JPH05319938A - Production of sintered material - Google Patents
Production of sintered materialInfo
- Publication number
- JPH05319938A JPH05319938A JP4153077A JP15307792A JPH05319938A JP H05319938 A JPH05319938 A JP H05319938A JP 4153077 A JP4153077 A JP 4153077A JP 15307792 A JP15307792 A JP 15307792A JP H05319938 A JPH05319938 A JP H05319938A
- Authority
- JP
- Japan
- Prior art keywords
- jig
- sintered body
- hole
- sintering
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000000463 material Substances 0.000 title abstract description 9
- 238000005245 sintering Methods 0.000 claims abstract description 35
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052582 BN Inorganic materials 0.000 claims abstract description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 26
- 229910052575 non-oxide ceramic Inorganic materials 0.000 claims abstract description 6
- 239000011225 non-oxide ceramic Substances 0.000 claims abstract description 6
- 239000012467 final product Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 27
- 239000011195 cermet Substances 0.000 claims description 2
- 239000000047 product Substances 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 description 45
- 238000000465 moulding Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002994 raw material Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、非酸化物系セラミック
スなどの焼結体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered body such as non-oxide ceramics.
【0002】[0002]
【従来の技術】従来、セラミックスの成形方法として
は、従来、金型プレス成形法、ラバープレス成形法、押
出し成形法、射出成形法、鋳込み成形法等が知られてい
る。金型プレス成形法は、金属材料等の型にセラミック
ス原料を充填して加圧成形する方法である。ラバープレ
ス成形法はゴム型に原料を充填し、ゴムの弾性変形を利
用して静水圧加圧成形する方法である。鋳込み成形法
は、スラリー状に調整したセラミックス原料を鋳型に流
し込み、成形する方法である。押出し成形法は、バイン
ダーを混和したセラミックス材料を軸方向からの圧で型
を通過させて成形する方法である。2. Description of the Related Art Conventionally, as a method of molding ceramics, a die press molding method, a rubber press molding method, an extrusion molding method, an injection molding method, a casting molding method and the like have been conventionally known. The die press molding method is a method of filling a mold made of a metal material or the like with a ceramic raw material and performing pressure molding. The rubber press molding method is a method in which a rubber mold is filled with a raw material and the elastic deformation of rubber is used to perform isostatic pressing. The cast molding method is a method in which a ceramic raw material adjusted to a slurry state is poured into a mold and molded. The extrusion molding method is a method in which a ceramic material mixed with a binder is passed through a mold by a pressure from the axial direction to be molded.
【0003】射出成形法は、バインダーを混和したセラ
ミックス原料を加圧して金型内に射出し、成形体を得る
方法である。押出し成形法や射出成形法等の場合に添加
されるバインダーは、焼結する前に除去する必要があ
り、加熱等の種々の方法で脱脂が行われる。各種の成形
法で作製した成形体は、脱脂、焼結され、セラミックス
製品となる。The injection molding method is a method in which a ceramic raw material mixed with a binder is pressurized and injected into a mold to obtain a molded body. The binder added in the case of the extrusion molding method or the injection molding method needs to be removed before sintering, and degreasing is performed by various methods such as heating. Molded bodies produced by various molding methods are degreased and sintered to be ceramic products.
【0004】セラミックスは、焼結時に収縮するため、
目的の形状と大きさを実現するには、収縮率の変動が小
さい成形方法と焼結方法が鍵である。寸法精度を向上さ
せ、機械的強度を大きくするためには、成形する際に、
均一な圧力を加えて成形ムラをなくし、収縮が安定し、
平均して起こるようにすることが重要である。焼結によ
り、緻密で均質なセラミックス製品となる。Since ceramics shrink during sintering,
In order to achieve the desired shape and size, the molding method and the sintering method, in which the variation in shrinkage is small, are the key. In order to improve the dimensional accuracy and increase the mechanical strength,
Uniform pressure is applied to eliminate uneven molding and stable shrinkage,
It is important that it happens on average. Sintering results in a dense and homogeneous ceramic product.
