その内部のメモリー部に、たわ
み量と種々の条件(気温、湿度、など)との関係を示す
データを予め記憶しておき、その記憶データより、チャ
ンバー1内の空間の圧力を調節しても良い。これによ
り、レチクルRの自重によるたわみのみならず、他の要
因によるレチクルRのたわみも補正できる。By the deflection correction operation of the reticle R described above, the deflection of the reticle R due to gravity is corrected. In addition, the pressure adjusting unit 13 stores in advance a data indicating the relationship between the amount of deflection and various conditions (temperature, humidity, etc.) in its internal memory unit, and stores the data in the chamber 1 from the stored data. The pressure of the space may be adjusted. Thus, not only the deflection of the reticle R due to its own weight but also the deflection of the reticle R due to other factors can be corrected.
【0017】なお、圧力調節部13は、投光系11と受
光系12とが検出するレチクルRのたわみ量の出力信号
Fをモニターしつつ、圧力を調節してもよい。具体的に
は、圧力調節部13は、投光系11と受光系12とから
レチクルRのたわみ量の出力信号Fを受ける。その後、
圧力調節部13は、レチクルRが光源側に凸であるか凹
であるかを判断し、光源側に凸であればチャンバー1内
の空間の圧力を加圧し、光源側に凹であればチャンバー
1内の空間の圧力を減圧する。そして、再び、投光系1
1と受光系12とでレチクルRのたわみ量を検出する。
このとき、圧力調節部13は、レチクルRがたわんでい
る場合、再び上述のようなチャンバー1内の空間の圧力
の調節を繰り返す。そして、レチクルRがたわんでいな
い場合、圧力調節部13の動作が終了する。The pressure adjusting unit 13 may adjust the pressure while monitoring the output signal F of the deflection amount of the reticle R detected by the light projecting system 11 and the light receiving system 12. Specifically, the pressure adjusting unit 13 receives the output signal F of the deflection amount of the reticle R from the light projecting system 11 and the light receiving system 12. afterwards,
The pressure adjusting unit 13 determines whether the reticle R is convex or concave toward the light source side. If the reticle R is convex toward the light source side, the pressure in the space inside the chamber 1 is increased. The pressure of the space in 1 is reduced. Then, again, the projection system 1
The deflection amount of the reticle R is detected by 1 and the light receiving system 12.
At this time, when the reticle R is bent, the pressure adjusting unit 13 repeats the above-described adjustment of the pressure of the space inside the chamber 1 again. Then, when the reticle R is not deflected, the operation of the pressure adjusting unit 13 ends.
【0018】また、前述の演算式に基づいてチャンバー
1内の空間の圧力を調節する場合、1回目のたわみ補正
動作により、ほぼレチクルRのたわみが補正されること
が多いので、2回目からのたわみ補正動作は、上述のよ
うに投光系11と受光系12とのたわみ量出力信号Fを
モニターしながら圧力を調節しても良い。ここで、レチ
クルRの中心付近のたわみ量のみ検出するのではなく、
レチクルRのたわみ量を複数の箇所で検出すれば、レチ
クルRの湾曲状態がわかる。そして、このレチクルの湾
曲が所定の曲率となるように、チャンバー1内の圧力を
調節することも可能である。このときは、レチクルのた
わみ量を検出するための投光系11と受光系12とを複
数設ける。そして、複数の投光系11と受光系12とが
検出する各々の検出点においてのレチクルRが所定の曲
率になるときの夫々のたわみ量を予め算出する。圧力調
節部13は、各々の検出点でのレチクルRのたわみ量が
予め算出された夫々のたわみ量となるように、チャンバ
ー1内の圧力を調節する。このように、このレチクル平
面性維持装置が設けられた投影露光装置の投影光学系に
像面湾曲がある場合には、その投影光学系の有する像面
湾曲に見合わせて、レチクルを湾曲させることができ
る。When the pressure of the space in the chamber 1 is adjusted based on the above-mentioned calculation formula, the deflection of the reticle R is often corrected by the deflection correction operation of the first time. In the deflection correction operation, the pressure may be adjusted while monitoring the deflection amount output signal F of the light projecting system 11 and the light receiving system 12 as described above. Here, instead of detecting only the amount of deflection near the center of the reticle R,
If the deflection amount of the reticle R is detected at a plurality of points, the curved state of the reticle R can be known. Then, the pressure in the chamber 1 can be adjusted so that the reticle has a predetermined curvature. At this time, a plurality of light projecting systems 11 and light receiving systems 12 for detecting the deflection amount of the reticle are provided. Then, the respective deflection amounts when the reticle R has a predetermined curvature at the respective detection points detected by the plurality of light projecting systems 11 and the light receiving system 12 are calculated in advance. The pressure adjusting unit 13 adjusts the pressure inside the chamber 1 so that the deflection amount of the reticle R at each detection point becomes the respective pre-calculated deflection amounts. As described above, when the projection optical system of the projection exposure apparatus provided with the reticle flatness maintaining device has a field curvature, the reticle can be curved in accordance with the field curvature of the projection optical system. it can.
