JPH05316531A - Color reproduction variable circuit and imaging device - Google Patents
Color reproduction variable circuit and imaging deviceInfo
- Publication number
- JPH05316531A JPH05316531A JP4120220A JP12022092A JPH05316531A JP H05316531 A JPH05316531 A JP H05316531A JP 4120220 A JP4120220 A JP 4120220A JP 12022092 A JP12022092 A JP 12022092A JP H05316531 A JPH05316531 A JP H05316531A
- Authority
- JP
- Japan
- Prior art keywords
- color reproduction
- color
- signals
- signal
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Color Television Image Signal Generators (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
(57)【要約】
【目的】 RGB画素ずらし法を同時に用いた場合で
も、RGB画素ずらし法の解像度改善効果を十分に発揮
し、輝度信号における解像度の色再現補正による劣化の
ない色再現可変回路を用い、色再現調整が線形的に行
え、調整が容易な色撮像装置を提供する。
【構成】 撮像部1からの3原色信号を色再現可変回路
4に入力し、折り返し成分を除去した色再現補正信号を
3原色信号に加算して、色再現を変化させた3原色信号
を新たに得る。そして、プロセス回路3でγ処理、デー
タ検出などの各種処理を行う。色再現可変回路4の色再
現補正信号生成手段117中に低域通過フィルタ115
を用いたため、3原色信号に加算する色再現補正信号の
折り返し成分を除去でき、解像度劣化を防げる。また、
γ処理を行う前に色再現の調整を行う構成としたため、
色再現調整が線形的に行え、調整が容易となる。
(57) [Abstract] [Purpose] A color reproduction variable circuit that fully exhibits the resolution improvement effect of the RGB pixel shift method even when the RGB pixel shift method is used at the same time without deterioration due to the color reproduction correction of the resolution in the luminance signal. A color image pickup apparatus is provided which can perform color reproduction adjustment linearly and is easy to adjust. [Structure] The three primary color signals from the image pickup unit 1 are input to a color reproduction variable circuit 4, and a color reproduction correction signal from which aliasing components have been removed is added to the three primary color signals to create a new three primary color signal with changed color reproduction. Get to. Then, the process circuit 3 performs various processes such as γ process and data detection. The low-pass filter 115 is provided in the color reproduction correction signal generating means 117 of the color reproduction variable circuit 4.
Since, since the aliasing component of the color reproduction correction signal added to the three primary color signals can be removed, deterioration of resolution can be prevented. Also,
Since it is configured to adjust color reproduction before performing γ processing,
Color reproduction adjustment can be performed linearly, which facilitates adjustment.
Description
【0001】[0001]
【産業上の利用分野】本発明は、ホワイトバランスをく
ずさずに、色再現を変化させる色再現可変回路、および
色再現可変機能を備えた撮像装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color reproduction variable circuit for changing color reproduction without degrading white balance, and an image pickup apparatus having a color reproduction variable function.
【0002】[0002]
【従来の技術】従来の色再現可変回路について説明す
る。2. Description of the Related Art A conventional color reproduction variable circuit will be described.
【0003】図10は従来の色再現可変回路の構成を示
す1例である。図10において、101はRGB3原色
信号より色差信号を演算する色差演算回路である。すな
わち、R信号に加算する色差信号R−GおよびR−B、
G信号に加算する色差信号G−RおよびG−B、B信号
に加算する色差信号B−RおよびB−Gを算出する回路
である。102,103,104,105,106,1
07は各々の色差信号にそれぞれ係数k1,k2,k
3,k4,k5,k6を乗算する乗算器、108はR−
G信号に係数k1を乗算する乗算器102の出力とR−
B信号に係数k2を乗算する乗算器103の出力とを加
算する加算器であり、109はG−R信号に係数k3を
乗算する乗算器104の出力とG−B信号に係数k4を
乗算する乗算器105の出力とを加算する加算器であ
り、110はB−R信号に係数k5を乗算する乗算器1
06の出力とB−G信号に係数k6を乗算する乗算器1
07の出力とを加算する加算器である。また、111は
加算器108の出力とR原信号とを加算する加算器であ
り、112は加算器109の出力とG原信号とを加算す
る加算器であり、113は加算器110の出力とB原信
号とを加算する加算器である。FIG. 10 shows an example of the configuration of a conventional color reproduction variable circuit. In FIG. 10, reference numeral 101 is a color difference calculation circuit for calculating a color difference signal from RGB three primary color signals. That is, the color difference signals RG and RB to be added to the R signal,
It is a circuit for calculating color difference signals GR and G-B to be added to the G signal and color difference signals BR and BG to be added to the B signal. 102, 103, 104, 105, 106, 1
07 is the coefficient k1, k2, k for each color difference signal.
A multiplier for multiplying 3, k4, k5, k6, 108 is R-
The output of the multiplier 102 for multiplying the G signal by the coefficient k1 and R−
Reference numeral 109 denotes an adder that adds the output of the multiplier 103 that multiplies the B signal by the coefficient k2, and 109 that multiplies the output of the multiplier 104 that multiplies the GR signal by the coefficient k3 and the G-B signal by the coefficient k4. Reference numeral 110 denotes an adder that adds the output of the multiplier 105, and 110 is a multiplier 1 that multiplies the BR signal by a coefficient k5.
Multiplier 1 for multiplying the output of 06 and the BG signal by a coefficient k6
It is an adder that adds the output of 07. Further, 111 is an adder that adds the output of the adder 108 and the R original signal, 112 is an adder that adds the output of the adder 109 and the G original signal, and 113 is the output of the adder 110. It is an adder for adding the B original signal.
【0004】以上のように構成された従来の色再現可変
回路について、以下その動作について説明する。The operation of the conventional color reproduction variable circuit configured as described above will be described below.
【0005】まず、3原色信号RGBから、101の色
差演算回路により色再現の補正項となる6つの色差信号
R−G,R−B,G−R,G−B,B−R,B−Gを算
出し出力する。乗算器102で色差信号R−Gと係数k
1、乗算器103で色差信号R−Bと係数k2、乗算器
104で色差信号G−Rと係数k3、乗算器105で色
差信号G−Bと係数k4、乗算器106で色差信号B−
Rと係数k5、乗算器107で色差信号B−Gと係数k
6とを乗算し、さらに、加算器108でR−G色差信号
と係数k1との乗算結果である乗算器102の出力とR
−B色差信号と係数k2との乗算結果である乗算器10
3の出力とを加算する。同様に、加算器109でG−R
色差信号と係数k3との乗算結果である乗算器104の
出力とG−B色差信号と係数k4との乗算結果である乗
算器105の出力とを加算し、加算器110でB−R色
差信号と係数k5との乗算結果である乗算器106の出
力とB−G色差信号と係数k6との乗算結果である乗算
器107の出力とを加算する。加算器108,109,
110より出力された色再現補正信号は、加算器11
1,112,113でそれぞれ3原色信号に加算され、
色再現を変更された新たな3原色信号を出力信号として
出力する。First, from the three primary color signals RGB, six color difference signals R-G, R-B, G-R, G-B, B-R and B- which are correction terms for color reproduction by the color-difference calculation circuit 101. G is calculated and output. The color difference signal RG and the coefficient k are multiplied by the multiplier 102.
1, the multiplier 103 receives the color difference signal RB and the coefficient k2, the multiplier 104 receives the color difference signal GR and the coefficient k3, the multiplier 105 receives the color difference signal GB and the coefficient k4, and the multiplier 106 receives the color difference signal B-
R and the coefficient k5, and the multiplier 107 calculates the color difference signal BG and the coefficient k.
6 and the output of the multiplier 102, which is the multiplication result of the RG color difference signal and the coefficient k1, in the adder 108 and R
-Multiplier 10 which is the multiplication result of the B color difference signal and the coefficient k2
And the output of 3 are added. Similarly, the adder 109 outputs GR
The output of the multiplier 104 which is the multiplication result of the color difference signal and the coefficient k3 and the output of the multiplier 105 which is the multiplication result of the GB color difference signal and the coefficient k4 are added, and the adder 110 adds the BR color difference signal. And the output of the multiplier 106, which is the result of multiplication by the coefficient k5, and the output of the multiplier 107, which is the result of multiplication of the BG color difference signal and the coefficient k6. Adders 108, 109,
The color reproduction correction signal output from 110 is added by the adder 11
1,112,113 are added to the three primary color signals respectively,
The new three primary color signals whose color reproduction has been changed are output as output signals.
【0006】すなわち、以上説明したように、上記色再
現可変回路では次式で示される演算を行い、色再現を変
更した新たな3原色信号を得ている。That is, as described above, the color reproduction variable circuit carries out the operation represented by the following equation to obtain new three primary color signals with changed color reproduction.