【0005】焼結時に発生する10〜20%の収縮率を
考慮して、成形時の形状・寸法を決定している。溝ある
いは穴を有する形状の場合、成形時に中子や芯棒を用い
て中空の部分を形成する。必要により焼結体をダイヤモ
ンド砥石で研削加工をし、形状・寸法を整えている。The shape and dimensions at the time of molding are determined in consideration of the shrinkage rate of 10 to 20% generated during sintering. In the case of a shape having a groove or a hole, a core or a core rod is used at the time of molding to form a hollow portion. If necessary, the sintered body is ground with a diamond grindstone to adjust the shape and dimensions.
【0006】[0006]
【発明が解決しようとする課題】しかし、セラミックス
は焼結時に発生する10〜20%の収縮を安定させるこ
とが困難であるため、高い寸法精度は得られにくい。セ
ラミックス焼結体をそのまま部品として利用するために
は、寸法精度が不十分である。不均一収縮や変形が発生
しやすいため、寸法精度は±1%程度のものしか得られ
ない。However, since it is difficult for ceramics to stabilize the shrinkage of 10 to 20% that occurs during sintering, it is difficult to obtain high dimensional accuracy. In order to use the ceramic sintered body as it is as a part, the dimensional accuracy is insufficient. Since dimensional shrinkage and deformation are likely to occur, only dimensional accuracy of about ± 1% can be obtained.
【0007】問題となる不均一収縮や変形は、成形体の
溝あるいは穴で発生しやすい。変形を防ぐために、成形
時と同様に、焼結時にも成形体の溝あるいは穴に中子を
入れておくと、治具により焼結収縮が阻害されて焼結体
の破壊を招いてしまう。不均一収縮や変形の著しい溝あ
るいは穴を有する焼結体の寸法精度を向上させる有効な
手段は見当たらない。また焼結体は硬度が高く、研削加
工で寸法を整えるにはダイヤモンド砥石を用いる必要が
あり、手間やコストが大きくかかるという問題がある。The problem of uneven shrinkage or deformation is likely to occur in the grooves or holes of the molded body. If a core is placed in the groove or hole of the molded body at the time of sintering as in the case of molding in order to prevent deformation, the sintering shrinkage is obstructed by the jig and the sintered body is destroyed. No effective means for improving the dimensional accuracy of a sintered body having a groove or a hole that is significantly contracted or deformed is found. Further, the hardness of the sintered body is high, and it is necessary to use a diamond grindstone to adjust the dimensions by grinding, which causes a problem that labor and cost are large.
【0008】本発明は、溝あるいは穴を有する形状の成
形体を焼結する際に発生する、不均一収縮や変形を防止
し、寸法精度の優れたセラミックス焼結体を得ることを
目的とする。An object of the present invention is to obtain a ceramic sintered body having excellent dimensional accuracy, which prevents uneven shrinkage and deformation that occur when sintering a molded body having a groove or a hole. ..
【0009】[0009]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、カーボンまたは窒化ほう素(BN)の
成形体治具を非酸化物セラミックス成形体の溝または穴
に装入して焼結する。カーボン、窒化ほう素はともに高
温でも安定で、セラミックスとの反応はほとんどないた
め、治具として適当な材料である。また、カーボン表面
を窒化ほう素の粉末で覆ったり、コーティングしたもの
を用いてもよい。In order to solve the above-mentioned problems, the present invention inserts a carbon or boron nitride (BN) molded body jig into a groove or hole of a non-oxide ceramic molded body. And sinter. Both carbon and boron nitride are stable materials even at high temperatures and hardly react with ceramics, so they are suitable materials for jigs. Alternatively, the carbon surface may be covered with or coated with boron nitride powder.
【0010】本発明のセラミックス焼結体の製造方法に
ついて図面で説明する。図1にあるように、棚板3の上
に溝あるいは穴を有する形状のセラミックス成形体2を
設置し、溝あるいは穴にカーボンまたはBN成形体治具
1を装入する。図にある通り、焼結前の成形体と治具の
間には間隙があり、成形体が収縮する分を考慮にいれ、
焼結後の溝あるいは穴に一致する治具を、成形体の中心
に装入している。A method for manufacturing a ceramic sintered body of the present invention will be described with reference to the drawings. As shown in FIG. 1, a ceramic molded body 2 having a shape having a groove or a hole is placed on a shelf board 3, and a carbon or BN molded body jig 1 is inserted into the groove or the hole. As shown in the figure, there is a gap between the pre-sintered compact and the jig, taking into account the shrinkage of the compact,
A jig corresponding to the groove or hole after sintering is inserted in the center of the molded body.