【0019】また、プロキシミティー露光の場合におい
ては、図3に示すように、レチクルRと露光される基板
Wとの間隔が非常に小さいので、投光系11と受光系1
2とをレチクルRの被照射面側に設け、レチクルRの被
照射面側に光を投射してレチクルのたわみ量を測定する
ことが望ましい。尚、本発明による実施例では、レチク
ルRの被照射面側にチャンバー1を配置しているので、
チャンバー1自身は結像性能に影響を与えないが、照明
光Lの照明効率(透過部1aの透過率)を向上させるに
は、チャンバー1の透過部において、照明光Lの波長に
見合った反射防止膜を蒸着することが望ましい。In the case of proximity exposure, as shown in FIG. 3, the distance between the reticle R and the substrate W to be exposed is very small, so that the light projecting system 11 and the light receiving system 1 are used.
It is desirable that 2 and 2 are provided on the irradiated surface side of the reticle R, and light is projected on the irradiated surface side of the reticle R to measure the deflection amount of the reticle. Incidentally, in the embodiment according to the present invention, since the chamber 1 is arranged on the irradiation surface side of the reticle R,
Although the chamber 1 itself does not affect the imaging performance, in order to improve the illumination efficiency of the illumination light L (transmittance of the transmissive portion 1a), in the transmissive portion of the chamber 1, reflection corresponding to the wavelength of the illumination light L is performed. It is desirable to deposit a barrier film.
【0020】また、本実施例においては、レチクルRの
自重によるたわみばかりでなく、例えば、レチクルRが
照明光Lを吸収するときの熱によるレチクルRのたわみ
に対しても有効である。Further, the present embodiment is effective not only for the deflection of the reticle R due to its own weight, but also for the deflection of the reticle R due to heat when the reticle R absorbs the illumination light L, for example.
【0021】[0021]
【発明の効果】以上のように、本発明によれば、レチク
ル平面性維持装置内部と外部との気圧差によって、レチ
クルの重量によるたわみを補正することができる。この
ため、大型基板に対する大面積の回路パターンの投影露
光、又はプロキシミティ露光の際にレチクルの平面性を
維持するのに有用である。そして、本発明では、検出手
段でレチクルのたわみ量を検出しているため、原理的に
レチクルの高精度な平面性を維持することができる。従
って、解像度の高いパターンニングを行うことができ
る。As described above, according to the present invention, the deflection due to the weight of the reticle can be corrected by the atmospheric pressure difference between the inside and the outside of the reticle flatness maintaining device. Therefore, it is useful for maintaining the flatness of the reticle during projection exposure or proximity exposure of a large area circuit pattern on a large substrate. Further, in the present invention, since the deflection amount of the reticle is detected by the detection means, it is possible in principle to maintain the highly accurate flatness of the reticle. Therefore, high-resolution patterning can be performed.
【0022】さらに、重力によるレチクルのたわみを補
正するだけではなく、レチクルが照明光を吸収するとき
に発生する熱によるレチクルのたわみも補正可能であ
る。Further, not only the deflection of the reticle due to gravity can be corrected, but also the deflection of the reticle due to heat generated when the reticle absorbs the illumination light can be corrected.