【0007】 R’=R+k1*(R−G)+k2*(R−B) G’=G+k3*(G−R)+k4*(G−B) B’=B+k5*(B−R)+k6*(B−G) いま、係数k1の値を零から正の数に変化させたときの
色再現の変化の様子をベクトルスコープ上の各点の動き
として考えてみる。係数k1の値を零から正の数に変化
させると、図11に示すように、R−Gが零となる黄色
−青を結ぶ直線が境界となり、R−Gが正の値となる黄
色−青を結ぶ直線の赤、マゼンタ側の各点はRベクトル
が増大する方向に移動し、また、R−Gが負の値となる
黄色−青を結ぶ直線の緑、シアン側の各点はRベクトル
が減少する方向へ移動する。すなわち、係数k1を増大
させると赤はより鮮やかな赤に、色の飽和度(濃さ,彩
度)が増大する。R ′ = R + k1 * (R−G) + k2 * (R−B) G ′ = G + k3 * (G−R) + k4 * (G−B) B ′ = B + k5 * (B−R) + k6 * ( BG) Now, let us consider the state of change in color reproduction when the value of the coefficient k1 is changed from zero to a positive number, as the movement of each point on the vectorscope. When the value of the coefficient k1 is changed from zero to a positive number, as shown in FIG. 11, the straight line connecting yellow-blue where RG becomes zero becomes a boundary, and yellow where RG becomes a positive value- Red on the straight line connecting blue, each point on the magenta side moves in the direction in which the R vector increases, and green on the straight line connecting yellow-blue where RG becomes a negative value, each point on the cyan side is R The vector moves in a decreasing direction. That is, when the coefficient k1 is increased, red becomes more vivid red, and the degree of color saturation (darkness, saturation) increases.
【0008】同様に、係数k2の値を零から正の数に変
化させたときは、緑−マゼンタを結ぶ直線の赤、黄色側
の各点はRベクトルが増大する方向に移動し、シアン、
青側の各点はRベクトルが減少する方向に移動する。ま
た、係数k3の値を零から正の数に変化させたときは、
黄色−青を結ぶ直線の緑、シアン側の各点はGベクトル
が増大する方向に移動し、赤、マゼンタ側の各点はGベ
クトルが減少する方向に移動し、係数k4の値を零から
正の数に変化させたときは、赤−シアンを結ぶ直線の
緑、黄色側の各点はGベクトルが増大する方向に移動
し、青、マゼンタ側の各点はGベクトルが減少する方向
に移動する。また、係数k5の値を零から正の数に変化
させたときは、緑−マゼンタを結ぶ直線の青、シアン側
の各点はBベクトルが増大する方向に移動し、赤、黄色
側の各点はBベクトルが減少する方向に移動し、係数k
6の値を零から正の数に変化させたときは、赤−シアン
を結ぶ直線の青、マゼンタ側の各点はBベクトルが増大
する方向に移動し、緑、黄色側の各点はBベクトルが減
少する方向に移動する。Similarly, when the value of the coefficient k2 is changed from zero to a positive number, the points on the red and yellow sides of the straight line connecting green-magenta move in the direction in which the R vector increases, and cyan,
Each point on the blue side moves in the direction in which the R vector decreases. When the value of the coefficient k3 is changed from zero to a positive number,
The green and cyan points on the straight line connecting yellow and blue move in the direction in which the G vector increases, and the red and magenta points move in the direction in which the G vector decreases, and the value of coefficient k4 changes from zero. When changed to a positive number, the green and yellow points on the straight line connecting red and cyan move in the direction in which the G vector increases, and the blue and magenta points in the direction in which the G vector decreases. Moving. Further, when the value of the coefficient k5 is changed from zero to a positive number, each point on the blue and cyan sides of the straight line connecting green-magenta moves in the direction in which the B vector increases, and each point on the red and yellow sides moves. The point moves in the direction in which the B vector decreases, and the coefficient k
When the value of 6 is changed from zero to a positive number, each point on the blue and magenta side of the line connecting red and cyan moves in the direction in which the B vector increases, and each point on the green and yellow sides moves to B. The vector moves in a decreasing direction.
【0009】また、白黒画像については、どの係数につ
いても色差信号が零となる直線上にあるため、係数をど
の様に変化させても色再現は変化しないことがわかる。Further, for a monochrome image, since the color difference signal is zero on any coefficient for any coefficient, it can be seen that the color reproduction does not change no matter how the coefficient is changed.
【0010】したがって、上記色再現可変回路の係数k
1からk6の値を変更することにより、ホワイトバラン
スを崩さずに、本来の3原色信号の色再現を6軸で可変
した新たな3原色信号を得ることが出来る。Therefore, the coefficient k of the color reproduction variable circuit is
By changing the values of 1 to k6, it is possible to obtain a new three-primary-color signal in which the color reproduction of the original three-primary-color signal is varied on the six axes without impairing the white balance.
【0011】以下に従来の色再現可変機能を備えた撮像
装置について説明する。図12はこの従来の色再現可変
機能を備えた撮像装置の構成を示すブロック図である。
同図において、1はレンズ,プリズム,固体撮像素子な
どで構成され、色光をR,G,Bに分割し、それぞれに
設けられた撮像素子によりR,G,Bの3原色に対応し
てR,G,Bの3原色信号を得る撮像部、2は撮像部1
からのRGB3原色信号を増幅する増幅器、3は増幅器
2からの出力信号にγ処理、データ検出などの処理を行
うプロセス回路部、4はプロセス回路部3からの出力信
号の色再現を6軸で変化させる上記従来の色再現可変回
路であり、一般的にRGB3原色信号より、色差信号を
演算する色差演算回路101、R信号に加算する色差信
号R−GおよびR−B、G信号に加算する色差信号G−
RおよびG−B、B信号に加算する色差信号B−Rおよ
びB−Gにそれぞれ係数k1,k2,k3,k4,k
5,k6を乗算する乗算器102,103,104,1
05,106,107、乗算器102と乗算器103の
出力よりR信号に加算する色再現補正信号を得る加算器
108、乗算器104と乗算器105の出力よりG信号
に加算する色再現補正信号を得る加算器109、乗算器
106と乗算器107の出力よりB信号に加算する色再
現補正信号を得る加算器110、また加算器108の出
力とR原信号とを加算する加算器111、加算器109
の出力とG原信号とを加算する加算器112、加算器1
10の出力とB原信号とを加算する加算器113により
構成されており、前記従来の色再現可変回路と同様であ
る。5は色再現可変回路4からの3原色信号から輝度信
号などを生成するマトリクス回路で、6はプロセス回路
部3で検出された画像データよりレンズの絞り制御やホ
ワイトバランス制御など各種制御を行う制御信号を生成
する制御部である。An image pickup apparatus having a conventional color reproduction variable function will be described below. FIG. 12 is a block diagram showing the arrangement of an image pickup apparatus having this conventional color reproduction variable function.
In the figure, reference numeral 1 denotes a lens, a prism, a solid-state image sensor, etc., which divides color light into R, G, and B, and R, G, and B correspond to the three primary colors by the image sensors provided in each. , G, B to obtain the three primary color signals, 2 is an image pickup unit 1
An amplifier for amplifying the RGB3 primary color signals from 3 is a process circuit unit for performing γ processing and data detection on the output signal from the amplifier 2, and 4 is a 6-axis color reproduction of the output signal from the process circuit unit 3. The above-described conventional color reproduction variable circuit for changing the color difference signals. Generally, the RGB3 primary color signals are added to the color difference calculation circuits 101 and R signals for calculating the color difference signals and the color difference signals R-G and R-B and G signals. Color difference signal G-
Coefficients k1, k2, k3, k4, k are added to the color difference signals BR and BG to be added to the R, GB, and B signals, respectively.
Multipliers 102, 103, 104, 1 for multiplying 5, k6
05, 106 and 107, color reproduction correction signals to be added to the R signal from the outputs of the multipliers 102 and 103, color reproduction correction signals to be added to the G signal from the outputs of the adder 108, multiplier 104 and multiplier 105 , An adder 110 that obtains a color reproduction correction signal to be added to the B signal from the outputs of the multipliers 106 and 107, and an adder 111 that adds the output of the adder 108 and the R original signal Bowl 109
Adder 112 and adder 1 for adding the output of G and the G original signal
It is composed of an adder 113 for adding the output of 10 and the B original signal, and is similar to the conventional color reproduction variable circuit. Reference numeral 5 is a matrix circuit for generating a luminance signal and the like from the three primary color signals from the color reproduction variable circuit 4, and 6 is control for performing various controls such as lens aperture control and white balance control based on the image data detected by the process circuit unit 3. It is a control unit that generates a signal.
【0012】以上の様に構成された従来の色再現可変機
能を備えた撮像装置について、以下その動作を説明す
る。The operation of the conventional image pickup apparatus having a variable color reproduction function configured as described above will be described below.