【0011】装入する治具が大きすぎる場合、焼結時に
セラミックスの収縮を阻害して破損を引き起こし、治具
が小さすぎれば、変形を防止して寸法精度を改善する効
果が得られないので、治具には最終製品の溝または穴の
形状・寸法にきわめて近い大きさのものを用いる。セラ
ミックスおよび治具の熱膨張と収縮を十分に考慮する
と、焼結温度におけるカーボンまたはBN成形体治具の
寸法dc′を焼結温度におけるセラミックス焼結体の寸
法ds′に対して−0.5%〜+0.8%の範囲とする
ことにより寸法精度の優れた焼結体が得られる。If the jig to be charged is too large, the shrinkage of the ceramics is obstructed during sintering and damage is caused. If the jig is too small, the effect of preventing deformation and improving dimensional accuracy cannot be obtained. Use a jig whose size is very close to the shape or size of the groove or hole of the final product. Considering the thermal expansion and contraction of the ceramics and jig sufficiently, the dimension d c ′ of the carbon or BN compact jig at the sintering temperature is −0 with respect to the dimension d s ′ of the ceramic sintered body at the sintering temperature. By setting the content in the range of 0.5% to + 0.8%, a sintered body having excellent dimensional accuracy can be obtained.
【0012】カーボンまたはBN成形体治具の寸法の算
出方法について詳細に説明する。文中の記号は、焼結収
縮率x(%)、焼結温度T(℃)、常温でのセラミック
ス成形体の寸法dg、常温でのセラミックス焼結体の寸
法ds、焼結温度でのセラミックス焼結体の寸法ds′、
常温でのカーボンまたはBN成形体治具の寸法dc、焼
結温度でのカーボンまたはBN成形体治具の寸法
dc′、常温からT℃までのセラミックスの熱膨張率
α、常温からT℃までのカーボンまたはBN成形体治具
の熱膨張率βである。A method of calculating the dimensions of the carbon or BN molded body jig will be described in detail. The symbols in the text are the sintering shrinkage x (%), the sintering temperature T (° C.), the dimension d g of the ceramic compact at room temperature, the dimension d s of the ceramic sintered body at room temperature, and the The dimension d s ′ of the ceramic sintered body,
Dimension d c of carbon or BN compact jig at normal temperature, dimension d c ′ of carbon or BN compact at sintering temperature, coefficient of thermal expansion α of ceramics from normal temperature to T ° C., normal temperature to T ° C. Is the coefficient of thermal expansion β of the carbon or BN molded body jig.
【0013】焼結によるセラミックスの収縮率x(%)
はx=100×(dg−ds)/dgである。Shrinkage rate x (%) of ceramics due to sintering
Is x = 100 × (d g −d s ) / d g .
【0014】セラミックス焼結体を製造する場合、製品
寸法に対してx%の収縮を考慮にいれて成形体を作製
し、焼結温度T℃で焼結する。このとき、成形ムラ、炉
の温度ムラ、棚板との摩擦等で収縮が不均一となり、セ
ラミックス焼結体の溝あるいは穴の部分で寸法に大きな
狂いが生じる。In the case of producing a ceramics sintered body, a compact is produced in consideration of shrinkage of x% with respect to the product size, and is sintered at a sintering temperature T ° C. At this time, the shrinkage becomes non-uniform due to uneven molding, uneven temperature of the furnace, friction with the shelf plate, and the like, and the dimensions of the grooves or holes of the ceramic sintered body are greatly varied.