【図1】本発明による実施例の断面図。FIG. 1 is a sectional view of an embodiment according to the present invention.
【図2】本発明をプロキシミティー露光に適用した例を
示す断面図。FIG. 2 is a sectional view showing an example in which the present invention is applied to proximity exposure.
【図3】レチクルのたわみ検出の原理を説明する図。FIG. 3 is a diagram illustrating the principle of reticle deflection detection.
【図4】レチクルのたわみ量を算出する演算式を求める
前提を示す図。FIG. 4 is a diagram showing a premise for obtaining an arithmetic expression for calculating a deflection amount of a reticle.
1 ‥‥チャンバー 4 ‥‥レチクルステージ 11 ‥‥投光系 12 ‥‥受光系 13 ‥‥圧力調節部 F ‥‥たわみ量の出力信号 L ‥‥照明光 R ‥‥フォトマスク(レチクル) 1 ・ ・ ・ Chamber 4 ‥‥ Reticle stage 11 ・ ・ ・ Emitting system 12 ・ ・ ・ Receiving system 13 ・ ・ ・ Pressure adjusting unit F ‥‥ Deflection amount output signal L ・ ・ ・ Illumination light R ・ ・ ・ Photomask (reticle)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/20 521 7818−2H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03F 7/20 521 7818-2H
Claims (1)
る透過部を有し、該透過部と前記フォトマスクとの間に
外気から隔離された気密空間を形成するチャンバー手段
と、 前記フォトマスクのたわみ量を光学的に検出する検出手
段と、 該検出手段からの出力に基づいて、前記気密空間内の圧
力を調節して、前記フォトマスクのたわみを補正する圧
力調節手段とを有することを特徴とするフォトマスク平
面性維持装置。1. A chamber means having a transmissive portion for transmitting illumination light for illuminating a photomask, and forming a hermetic space isolated from the outside air between the transmissive portion and the photomask; It has a detection means for optically detecting the amount of deflection, and a pressure adjustment means for adjusting the pressure in the hermetic space based on the output from the detection means to correct the deflection of the photomask. Photomask flatness maintenance device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8397692A JPH05291112A (en) | 1992-04-06 | 1992-04-06 | Photomask flatness maintenance device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8397692A JPH05291112A (en) | 1992-04-06 | 1992-04-06 | Photomask flatness maintenance device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05291112A true JPH05291112A (en) | 1993-11-05 |
Family
ID=13817573
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8397692A Pending JPH05291112A (en) | 1992-04-06 | 1992-04-06 | Photomask flatness maintenance device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05291112A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004226897A (en) * | 2003-01-27 | 2004-08-12 | Dainippon Printing Co Ltd | Exposure method and exposure apparatus |
| JP2005085991A (en) * | 2003-09-09 | 2005-03-31 | Canon Inc | Exposure apparatus and device manufacturing method using the apparatus |
| JP2006010860A (en) * | 2004-06-23 | 2006-01-12 | Dainippon Printing Co Ltd | Mask deflection correction device |
| WO2011121868A1 (en) * | 2010-03-31 | 2011-10-06 | 株式会社 日立ハイテクノロジーズ | Substrate holding apparatus, substrate holding method, and inspecting apparatus and inspecting method using the substrate holding apparatus and the substrate holding method |
| JP2013109044A (en) * | 2011-11-17 | 2013-06-06 | Hitachi High-Technologies Corp | Proximity exposure apparatus |
| US20130155385A1 (en) * | 2010-08-24 | 2013-06-20 | Nikon Corporation | Vacuum chamber assembly for supporting a workpiece |
| US10871369B2 (en) | 2018-08-02 | 2020-12-22 | Corning Incorporated | Systems for and methods of measuring photomask flatness with reduced gravity-induced error |
-
1992
- 1992-04-06 JP JP8397692A patent/JPH05291112A/en active Pending
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004226897A (en) * | 2003-01-27 | 2004-08-12 | Dainippon Printing Co Ltd | Exposure method and exposure apparatus |
| JP2005085991A (en) * | 2003-09-09 | 2005-03-31 | Canon Inc | Exposure apparatus and device manufacturing method using the apparatus |
| JP2006010860A (en) * | 2004-06-23 | 2006-01-12 | Dainippon Printing Co Ltd | Mask deflection correction device |