【0013】まず、撮像部1の3原色出力信号を増幅器
2で増幅し、プロセス回路部3に供給する。プロセス回
路部3では、供給された3原色信号にγ処理、データ検
出などの各種信号処理を行い、さらに、色再現可変回路
4で色再現に調整を加えた新たな3原色信号を出力す
る。色再現可変回路4から出力された3原色信号は、さ
らにマトリクス回路5によって、輝度信号などに変換さ
れる。また、プロセス回路部3で検出された画像データ
より、制御部6において各種制御信号を生成し、撮像部
1、プロセス回路部3、マトリクス回路部5に出力し、
制御を行う。以上説明した構成により、色再現を変化さ
せることが出来る。First, the output signals of the three primary colors of the image pickup section 1 are amplified by the amplifier 2 and supplied to the process circuit section 3. The process circuit unit 3 performs various signal processing such as γ processing and data detection on the supplied three primary color signals, and further outputs new three primary color signals whose color reproduction is adjusted by the color reproduction variable circuit 4. The three primary color signals output from the color reproduction variable circuit 4 are further converted into a luminance signal or the like by the matrix circuit 5. Further, the control unit 6 generates various control signals from the image data detected by the process circuit unit 3, and outputs the control signals to the imaging unit 1, the process circuit unit 3, and the matrix circuit unit 5,
Take control. With the configuration described above, color reproduction can be changed.
【0014】[0014]
【発明が解決しようとする課題】しかしながら上記従来
の色再現可変回路には、次のような問題点がある。すな
わち、CCDの画素数が少ない場合、解像度改善法とし
て撮像板を3枚使用して高解像度を得るRGB画素ずら
し法と呼ばれる技術があるが、このRGB画素ずらし法
を用いて得られた3原色信号に前記従来の色再現可変回
路を用いると、色再現可変回路で得られる新たな3原色
信号において折り返し成分のバランスが崩れるためRG
B画素ずらし法の解像度改善効果に悪影響を及ぼし、解
像度が劣化してしまうという問題点を有していた。この
現象は、特に白黒画像を撮像したときに顕著に現れる。However, the above-described conventional color reproduction variable circuit has the following problems. That is, when the number of pixels of the CCD is small, there is a technique called an RGB pixel shift method that obtains high resolution by using three image pickup plates as a resolution improvement method, but there are three primary colors obtained by using this RGB pixel shift method. When the conventional color reproduction variable circuit is used for the signal, the balance of the folding components is lost in the new three primary color signals obtained by the color reproduction variable circuit.
There was a problem that the resolution improvement effect of the B pixel shift method is adversely affected and the resolution deteriorates. This phenomenon remarkably appears especially when a monochrome image is taken.
【0015】したがって、上記従来の色再現可変機能を
備えた撮像装置においても、RGB画素ずらし法を同時
に用いた場合では、k1からk6の係数により色再現を
変化させ特に白黒画像を撮像したとき、その画像の細か
な模様がぼけてしまうという問題点を有していた。Therefore, even in the image pickup apparatus having the conventional color reproduction variable function, when the RGB pixel shift method is used at the same time, when the color reproduction is changed by the coefficient of k1 to k6, especially when a black and white image is picked up, There is a problem that the fine pattern of the image is blurred.
【0016】また、上記従来の色再現可変機能を備えた
撮像装置では、色再現可変回路がγ処理を行うプロセス
回路部の後ろにあり、γ処理の非線形処理により色再現
の調整が線形的に行えないため、調整が非常に難しいと
いう問題点を有していた。Further, in the above-mentioned conventional image pickup apparatus having the color reproduction variable function, the color reproduction variable circuit is behind the process circuit section for performing the γ processing, and the color reproduction adjustment is performed linearly by the non-linear processing of the γ processing. Since it cannot be performed, there is a problem that adjustment is very difficult.
【0017】本発明は上記従来の問題点を解決するもの
で、RGB画素ずらし法を同時に用いた場合でもRGB
画素ずらし法の解像度改善効果を十分に発揮し、輝度信
号の解像度の劣化のない色再現可変回路および撮像装
置、または色再現の調整が線形的に行える撮像装置を提
供することを目的とする。The present invention solves the above-mentioned conventional problems. Even when the RGB pixel shift method is used at the same time, the RGB
It is an object of the present invention to provide a color reproduction variable circuit and an image pickup device that sufficiently exhibit the resolution improvement effect of the pixel shift method and do not deteriorate the resolution of a luminance signal, or an image pickup device that can perform color reproduction adjustment linearly.
【0018】[0018]
【課題を解決するための手段】上記目的を達成するため
に本発明の色再現可変回路は、3原色信号より折り返し
成分を除去した色再現補正信号を生成する色再現補正信
号生成手段と、生成された色再現補正信号と本来の3原
色信号のタイミングを合わせるタイミング調整手段と生
成された色再現補正信号と3原色信号とを加算する加算
手段とを備え、色再現補正信号生成手段により得られた
折り返し成分を除去した色再現補正信号とタイミング調
整を行った3原色信号とを加算手段において加算し、前
記加算手段の出力より色再現を変化させた新たな3原色
信号を得る。In order to achieve the above object, the color reproduction variable circuit of the present invention includes a color reproduction correction signal generating means for generating a color reproduction correction signal in which aliasing components are removed from three primary color signals, and The color reproduction correction signal generating means is provided with a timing adjusting means for adjusting the timings of the reproduced color reproduction correction signal and the original three primary color signals, and an adding means for adding the generated color reproduction correction signal and the three primary color signals. The color reproduction correction signal from which the aliasing component has been removed and the timing-adjusted three primary color signals are added by the adding means, and a new three primary color signal in which the color reproduction is changed is obtained from the output of the adding means.
【0019】また、本発明の撮像装置は、3枚の撮像素
子を用いて3原色信号を得る撮像部と、γ処理、データ
検出などを行うプロセス回路部と、折り返し成分を除去
した色再現補正信号を3原色信号に加算して、色再現を
変化させた3原色信号を新たに得る色再現可変回路とを
備え、前記撮像部より得られた3原色信号をプロセス回
路で処理した後、前記処理された3原色信号より折り返
し成分を除去した色再現補正信号を生成し、3原色信号
に加算することにより色再現を変化させた3原色信号を
新たに得る。Further, the image pickup apparatus of the present invention uses an image pickup section for obtaining three primary color signals by using three image pickup elements, a process circuit section for performing .gamma. Processing and data detection, and a color reproduction correction for eliminating aliasing components. A color reproduction variable circuit for newly obtaining a three-primary-color signal whose color reproduction is changed by adding the signal to the three-primary-color signal, and after processing the three-primary-color signal obtained from the image pickup section by a process circuit, A color reproduction correction signal in which aliasing components are removed from the processed three primary color signals is generated and added to the three primary color signals to newly obtain a three primary color signal in which color reproduction is changed.
【0020】また、本発明の撮像装置は、3枚の撮像素
子を用いて3原色信号を得る撮像部と、γ処理などを行
うプロセス回路部と、折り返し成分を除去した色再現補
正信号を3原色信号に加算して、色再現を変化させた3
原色信号を新たに得る色再現可変回路とを備え、前記撮
像部からの3原色信号に、折り返し成分を除去した色再
現補正信号を加算して、色再現を変化させた新たな3原
色信号を色再現可変回路で得た後、プロセス回路部で各
種処理を行う。Further, the image pickup apparatus of the present invention uses an image pickup section for obtaining three primary color signals by using three image pickup elements, a process circuit section for performing .gamma. Processing and the like, and three color reproduction correction signals for which the aliasing component is removed. Change the color reproduction by adding to the primary color signal 3
A color reproduction variable circuit for newly obtaining a primary color signal is provided, and a color reproduction correction signal from which the aliasing component has been removed is added to the three primary color signals from the image pickup unit to generate a new three primary color signal in which color reproduction is changed. After being obtained by the color reproduction variable circuit, various processes are performed in the process circuit unit.
【0021】[0021]
【作用】本発明は上記した構成により、3原色信号に加
算される色再現補正信号の折り返し成分を除去すること
により、本来の3原色信号の折り返し成分のバランスを
崩すことなく色再現を可変することが出来るため、RG
B画素ずらし法により達成されている解像度の色再現補
正による劣化を防ぐことができる。According to the present invention, with the above-described structure, the aliasing component of the color reproduction correction signal added to the three primary color signals is removed, so that the color reproduction can be changed without disturbing the original balance of the aliasing components of the three primary color signals. RG because it can
It is possible to prevent deterioration due to color reproduction correction of the resolution achieved by the B pixel shift method.
【0022】また本発明は上記した構成により、k1か
らk6の係数により色再現を調整し同時にRGB画素ず
らし法を用いた場合、細かな模様がぼけていた画像を改
善することができる。Further, according to the present invention, when the color reproduction is adjusted by the coefficient of k1 to k6 and the RGB pixel shift method is used at the same time, the image in which a fine pattern is blurred can be improved by the above-described structure.