【0015】そこでカーボンまたはBN成形体治具をセ
ラミックス焼結体の溝あるいは穴に使用して、寸法精度
を向上させる。焼結温度T℃でのセラミックス焼結体の
溝ないし穴の寸法ds′=ds(1+αT)、焼結温度T
℃でのカーボンまたはBN治具の寸法dc′=dc(1+
βT)とする。Therefore, a jig of carbon or BN compact is used in the groove or hole of the ceramic sintered body to improve the dimensional accuracy. Dimension of groove or hole of ceramics sintered body at sintering temperature T ° C. d s ′ = d s (1 + αT), sintering temperature T
Dimension of carbon or BN jig at ℃ d c ′ = d c (1+
βT).
【0016】ここでds′=dc′として、セラミックス
焼結体の溝あるいは穴と治具の寸法を一致させることに
より、セラミックス焼結体の溝あるいは穴の寸法精度を
向上させる。実際は、成形体寸法や収縮率自体に多少の
変動があるので、0.995ds′≦dc′≦1.008
ds′の範囲が許容される。Here, by setting d s ′ = d c ′, the groove or hole of the ceramics sintered body and the size of the jig are made to coincide with each other, whereby the dimensional accuracy of the groove or hole of the ceramics sintered body is improved. Actually, there are some fluctuations in the size of the molded body and the shrinkage itself, so that 0.995 d s ′ ≦ d c ′ ≦ 1.008.
A range of ds ' is allowed.
【0017】カーボンまたはBN成形体治具の大きさd
c′がds′≦dc′≦1.008ds′の範囲の場合、治
具による破損の恐れなく、焼結収縮による変形を抑制す
ることができる。カーボンまたはBN成形体治具の大き
さdc′が0.995ds′≦dc′≦ds′の範囲では、
治具の形状が焼結体に忠実に転写されるため、焼結体の
溝あるいは穴の精度を高める。Size d of carbon or BN molded body jig
When c ′ is in the range of d s ′ ≦ d c ′ ≦ 1.008 d s ′, deformation due to sintering shrinkage can be suppressed without fear of damage by a jig. When the size d c ′ of the carbon or BN molded body jig is 0.995 d s ′ ≦ d c ′ ≦ d s ′,
Since the shape of the jig is faithfully transferred to the sintered body, the accuracy of the groove or hole of the sintered body is improved.
【0018】焼結温度では、焼結体の粒子は拡散性、易
動性が大きく、治具に沿って収縮が起こるため、治具の
形状・寸法が焼結体に転写される。使用する治具は寸法
精度が優れていて表面状態が良好であることが重要であ
る。At the sintering temperature, the particles of the sintered body have large diffusivity and mobility, and contraction occurs along the jig, so that the shape and size of the jig are transferred to the sintered body. It is important that the jig used has excellent dimensional accuracy and good surface condition.
【0019】本発明のセラミックス焼結体の製造方法
は、従来のいずれのセラミックス成形法で作製された成
形体であっても、適用できる。バインダーを用いる射出
成形法等、脱脂工程を必要とする場合は、脱脂工程から
カーボンまたはBN成形体治具を装入しておくと、変形
防止にさらに有効である。The method for producing a ceramics sintered body of the present invention can be applied to any of the conventional ceramics forming methods. When a degreasing process such as an injection molding method using a binder is required, it is more effective to prevent deformation by loading a carbon or BN molded body jig from the degreasing process.
【0020】本発明の非酸化物セラミックス焼結体の製
造方法で製造される焼結体の形状の一例についてについ
て図2〜図8に示す。本発明の焼結体の製造方法は、溝
あるいは穴を有する形状のセラミックス焼結体に適用す
ることが出来る。図2、図3のように円筒形の中央に円
筒形の溝あるいは穴を有する形状は勿論、図4のように
溝あるいは穴が円筒形でない形状や、図5、図6のよう
に外側に段や足を有するもの、多角形状の溝あるいは穴
を有する図7や図8に示したようなセラミックス焼結体
もカーボンまたはBN成形体治具を用いて作製すること
が出来る。2 to 8 show an example of the shape of a sintered body produced by the method for producing a non-oxide ceramic sintered body of the present invention. The method for producing a sintered body of the present invention can be applied to a ceramic sintered body having a groove or a hole. Not only the shape having a cylindrical groove or hole in the center of the cylinder as shown in FIGS. 2 and 3, but also the shape in which the groove or hole is not cylindrical as shown in FIG. 4 or the shape having a groove or hole outside as shown in FIGS. A ceramic sintered body having steps or legs and a polygonal groove or hole as shown in FIGS. 7 and 8 can also be manufactured using a carbon or BN compact jig.