| WO2011121868A1 (en) * | 2010-03-31 | 2011-10-06 | 株式会社 日立ハイテクノロジーズ | Substrate holding apparatus, substrate holding method, and inspecting apparatus and inspecting method using the substrate holding apparatus and the substrate holding method |
| JP2011211136A (en) * | 2010-03-31 | 2011-10-20 | Hitachi High-Technologies Corp | Substrate holding apparatus, substrate holding method, and inspecting apparatus, and inspecting method using the substrate holding apparatus and the substrate holding method |
| US8723536B2 (en) | 2010-03-31 | 2014-05-13 | Hitachi High-Technologies Corporation | Inspection apparatus, substrate mounting device and inspection method |
| US20130155385A1 (en) * | 2010-08-24 | 2013-06-20 | Nikon Corporation | Vacuum chamber assembly for supporting a workpiece |
| US9341942B2 (en) * | 2010-08-24 | 2016-05-17 | Nikon Research Corporation Of America | Vacuum chamber assembly for supporting a workpiece |
| JP2013109044A (en) * | 2011-11-17 | 2013-06-06 | Hitachi High-Technologies Corp | Proximity exposure apparatus |
| US10871369B2 (en) | 2018-08-02 | 2020-12-22 | Corning Incorporated | Systems for and methods of measuring photomask flatness with reduced gravity-induced error |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6388735B1 (en) | Projection exposure system | |
| US6525817B1 (en) | Inspection method and apparatus for projection optical systems | |
| US7298498B2 (en) | Optical property measuring apparatus and optical property measuring method, exposure apparatus and exposure method, and device manufacturing method | |
| US6819414B1 (en) | Aberration measuring apparatus, aberration measuring method, projection exposure apparatus having the same measuring apparatus, device manufacturing method using the same measuring method, and exposure method | |
| TW200905157A (en) | Measuring method, exposure method, and device fabricating method | |
| US20150138559A1 (en) | Flare-measuring mask, flare-measuring method, and exposure method | |
| CN100573332C (en) | The device of radiating system, lithographic equipment, device producing method and manufacturing thereof | |
| JPH05291112A (en) | Photomask flatness maintenance device | |
| JPH07219212A (en) | Deflection correcting device for photomask and its method | |
| JPH10144602A (en) | Reflection mirror holding device and projection exposure device | |
| US6169602B1 (en) | Inspection method and apparatus for projection optical systems | |
| JP4235392B2 (en) | Position detection apparatus, surface shape estimation apparatus, exposure apparatus, and device manufacturing method | |
| JPH10142555A (en) | Projection exposure equipment | |
| JP3307988B2 (en) | Projection exposure method and apparatus | |
| JPH08162397A (en) | Projection exposure apparatus and semiconductor device manufacturing method using the same | |
| JP3551570B2 (en) | Scanning exposure apparatus and exposure method | |
| JPH06349703A (en) | Projection exposure device | |
| JPH10214780A (en) | Projection exposure equipment | |
| JP3622867B2 (en) | Exposure apparatus and exposure method | |
| JP2005302825A (en) | Exposure system | |
| JP2011009411A (en) | Optical characteristic measuring method, exposure method, and device manufacturing method | |
| JPH11307436A (en) | Projection exposure apparatus, reticle, and reticle positioning method | |
| JP2008066543A (en) | Reticle flatness measuring apparatus, exposure apparatus equipped with reticle flatness measuring apparatus, reticle flatness measuring method, exposure method using reticle flatness measuring method, and device manufacturing method using exposure apparatus | |
| JP2003068609A (en) | Reduced pressure atmosphere processing apparatus, energy beam irradiation apparatus, and exposure apparatus | |
| JPH10189428A (en) | Illumination optics |