【0023】また本発明は上記した構成により、色再現
の調整を係数k1からk6で線形的に行うことができる
ため、色再現の調整が容易にできる。Further, according to the present invention, since the color reproduction can be adjusted linearly with the coefficients k1 to k6 by the above-mentioned structure, the color reproduction can be easily adjusted.
【0024】[0024]
【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0025】図1は本発明の第1の実施例における色再
現可変回路のブロック図を示すものである。図1におい
て、117は3原色信号より折り返し成分を除去した色
再現補正信号を生成する色再現補正信号生成手段であ
る。101はRGB3原色信号より、色再現の補正項と
なる6つの色差信号R−G,R−B,G−R,G−B,
B−R,B−Gを演算する色差演算回路、115は色差
演算回路101からの色差信号の低域周波数成分を取り
出す低域通過フィルタである。102,103,10
4,105,106,107は低域通過フィルタ115
から出力される色差信号の低域周波数成分にそれぞれ係
数k1,k2,k3,k4,k5,k6を乗算する乗算
器、108はR−G信号に係数k1を乗算する乗算器1
02の出力とR−B信号に係数k2を乗算する乗算器1
03の出力とを加算する加算器であり、109はG−R
信号に係数k3を乗算する乗算器104の出力とR−B
信号に係数k4を乗算する乗算器105の出力とを加算
する加算器であり、110はB−R信号に係数k5を乗
算する乗算器106の出力とB−G信号に係数k6を乗
算する乗算器107の出力とを加算する加算器である。
また、118は色再現補正信号と3原色信号とを加算す
る加算手段である。111は加算器108の出力とR原
信号とを加算する加算器であり、112は加算器109
の出力とG原信号とを加算する加算器であり、113は
加算器110の出力とB原信号とを加算する加算器であ
る。また、116はメイン系の3原色信号と、加算する
補正項の色再現補正信号のタイミングを合わせるための
タイミング調整回路である。FIG. 1 is a block diagram of a color reproduction variable circuit according to the first embodiment of the present invention. In FIG. 1, reference numeral 117 is a color reproduction correction signal generating means for generating a color reproduction correction signal in which aliasing components are removed from the three primary color signals. Reference numeral 101 designates six color difference signals R-G, R-B, G-R, G-B, which are correction items for color reproduction, from the RGB three primary color signals.
A color difference calculation circuit that calculates B−R and B−G, and a low pass filter 115 that extracts low frequency components of the color difference signals from the color difference calculation circuit 101. 102, 103, 10
4, 105, 106, and 107 are low-pass filters 115.
A multiplier 1 that multiplies the low-frequency components of the color difference signal output from each by coefficients k1, k2, k3, k4, k5, k6, and a multiplier 1 that multiplies the RG signal by the coefficient k1.
Multiplier 1 for multiplying the output of 02 and the RB signal by a coefficient k2
Is an adder for adding the output of 03, and 109 is GR
The output of the multiplier 104 for multiplying the signal by the coefficient k3 and RB
Reference numeral 110 denotes an adder that adds the output of the multiplier 105 that multiplies the signal by the coefficient k4, and 110 that multiplies the output of the multiplier 106 that multiplies the BR signal by the coefficient k5 and the output that multiplies the BG signal by the coefficient k6. It is an adder that adds the output of the device 107.
Further, reference numeral 118 is an adding means for adding the color reproduction correction signal and the three primary color signals. Reference numeral 111 is an adder for adding the output of the adder 108 and the R original signal, and 112 is an adder 109.
Is an adder for adding the output of G and the G original signal, and 113 is an adder for adding the output of the adder 110 and the B original signal. Reference numeral 116 is a timing adjustment circuit for adjusting the timings of the main system three primary color signals and the color reproduction correction signal of the correction term to be added.
【0026】以上のように構成された本実施例の色再現
可変回路について、以下その動作を説明する。The operation of the color reproduction variable circuit of the present embodiment constructed as above will be described below.
【0027】色再現可変回路に入力された3原色信号
は、色差演算回路101とタイミング調整回路116に
供給される。色差演算回路101では、色再現の補正項
となる6つの色差信号、すなわちR信号に加算する色差
信号R−GおよびR−B、G信号に加算する色差信号G
−RおよびG−B、B信号に加算する色差信号B−Rお
よびB−Gを生成する。色差演算回路101で生成され
た色差信号は、次に低域通過フィルタ115により、そ
れぞれの色差信号の低域周波数成分のみが取り出され、
さらに乗算器102で色差信号R−Gの低域周波数成分
と係数k1、乗算器103で色差信号R−Bの低域周波
数成分と係数k2、乗算器104で色差信号G−Rの低
域周波数成分と係数k3、乗算器105で色差信号G−
Bの低域周波数成分と係数k4、乗算器106で色差信
号B−Rの低域周波数成分と係数k5、乗算器107で
色差信号B−Gの低域周波数成分と係数k6とを乗算
し、さらに、そのあとの加算器108でR−G色差信号
の低域周波数成分と係数k1との乗算結果である乗算器
102の出力とR−B色差信号の低域周波数成分と係数
k2との乗算結果である乗算器103の出力とを加算す
る。同様に、加算器109でG−R色差信号の低域周波
数成分と係数k3との乗算結果である乗算器104の出
力とG−B色差信号の低域周波数成分と係数k4との乗
算結果である乗算器105の出力とを加算し、加算器1
10でB−R色差信号の低域周波数成分と係数k5との
乗算結果である乗算器106の出力とB−G色差信号の
低域周波数成分と係数k6との乗算結果である乗算器1
07の出力とを加算し色再現補正信号とする。加算器1
08,109,110より出力された色再現補正信号
は、加算器111,112,113でそれぞれ低域通過
フィルタ115を通る前の3原色信号に加算され、色再
現を変更された新たな3原色信号として出力する。この
時、色再現補正信号と本来の3原色信号では、色再現補
正信号が低域通過フィルタ115を通っていることから
タイミングがずれているので、本来の3原色信号はタイ
ミング調整回路116により両者のタイミングが合うよ
うに調整される。The three primary color signals input to the color reproduction variable circuit are supplied to the color difference calculation circuit 101 and the timing adjustment circuit 116. In the color difference calculation circuit 101, there are six color difference signals serving as correction terms for color reproduction, that is, the color difference signals RG and RB to be added to the R signal, and the color difference signal G to be added to the G signal.
Generate color difference signals B-R and B-G to be added to -R, G-B, and B signals. From the color difference signals generated by the color difference calculation circuit 101, the low pass filter 115 then extracts only the low frequency components of the respective color difference signals,
Further, the multiplier 102 has a low-frequency component of the color difference signal RG and a coefficient k1, the multiplier 103 has a low-frequency component of color difference RB and the coefficient k2, and the multiplier 104 has a low-frequency component of the color difference signal G-R. The component and coefficient k3, and the color difference signal G-
The low frequency component of B and the coefficient k4, the multiplier 106 multiplies the low frequency component of the color difference signal B−R and the coefficient k5, and the multiplier 107 multiplies the low frequency component of the color difference signal B−G and the coefficient k6, Further, the output of the multiplier 102, which is the multiplication result of the low frequency component of the RG color difference signal and the coefficient k1, is multiplied by the adder 108 after that, and the low frequency component of the RB color difference signal is multiplied by the coefficient k2. The resultant output of the multiplier 103 is added. Similarly, in the adder 109, the output of the multiplier 104, which is the result of multiplication of the low frequency component of the GR color difference signal by the coefficient k3, and the result of multiplication of the low frequency component of the GB color difference signal by the coefficient k4 are obtained. The output of a certain multiplier 105 is added to adder 1
In 10, the output of the multiplier 106, which is the multiplication result of the low-frequency component of the B-R color difference signal, and the coefficient k5, and the multiplier 1 which is the multiplication result of the low-frequency component of the B-G color difference signal, and the coefficient k6.
The output of 07 is added to form a color reproduction correction signal. Adder 1
The color reproduction correction signals output from 08, 109, and 110 are added to the three primary color signals before passing through the low-pass filter 115 by the adders 111, 112, and 113, respectively, and the new three primary colors whose color reproduction is changed are added. Output as a signal. At this time, since the color reproduction correction signal and the original three primary color signals are out of timing because the color reproduction correction signal passes through the low-pass filter 115, the original three primary color signals are output by the timing adjustment circuit 116. The timing is adjusted so that
【0028】本実施例では、色再現補正信号を生成する
回路に低域通過フィルタを加え、色再現補正信号の折り
返し成分を除去するため、RGB画素ずらし法を用いた
場合においても、その解像度改善効果を十分に発揮し、
輝度信号における解像度劣化のない色再現可変回路を実
現している。In the present embodiment, a low-pass filter is added to the circuit for generating the color reproduction correction signal to remove the aliasing component of the color reproduction correction signal. Therefore, even when the RGB pixel shift method is used, the resolution is improved. Fully exerting the effect,
A color reproduction variable circuit that does not cause resolution deterioration in the luminance signal is realized.