【0021】カーボンまたは窒化ほう素は、酸化雰囲気
中では酸化、あるいは分解されてしまう。本発明のセラ
ミックス焼結体の製造方法は、窒化珪素、窒化アルミニ
ウム、炭化珪素、サイアロン等のセラミックスの他、超
硬合金、サーメット等の非酸化物系の焼結体の製造方法
にも適用することが出来る。Carbon or boron nitride is oxidized or decomposed in an oxidizing atmosphere. The method for producing a ceramics sintered body of the present invention is applicable to not only ceramics such as silicon nitride, aluminum nitride, silicon carbide and sialon but also a method for producing a non-oxide type sintered body such as cemented carbide and cermet. You can
【0022】[0022]
【実施例】本発明の実施例を以下に説明する。酸化イッ
トリウム5wt%、酸化アルミニウム2wt%を含有す
る窒化珪素を原料とする内径20mm、外径28mm、
長さ7mmのリング成形体に対してカーボンまたはBN
成形体治具を図1に示すように設置し、焼結を行って焼
結体の内計を測定した。焼結温度下での比較で、カーボ
ンまたはBN成形体治具の寸法dc′が、焼結体の寸法
ds′に対して0.995ds′≦dc′≦1.008
ds′の範囲内のものから3体を用いて焼結したものを
それぞれ実施例1(カーボン)、実施例2(カーボ
ン)、実施例3(BN)とする。EXAMPLES Examples of the present invention will be described below. Silicon nitride containing 5 wt% of yttrium oxide and 2 wt% of aluminum oxide as the raw material has an inner diameter of 20 mm and an outer diameter of 28 mm,
Carbon or BN for 7 mm long ring molding
A molded body jig was installed as shown in FIG. 1, and sintering was performed to measure the internal total of the sintered body. In comparison under the sintering temperature, the dimension d c ′ of the carbon or BN compact jig is 0.995 d s ′ ≦ d c ′ ≦ 1.008 with respect to the dimension d s ′ of the sintered body.
Those obtained by sintering using three bodies within the range of d s ′ are referred to as Example 1 (carbon), Example 2 (carbon), and Example 3 (BN), respectively.
【0023】比較例としてカーボンまたはBN成形体治
具を使用せずに焼結したものを比較例1、寸法比が
dc′<0.995ds′のカーボン成形体を使用して焼
結したものを比較例2、dc′>1.008ds′のBN
成形体を使用して焼結したものを比較例3として、焼結
体を測定した。焼結条件は1800℃、窒素圧10at
mで1時間の処理とした。As a comparative example, the one obtained by sintering without using a carbon or BN molded body jig was sintered by using a carbon molded body having a dimensional ratio of d c ′ <0.995 d s ′ in Comparative Example 1. Comparative Example 2, BN with d c ′> 1.008 d s ′
A sintered body was measured by using Comparative Example 3 which was sintered using the molded body. Sintering conditions are 1800 ° C., nitrogen pressure 10 at
m for 1 hour.
【0024】また収縮率x=15.5%、常温からT℃
までのセラミックスの熱膨張率α=3×10-6、常温か
らT℃までのカーボンまたはBN成形体治具の熱膨張率
β=5×10-6である。測定結果を以下の表に示す。Shrinkage x = 15.5%, room temperature to T ° C.
The coefficient of thermal expansion of ceramics α = 3 × 10 −6 and the coefficient of thermal expansion β of carbon or BN molded body jig from room temperature to T ° C. = 5 × 10 −6 . The measurement results are shown in the table below.