【0029】RGB画素ずらし法を用いた場合の本発明
の輝度信号解像度劣化抑制の効果について次に説明す
る。The effect of suppressing deterioration of the resolution of the luminance signal of the present invention when the RGB pixel shift method is used will be described below.
【0030】本発明の色再現可変回路に撮像板を3枚使
用して高解像度化を図るRGB画素ずらし法を用いた場
合、本発明の色再現可変回路により新たに生成されるR
GB3原色信号を周波数領域で説明する。When the RGB pixel shift method for improving the resolution by using three image pickup plates is used in the color reproduction variable circuit of the present invention, R newly generated by the color reproduction variable circuit of the present invention is used.
The GB3 primary color signal will be described in the frequency domain.
【0031】まず、RGB画素ずらし法の構成を図2に
示す。GのCCDに対してR,Bは1つのCCDが有す
る画素周期の半分だけ水平方向にずらしてプリズムに固
着される。このとき、おのおのの色チャンネルから得ら
れる信号および折り返し成分の空間サンプリング周波数
までのMTF特性は、図3(1)のように表される。F
sはCCDの空間サンプリング周波数を示す。ここで、
輝度信号に着目すれば、Gの折り返しベクトルに対して
R,Bチャンネルの折り返しベクトルは反転しているた
め、輝度信号の折り返し成分は減少し限界解像度が向上
する。NTSC方式では、輝度信号の構成式は、 Y=0.30*R+0.59*G+0.11*B として表される。したがって、輝度信号の折り返し成分
は、NTSC方式では、18%残留する。この様子を図
3(2)に示す。この残留折り返し成分が少なければ少
ないほど限界解像度は向上する。First, the structure of the RGB pixel shift method is shown in FIG. R and B are fixed to the prism by horizontally shifting the pixel period of one CCD with respect to the G CCD. At this time, the MTF characteristics up to the spatial sampling frequency of the signal and the folding component obtained from each color channel are expressed as shown in FIG. F
s indicates the spatial sampling frequency of the CCD. here,
Focusing on the luminance signal, since the folding vectors of the R and B channels are inverted with respect to the folding vector of G, the folding component of the luminance signal is reduced and the limit resolution is improved. In the NTSC system, the constitutive equation of the luminance signal is expressed as Y = 0.30 * R + 0.59 * G + 0.11 * B. Therefore, the folding component of the luminance signal remains 18% in the NTSC system. This state is shown in FIG. The smaller the residual aliasing component, the higher the limit resolution.
【0032】このようなRGB画素ずらし法を用いた場
合の色差信号のMTF特性を、図4に示す。同図に示さ
れるように、色差信号の信号成分は互いに打ち消し合う
こととなるが、折り返し成分はGチャンネルのみ反転し
ているため、色差信号R−G,G−R,B−G,G−B
については、白黒画像のときに最大200%となる。し
たがって従来の色再現可変回路では、R−G,B−G,
G−R,G−Bの色差信号による色再現調整を行ってい
る場合では、白黒画像部分で折り返し成分を本来のRG
B3原色信号に加算するため、新たに出力されたRGB
3原色信号では折り返し成分のバランスが崩れ、輝度信
号を生成したときの残留折り返し成分の割合が多くな
り、限界解像度を低下させてしまっていた。FIG. 4 shows the MTF characteristic of the color difference signal when the RGB pixel shift method is used. As shown in the figure, the signal components of the color difference signals cancel each other out, but since the folding component is inverted only in the G channel, the color difference signals R-G, G-R, B-G, G-. B
Is about 200% at the maximum for a monochrome image. Therefore, in the conventional color reproduction variable circuit, RG, BG,
When the color reproduction adjustment is performed by the color difference signals of GR and GB, the aliasing component of the original RG is generated in the black and white image portion.
Newly output RGB for addition to the B3 primary color signal
In the three primary color signals, the balance of the aliasing components is lost, the proportion of the residual aliasing components when the luminance signal is generated increases, and the limit resolution is lowered.
【0033】しかしながら、本発明によれば、色差信号
に含まれる折り返し成分は低域通過フィルタで除去さ
れ、本来のRGB3原色信号に含まれる折り返し成分の
バランスを崩すことなく色再現を変化させることがで
き、RGB画素ずらし法を同時に用いた場合でも、RG
B画素ずらし法の解像度改善効果を十分に発揮し、輝度
信号における解像度劣化のない色再現可変回路を実現す
ることができる。However, according to the present invention, the aliasing component included in the color difference signal is removed by the low-pass filter, and the color reproduction can be changed without losing the balance of the aliasing component included in the original RGB3 primary color signal. Even if the RGB pixel shift method is used at the same time, RG
The resolution improvement effect of the B pixel shift method can be sufficiently exerted, and a color reproduction variable circuit without resolution deterioration in the luminance signal can be realized.
【0034】なお、低域通過フィルタ115は、色差演
算回路101の後ろにある必要はなく、色再現補正信号
の生成過程で色再現補正信号の折り返し成分を除去でき
れば、どのような構成であってもよい。図5に低域通過
フィルタ115が色差演算回路101の前にある1つの
構成例を、図6に低域通過フィルタ115が乗算器10
2〜107の後ろにある1つの構成例を、図7に低域通
過フィルタ115が加算器108〜110の後ろにある
1つの構成例を示す。各回路の動作説明はその順序が異
なるだけで前記したものと同様であるので省略する。The low-pass filter 115 does not have to be provided after the color difference calculation circuit 101, and may have any configuration as long as the aliasing component of the color reproduction correction signal can be removed in the process of generating the color reproduction correction signal. Good. FIG. 5 shows one configuration example in which the low-pass filter 115 is in front of the color difference calculation circuit 101, and FIG. 6 shows the low-pass filter 115 as the multiplier 10.
One configuration example after the Nos. 2 to 107, and FIG. 7 shows one configuration example in which the low-pass filter 115 is behind the adders 108 to 110. The description of the operation of each circuit is the same as that described above except that the order is different, and therefore the description thereof is omitted.
【0035】次に、本発明の第2の実施例について、図
面を参照しながら説明する。図8は本発明の第2の実施
例における色再現可変機能を備えた撮像装置のブロック
図を示すものである。同図において、1はレンズ,プリ
ズム,固体撮像素子などで構成され、色光をR,G,B
に分割しそれぞれに設けられた撮像素子によりR,G,
Bの3原色に対応してR,G,Bの3原色信号を得る撮
像部、2は撮像部1からのRGB3原色信号を増幅する
増幅器、3は増幅器2からの出力信号にγ処理、データ
検出などの処理を行うプロセス回路部、4はプロセス回
路部3からの出力信号の色再現を6軸で変化させる色再
現可変回路である。この色再現可変回路4は、第1の実
施例の色再現可変回路と同様であり、117は3原色信
号より折り返し成分を除去した色再現補正信号を生成す
る色再現補正信号生成手段である。101はRGB3原
色信号より色差信号R−G,R−B,G−R,G−B,
B−R,B−Gを演算する色差演算回路、115は色差
演算回路101からの色差信号の低域周波数成分を取り
出す低域通過フィルタである。102,103,10
4,105,106,107は低域通過フィルタ115
から出力される色差信号の低域周波数成分にそれぞれ係
数k1,k2,k3,k4,k5,k6を乗算する乗算
器、108はR−G信号に係数k1を乗算する乗算器1
02の出力とR−B信号に係数k2を乗算する乗算器1
03の出力とを加算する加算器であり、109はG−R
信号に係数k3を乗算する乗算器104の出力とR−B
信号に係数k4を乗算する乗算器105の出力とを加算
する加算器であり、110はB−R信号に係数k5を乗
算する乗算器106の出力とB−G信号に係数k6を乗
算する乗算器107の出力とを加算する加算器である。
また、118は色再現補正信号と3原色信号とを加算す
る加算手段である。111は加算器108の出力とR原
信号とを加算する加算器であり、112は加算器109
の出力とG原信号とを加算する加算器であり、113は
加算器110の出力とB原信号とを加算する加算器であ
る。また、116はメイン系の3原色信号と、加算する
補正項の色再現補正信号のタイミングを合わせるための
タイミング調整回路である。5は色再現可変回路4から
の3原色信号から輝度信号などを生成するマトリクス回
路で、6はプロセス回路部3で検出された画像データよ
りレンズの絞り制御やホワイトバランス制御など各種制
御を行う制御信号を生成する制御部である。Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram of an image pickup apparatus having a color reproduction variable function according to the second embodiment of the present invention. In the figure, reference numeral 1 denotes a lens, a prism, a solid-state image sensor, etc.
Image sensor provided in each of the R, G, and
An image pickup unit that obtains R, G, and B three primary color signals corresponding to the three B primary colors, 2 is an amplifier that amplifies the RGB three primary color signals from the image pickup unit 1, and 3 is a γ process for the output signal from the amplifier 2, data Process circuit sections 4 for performing processes such as detection are color reproduction variable circuits for changing the color reproduction of the output signal from the process circuit section 6 on six axes. The color reproduction variable circuit 4 is the same as the color reproduction variable circuit of the first embodiment, and 117 is a color reproduction correction signal generating means for generating a color reproduction correction signal in which aliasing components are removed from the three primary color signals. Reference numeral 101 denotes color difference signals R-G, R-B, G-R, G-B from the RGB three primary color signals.
A color difference calculation circuit that calculates B−R and B−G, and a low pass filter 115 that extracts low frequency components of the color difference signals from the color difference calculation circuit 101. 102, 103, 10
4, 105, 106, and 107 are low-pass filters 115.
A multiplier 1 that multiplies the low-frequency components of the color difference signal output from each by coefficients k1, k2, k3, k4, k5, k6, and a multiplier 1 that multiplies the RG signal by the coefficient k1.
Multiplier 1 for multiplying the output of 02 and the RB signal by a coefficient k2
Is an adder for adding the output of 03, and 109 is GR
The output of the multiplier 104 for multiplying the signal by the coefficient k3 and RB
Reference numeral 110 denotes an adder that adds the output of the multiplier 105 that multiplies the signal by the coefficient k4, and 110 that multiplies the output of the multiplier 106 that multiplies the BR signal by the coefficient k5 and the output that multiplies the BG signal by the coefficient k6. It is an adder that adds the output of the device 107.
Further, reference numeral 118 is an adding means for adding the color reproduction correction signal and the three primary color signals. Reference numeral 111 is an adder for adding the output of the adder 108 and the R original signal, and 112 is an adder 109.
Is an adder for adding the output of G and the G original signal, and 113 is an adder for adding the output of the adder 110 and the B original signal. Reference numeral 116 is a timing adjustment circuit for adjusting the timings of the main system three primary color signals and the color reproduction correction signal of the correction term to be added. Reference numeral 5 is a matrix circuit for generating a luminance signal and the like from the three primary color signals from the color reproduction variable circuit 4, and 6 is control for performing various controls such as lens aperture control and white balance control based on the image data detected by the process circuit unit 3. It is a control unit that generates a signal.
【0036】以上のように構成された本実施例の撮像装
置について、以下その動作について説明する。The operation of the image pickup apparatus of this embodiment constructed as described above will be described below.
【0037】撮像部1の3原色出力信号を増幅器2で増
幅し、プロセス回路部3に供給する。プロセス回路部3
では、供給された3原色信号にγ処理、データ検出など
の各種信号処理を行い、色再現可変回路4に出力する。
色再現可変回路4で、3原色信号は、色差演算回路10
1とタイミング調整回路116に供給され、色差演算回
路101では色再現の補正項となる6つの色差信号を生
成し、次に、低域通過フィルタ115によりそれぞれの
色差信号の低域周波数成分のみが取り出される。さら
に、乗算器102で色差信号R−Gの低域周波数成分と
係数k1、乗算器103で色差信号R−Bの低域周波数
成分と係数k2、乗算器104で色差信号G−Rの低域
周波数成分と係数k3、乗算器105で色差信号G−B
の低域周波数成分と係数k4、乗算器106で色差信号
B−Rの低域周波数成分と係数k5、乗算器107で色
差信号B−Gの低域周波数成分と係数k6とを乗算し、
さらに、そのあとの加算器108でR−G色差信号の低
域周波数成分と係数k1との乗算結果である乗算器10
2の出力とR−B色差信号の低域周波数成分と係数k2
との乗算結果である乗算器103の出力とを加算する。
同様に、加算器109でG−R色差信号の低域周波数成
分と係数k3との乗算結果である乗算器104の出力と
G−B色差信号の低域周波数成分と係数k4との乗算結
果である乗算器105の出力とを加算し、加算器110
でB−R色差信号の低域周波数成分と係数k5との乗算
結果である乗算器106の出力とB−G色差信号の低域
周波数成分と係数k6との乗算結果である乗算器107
の出力とを加算し折り返し成分を除去した色再現補正信
号を得る。加算器108,109,110より出力され
た折り返し成分を除去した色再現補正信号は、加算器1
11,112,113でそれぞれタイミング調整回路1
16により色再現補正信号とタイミングが合うように調
整された本来の3原色信号に加算され、色再現を変更さ
れた新たな3原色信号として出力される。色再現可変回
路4から出力された3原色信号は、RGB画素ずらし法
を同時に用いた場合でも、折り返し成分は本来のRGB
3原色信号に含まれるバランスを保っているため、マト
リクス回路5によって輝度信号などに変換される際、R
GB画素ずらし法の解像度改善効果を十分に発揮でき
る。また、プロセス回路部3で検出された画像データよ
り、制御部6において各種制御信号を生成し、撮像部
1,プロセス回路部3,マトリクス回路部5に出力し制
御を行う。The three primary color output signals of the image pickup section 1 are amplified by the amplifier 2 and supplied to the process circuit section 3. Process circuit section 3
Then, the supplied three primary color signals are subjected to various signal processing such as γ processing and data detection, and output to the color reproduction variable circuit 4.
In the color reproduction variable circuit 4, the three primary color signals are supplied to the color difference calculation circuit 10
1 and the timing adjustment circuit 116, and the color difference calculation circuit 101 generates six color difference signals as correction terms for color reproduction, and then the low pass filter 115 outputs only the low frequency components of the respective color difference signals. Taken out. Further, the multiplier 102 has a low-frequency component of the color difference signal RG and a coefficient k1, the multiplier 103 has a low-frequency component of the color difference signal RB and a coefficient k2, and the multiplier 104 has a low-frequency component of the color difference signal G-R. Frequency component and coefficient k3, the color difference signal G-B in the multiplier 105
, The coefficient k4, the multiplier 106 multiplies the low frequency component of the color difference signal B−R with the coefficient k5, and the multiplier 107 multiplies the low frequency component of the color difference signal B−G with the coefficient k6.
Further, the multiplier 10 which is the multiplication result of the low-frequency component of the RG color difference signal and the coefficient k1 in the adder 108 after that.
2 and the low frequency component of the RB color difference signal and coefficient k2
And the output of the multiplier 103, which is the result of multiplication with.
Similarly, in the adder 109, the output of the multiplier 104, which is the result of multiplication of the low frequency component of the GR color difference signal by the coefficient k3, and the result of multiplication of the low frequency component of the GB color difference signal by the coefficient k4 are obtained. The output of a certain multiplier 105 is added, and an adder 110 is added.
Then, the output of the multiplier 106 which is the multiplication result of the low frequency component of the B-R color difference signal and the coefficient k5, and the multiplier 107 which is the multiplication result of the low frequency component of the B-G color difference signal and the coefficient k6.
And the output of are added to obtain a color reproduction correction signal from which the aliasing component is removed. The color reproduction correction signal output from the adders 108, 109 and 110 from which the aliasing component has been removed is the adder 1
Timing adjusting circuit 1 is provided with 11, 112 and 113, respectively.
It is added to the original three primary color signals adjusted so as to match the timing with the color reproduction correction signal by 16, and is output as a new three primary color signal whose color reproduction is changed. The three primary color signals output from the color reproduction variable circuit 4 have the folding components of the original RGB signals even when the RGB pixel shift method is simultaneously used.
Since the balance contained in the three primary color signals is maintained, when the matrix circuit 5 converts it into a luminance signal or the like, R
The resolution improvement effect of the GB pixel shift method can be sufficiently exerted. The control unit 6 generates various control signals from the image data detected by the process circuit unit 3 and outputs the control signals to the image pickup unit 1, the process circuit unit 3, and the matrix circuit unit 5 for control.
【0038】以上説明したように、本発明によれば、R
GB画素ずらし法を同時に用いた場合でも、色再現を変
更した3原色信号の折り返し成分は本来の3原色信号の
バランスを保っているため、画像の細かな模様をぼかす
ことなく色再現を変化させることが出来る。As described above, according to the present invention, R
Even when the GB pixel shift method is used at the same time, since the folded components of the three primary color signals whose color reproduction has been changed maintain the original three primary color signal balance, the color reproduction can be changed without blurring the fine pattern of the image. You can
【0039】次に、本発明の第3の実施例について、図
面を参照しながら説明する。図9は本発明の第3の実施
例における色再現可変機能を備えた撮像装置のブロック
図を示すものである。同図において、1はレンズ,プリ
ズム,固体撮像素子などで構成され、色光をR,G,B
に分割しそれぞれに設けられた撮像素子によりR,G,
Bの3原色に対応してR,G,Bの3原色信号を得る撮
像部、2は撮像部1からのRGB3原色信号を増幅する
増幅器、3は増幅器2からの出力信号にγ処理、データ
検出などの処理を行うプロセス回路部、4はプロセス回
路部3からの出力信号の色再現を6軸で変化させる色再
現可変回路である。この色再現可変回路4は、第1の実
施例の色再現可変回路と同様であり、117は3原色信
号より折り返し成分を除去した色再現補正信号を生成す
る色再現補正信号生成手段である。101はRGB3原
色信号より色差信号R−G,R−B,G−R,G−B,
B−R,B−Gを演算する色差演算回路、115は色差
演算回路101からの色差信号の低域周波数成分を取り
出す低域通過フィルタである。102,103,10
4,105,106,107は低域通過フィルタ115
から出力される色差信号の低域周波数成分にそれぞれ係
数k1,k2,k3,k4,k5,k6を乗算する乗算
器、108は乗算器102の出力と乗算器103の出力
とを加算する加算器であり、109は乗算器104の出
力と乗算器105の出力とを加算する加算器であり、1
10は乗算器106の出力と乗算器107の出力とを加
算する加算器である。また、118は色再現補正信号と
3原色信号とを加算する加算手段である。111は加算
器108の出力とR原信号とを加算する加算器であり、
112は加算器109の出力とG原信号とを加算する加
算器であり、113は加算器110の出力とB原信号と
を加算する加算器である。また、116はメイン系の3
原色信号と、加算する補正項の色再現補正信号のタイミ
ングを合わせるためのタイミング調整回路である。5は
色再現可変回路4からの3原色信号から輝度信号などを
生成するマトリクス回路で、6はプロセス回路部3で検
出された画像データよりレンズの絞り制御やホワイトバ
ランス制御など各種制御を行う制御信号を生成する制御
部である。Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 9 is a block diagram of an image pickup apparatus having a color reproduction variable function according to the third embodiment of the present invention. In the figure, reference numeral 1 denotes a lens, a prism, a solid-state image sensor, etc.
Image sensor provided in each of the R, G, and
An image pickup unit that obtains R, G, and B three primary color signals corresponding to the three B primary colors, 2 is an amplifier that amplifies the RGB three primary color signals from the image pickup unit 1, and 3 is a γ process for the output signal from the amplifier 2, data Process circuit sections 4 for performing processes such as detection are color reproduction variable circuits for changing the color reproduction of the output signal from the process circuit section 6 on six axes. The color reproduction variable circuit 4 is the same as the color reproduction variable circuit of the first embodiment, and 117 is a color reproduction correction signal generating means for generating a color reproduction correction signal in which aliasing components are removed from the three primary color signals. Reference numeral 101 denotes color difference signals R-G, R-B, G-R, G-B from the RGB three primary color signals.
A color difference calculation circuit that calculates B−R and B−G, and a low pass filter 115 that extracts low frequency components of the color difference signals from the color difference calculation circuit 101. 102, 103, 10
4, 105, 106, and 107 are low-pass filters 115.
A multiplier that multiplies the low-frequency components of the color difference signals output from each by coefficients k1, k2, k3, k4, k5, and k6, and 108 is an adder that adds the output of the multiplier 102 and the output of the multiplier 103. And 109 is an adder that adds the output of the multiplier 104 and the output of the multiplier 105.
An adder 10 adds the output of the multiplier 106 and the output of the multiplier 107. Further, reference numeral 118 is an adding means for adding the color reproduction correction signal and the three primary color signals. 111 is an adder for adding the output of the adder 108 and the R original signal,
Reference numeral 112 is an adder that adds the output of the adder 109 and the G original signal, and 113 is an adder that adds the output of the adder 110 and the B original signal. Also, 116 is the main system 3
It is a timing adjustment circuit for matching the timing of the color reproduction correction signal of the correction term to be added with the primary color signal. Reference numeral 5 is a matrix circuit for generating a luminance signal and the like from the three primary color signals from the color reproduction variable circuit 4, and 6 is control for performing various controls such as lens aperture control and white balance control based on the image data detected by the process circuit unit 3. It is a control unit that generates a signal.
【0040】第2の実施例との重要な相違点は、プロセ
ス回路部3と色再現可変回路4との順序が逆転してい
る、すなわち、プロセス回路部3中のγ処理を行う前
に、色再現可変回路4により色再現の調整を行うという
点である。An important difference from the second embodiment is that the order of the process circuit section 3 and the color reproduction variable circuit 4 is reversed, that is, before the γ processing in the process circuit section 3 is performed. The point is that the color reproduction variable circuit 4 adjusts the color reproduction.
【0041】この第3の実施例の構成によれば、γ処理
を行う前に色再現の調整を行うため、色再現の調整をk
1からk6の係数によって線形的に行うことができ、色
再現の調整が容易にできる。According to the configuration of the third embodiment, since the color reproduction adjustment is performed before the γ process is performed, the color reproduction adjustment is performed by k.
It can be performed linearly by the coefficient of 1 to k6, and the color reproduction can be easily adjusted.
【0042】各回路の動作説明はその順序が異なるだけ
で前記したものと同様であるので省略する。The description of the operation of each circuit is the same as that described above except that the order is different, and therefore the description thereof is omitted.
【0043】なお、色再現可変回路による色再現調整処
理がγ処理の前に行われれば、他の処理回路の順序はど
の様であってもよい。If the color reproduction adjustment processing by the color reproduction variable circuit is performed before the γ processing, the other processing circuits may be in any order.
【0044】また、色再現可変回路の回路構成について
も、折り返し成分を除去した色再現補正信号を本来の3
原色信号に加算して、新たな3原色信号を得る色再現可
変回路であればどの様な構成であってもよい。Also, regarding the circuit configuration of the color reproduction variable circuit, the color reproduction correction signal from which the aliasing component is removed is the original 3
Any structure may be used as long as it is a color reproduction variable circuit that obtains new three primary color signals by adding to the primary color signals.
【0045】[0045]
【発明の効果】以上説明したように本発明によれば、3
原色信号に加算される色再現補正信号の折り返し成分を
除去することにより、本来の3原色信号の折り返し成分
のバランスを崩すことなく色再現を可変することが出来
るため、RGB画素ずらし法を同時に用いた場合でも、
RGB画素ずらし法の解像度改善効果を十分に発揮し、
輝度信号における解像度の色再現補正による劣化のない
色再現可変回路を実現することができる。As described above, according to the present invention, 3
By removing the aliasing component of the color reproduction correction signal that is added to the primary color signals, the color reproduction can be varied without breaking the balance of the original aliasing components of the three primary color signals, so the RGB pixel shift method is used at the same time. Even if
The resolution improvement effect of the RGB pixel shift method is fully demonstrated,
It is possible to realize a color reproduction variable circuit that does not deteriorate due to color reproduction correction of the resolution of the luminance signal.
【0046】また、本発明によれば、RGB画素ずらし
法を同時に用いた場合でも、色再現を変更した3原色信
号の折り返し成分は本来の3原色信号のバランスを保っ
ているため、画像の細かな模様をぼかすことのない色再
現可変機能を備えた撮像装置を実現することができる。Further, according to the present invention, even when the RGB pixel shift method is used at the same time, since the folding components of the three primary color signals whose color reproduction is changed maintain the original three primary color signal balance, the image is not fine. It is possible to realize an image pickup apparatus having a color reproduction variable function that does not blur a rough pattern.
【0047】また、本発明によれば、色再現の調整を係
数k1からk6で線形的に行うことができるため、色再
現の調整が容易にできる。Further, according to the present invention, since the color reproduction adjustment can be performed linearly with the coefficients k1 to k6, the color reproduction adjustment can be easily performed.
【図1】本発明の第1の実施例における色再現可変回路
の構成を示すブロック図FIG. 1 is a block diagram showing a configuration of a color reproduction variable circuit according to a first embodiment of the present invention.
【図2】RGB画素ずらし法を説明するための構成図FIG. 2 is a configuration diagram for explaining an RGB pixel shift method.
【図3】RGB画素ずらし法により得られるMTF特性
示す特性図FIG. 3 is a characteristic diagram showing MTF characteristics obtained by the RGB pixel shift method.
【図4】RGB画素ずらし法により得られる色差信号の
MTF特性を示す特性図FIG. 4 is a characteristic diagram showing MTF characteristics of color difference signals obtained by the RGB pixel shift method.
【図5】本発明の第1の実施例における色再現可変回路
の他の構成を示すブロック図FIG. 5 is a block diagram showing another configuration of the color reproduction variable circuit according to the first embodiment of the present invention.
【図6】本発明の第1の実施例における色再現可変回路
の他の構成を示すブロック図FIG. 6 is a block diagram showing another configuration of the color reproduction variable circuit according to the first embodiment of the present invention.
【図7】本発明の第1の実施例における色再現可変回路
の他の構成を示すブロック図FIG. 7 is a block diagram showing another configuration of the color reproduction variable circuit according to the first embodiment of the present invention.
【図8】本発明の第2の実施例における色再現可変機能
を備えた撮像装置の構成を示すブロック図FIG. 8 is a block diagram showing the arrangement of an image pickup apparatus having a color reproduction variable function according to the second embodiment of the present invention.
【図9】本発明の第3の実施例における色再現可変機能
を備えた撮像装置の他の構成を示すブロック図FIG. 9 is a block diagram showing another configuration of an image pickup apparatus having a color reproduction variable function in the third embodiment of the present invention.
【図10】従来の色再現可変回路の構成を示すブロック
図FIG. 10 is a block diagram showing a configuration of a conventional color reproduction variable circuit.
【図11】色再現の変化の様子を説明するための模式図FIG. 11 is a schematic diagram for explaining how the color reproduction changes.
【図12】従来の色再現可変機能を備えた撮像装置の構
成を示すブロック図FIG. 12 is a block diagram showing a configuration of an image pickup apparatus having a conventional color reproduction variable function.
1 撮像部 2 増幅器 3 プロセス回路 4 色再現可変回路 5 マトリクス回路 6 制御部 101 色差演算回路 102,103,104,105,106,107 乗
算器 108,109,110,111,112,113 加
算器 115 低域通過フィルタ 116 タイミング調整回路 117 色再現補正信号生成手段 118 加算手段1 Imaging Unit 2 Amplifier 3 Process Circuit 4 Color Reproduction Variable Circuit 5 Matrix Circuit 6 Control Unit 101 Color Difference Calculation Circuit 102, 103, 104, 105, 106, 107 Multiplier 108, 109, 110, 111, 112, 113 Adder 115 Low-pass filter 116 Timing adjustment circuit 117 Color reproduction correction signal generation means 118 Addition means
Claims (4)
色再現補正信号を生成する色再現補正信号生成手段と、 生成された色再現補正信号と本来の3原色信号のタイミ
ングを合わせるタイミング調整手段と、 生成された色再現補正信号と3原色信号とを加算する加
算手段とを備え、 前記色再現補正信号生成手段により得られた折り返し成
分を除去した色再現補正信号と前記タイミング調整を行
った3原色信号とを前記加算手段において加算し、前記
加算手段の出力より色再現を変化させた新たな3原色信
号を得ることを特徴とする色再現可変回路。1. A color reproduction correction signal generating means for generating a color reproduction correction signal in which aliasing components are removed from the three primary color signals, and a timing adjusting means for adjusting the timing of the generated color reproduction correction signal and the original three primary color signals. The color reproduction correction signal including the generated color reproduction correction signal and the three primary color signals is added, and the timing adjustment is performed with the color reproduction correction signal from which the aliasing component obtained by the color reproduction correction signal generation means is removed. A color reproduction variable circuit, characterized in that the primary color signals are added by the adding means, and new three primary color signals whose color reproduction is changed are obtained from the output of the adding means.
る撮像部と、 γ処理、データ検出などを行うプロセス回路部と、 折り返し成分を除去した色再現補正信号を3原色信号に
加算して、色再現を変化させた3原色信号を新たに得る
色再現可変回路とを備え、 前記撮像部より得られた3原色信号を前記プロセス回路
で処理した後、前記処理された3原色信号より折り返し
成分を除去した色再現補正信号を生成し、前記3原色信
号に加算することにより色再現を変化させた3原色信号
を新たに得ることを特徴とする撮像装置。2. An image pickup section for obtaining three primary color signals by using three image pickup elements, a process circuit section for performing .gamma. Processing and data detection, and a color reproduction correction signal from which aliasing components are removed are added to the three primary color signals. And a color reproduction variable circuit for newly obtaining three primary color signals whose color reproduction has been changed, the three primary color signals obtained from the image pickup unit are processed by the process circuit, and the processed three primary color signals are then processed. An image pickup apparatus characterized in that a color reproduction correction signal in which aliasing components are further removed is generated and is added to the three primary color signals to newly obtain three primary color signals with changed color reproduction.
る撮像部と、 γ処理、データ検出などを行うプロセス回路部と、 折り返し成分を除去した色再現補正信号を3原色信号に
加算して、色再現を変化させた3原色信号を新たに得る
色再現可変回路とを備え、 前記撮像部からの3原色信号に、折り返し成分を除去し
た色再現補正信号を加算して、色再現を変化させた新た
な3原色信号を前記色再現可変回路で得た後、前記プロ
セス回路部で各種処理を行うことを特徴とする撮像装
置。3. An image pickup section for obtaining three primary color signals by using three image pickup elements, a process circuit section for performing γ processing and data detection, and a color reproduction correction signal from which aliasing components are removed are added to the three primary color signals. And a color reproduction variable circuit for newly obtaining three primary color signals whose color reproduction has been changed, and a color reproduction correction signal from which the aliasing component has been removed is added to the three primary color signals from the image pickup unit to perform color reproduction. An image pickup apparatus characterized in that after the new three-primary-color signals with different values are obtained by the color reproduction variable circuit, various processes are performed by the process circuit section.
る撮像部と、 γ処理、データ検出などを行うプロセス回路部と、 折り返し成分を除去した色再現補正信号を3原色信号に
加算して、色再現を変化させた3原色信号を新たに得る
色再現可変回路と、 前記プロセス回路で検出された画像データより、各種制
御信号を生成する制御部とを備え、 前記色再現可変回路において、折り返し成分を除去した
色再現補正信号を加算して、色再現を変化させた新たな
3原色信号を得ることを特徴とする請求項2または3記
載の撮像装置。4. An image pickup section for obtaining three primary color signals by using three image pickup elements, a process circuit section for performing γ processing and data detection, and a color reproduction correction signal from which aliasing components have been removed are added to the three primary color signals. The color reproduction variable circuit further includes a color reproduction variable circuit that newly obtains the three primary color signals whose color reproduction is changed, and a control unit that generates various control signals from the image data detected by the process circuit. 4. The image pickup apparatus according to claim 2, wherein the color reproduction correction signal from which the aliasing component is removed is added to obtain a new three primary color signal in which the color reproduction is changed.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4120220A JPH05316531A (en) | 1992-05-13 | 1992-05-13 | Color reproduction variable circuit and imaging device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4120220A JPH05316531A (en) | 1992-05-13 | 1992-05-13 | Color reproduction variable circuit and imaging device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05316531A true JPH05316531A (en) | 1993-11-26 |
Family
ID=14780859
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4120220A Pending JPH05316531A (en) | 1992-05-13 | 1992-05-13 | Color reproduction variable circuit and imaging device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05316531A (en) |
-
1992
- 1992-05-13 JP JP4120220A patent/JPH05316531A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9483848B2 (en) | Image processing apparatus having a plurality of image processing blocks that are capable of real-time processing of an image signal | |
| US5767899A (en) | Image pickup device | |
| US7065246B2 (en) | Image processing apparatus | |
| US20090141149A1 (en) | Image processing apparatus and image processing method | |
| JPH0810940B2 (en) | Luminance signal forming circuit | |
| JPH04123683A (en) | color imaging device | |
| WO1994018801A1 (en) | Color wide dynamic range camera using a charge coupled device with mosaic filter | |
| JP4040171B2 (en) | Signal processing device | |
| JPH11313336A (en) | Signal processing apparatus and signal processing method for imaging | |
| JP2007288573A (en) | Chroma suppress processing device | |
| JPH11146410A (en) | Video camera | |
| US7012719B1 (en) | Sign sensitive aperture correction system and method | |
| JP6590955B2 (en) | Imaging apparatus and color correction method | |
| CN101401442A (en) | Device for color interpolation using adjustable threshold | |
| JP4086572B2 (en) | Video signal processing device | |
| JP4178571B2 (en) | Image processing apparatus, image processing method, and camera | |
| JPH05316531A (en) | Color reproduction variable circuit and imaging device | |
| JP2010136059A (en) | Noise removal filter processing circuit, image processing circuit, imaging device, and noise removal program | |
| JP2003070009A (en) | Imaging device | |
| JP4139587B2 (en) | Interpolation apparatus and method for captured image in single-plate color digital camera | |
| JP4193281B2 (en) | Image signal processing apparatus and camera apparatus | |
| JP4033641B2 (en) | Solid-state imaging device | |
| JPH11220744A (en) | Camera signal processor and camera signal processing method | |
| JP2635326B2 (en) | Color camera device | |
| JP2001197508A (en) | Electronic camera |