【0025】[0025]
【表1】 [Table 1]
【0026】表1に示された、治具を使用せずに焼結し
た比較例1を元に考察する。比較例1の焼結体内径の標
準偏差が0.062であるのに対して、実施例1〜実施
例3は、標準偏差の値が小さく、内径のばらつきが少な
い、真円度の高い焼結体が得られたことがわかる。一
方、比較例2の場合は、標準偏差が比較例1のものと大
差がない。BN成形体の寸法がdc′<0.995ds′
と小さいため、効果が得られなかったものと考えられ
る。Consideration is made on the basis of Comparative Example 1 shown in Table 1 which is sintered without using a jig. The standard deviation of the inner diameter of the sintered body of Comparative Example 1 is 0.062, whereas in Examples 1 to 3, the standard deviation value is small, the variation of the inner diameter is small, and the circularity is high. It can be seen that a solid was obtained. On the other hand, in the case of Comparative Example 2, the standard deviation is not much different from that of Comparative Example 1. The dimension of the BN compact is d c ′ <0.995 d s ′
Therefore, it is considered that the effect was not obtained.
【0027】他方、比較例3の場合は、焼結体が破損し
てしまった。使用したBN成形体の寸法がdc′>1.
008ds′と、焼結による収縮と比べて大きすぎたも
のと考えられる。On the other hand, in Comparative Example 3, the sintered body was damaged. The dimension of the BN compact used was d c ′> 1.
008 d s ′, which is considered to be too large compared with the shrinkage due to sintering.
【0028】[0028]
【発明の効果】以上のように本発明のセラミックス焼結
体の製造方法によれば、成形体治具を用いることにより
寸法精度の優れた焼結体を得ることができる。特に焼結
体の穴ないし溝の部分の変形を防ぐため、円形の穴ない
し溝を設けたい場合、真円度の高い焼結体を作製するこ
とができる。As described above, according to the method for producing a ceramic sintered body of the present invention, a sintered body having excellent dimensional accuracy can be obtained by using the molded body jig. In particular, when it is desired to provide circular holes or grooves in order to prevent the deformation of the holes or grooves of the sintered body, it is possible to manufacture a sintered body with high roundness.
【0029】セラミックス焼結体の寸法精度を改善する
ことができるため、焼結後に研削加工して寸法を合わせ
る工程が不要となり、製造の手間とコストを低減する等
の効果がある。Since the dimensional accuracy of the ceramics sintered body can be improved, there is no need for a step of grinding and adjusting the dimensions after sintering, which has the effect of reducing the labor and cost of manufacturing.
【図1】本発明のセラミックス焼結体の製造方法につい
て説明する図面である。FIG. 1 is a diagram illustrating a method for manufacturing a ceramics sintered body of the present invention.
【図2】本発明のセラミックス焼結体の製造方法で製造
される焼結体の形状の一例を示す図面である。FIG. 2 is a drawing showing an example of the shape of a sintered body produced by the method for producing a ceramics sintered body of the present invention.
【図3】本発明のセラミックス焼結体の製造方法で製造
される焼結体の形状の一例を示す図面である。FIG. 3 is a drawing showing an example of the shape of a sintered body produced by the method for producing a ceramics sintered body of the present invention.
【図4】本発明のセラミックス焼結体の製造方法で製造
される焼結体の形状の一例を示す図面である。FIG. 4 is a drawing showing an example of the shape of a sintered body produced by the method for producing a ceramics sintered body of the present invention.
【図5】本発明のセラミックス焼結体の製造方法で製造
される焼結体の形状の一例を示す図面である。FIG. 5 is a drawing showing an example of the shape of a sintered body produced by the method for producing a ceramics sintered body of the present invention.
【図6】本発明のセラミックス焼結体の製造方法で製造
される焼結体の形状の一例を示す図面である。FIG. 6 is a drawing showing an example of the shape of a sintered body manufactured by the method for manufacturing a ceramics sintered body of the present invention.
【図7】本発明のセラミックス焼結体の製造方法で製造
される焼結体の形状の一例を示す図面である。FIG. 7 is a drawing showing an example of the shape of a sintered body produced by the method for producing a ceramics sintered body of the present invention.
【図8】本発明のセラミックス焼結体の製造方法で製造
される焼結体の形状の一例を示す図面である。FIG. 8 is a drawing showing an example of the shape of a sintered body produced by the method for producing a ceramics sintered body of the present invention.
1 カーボンまたはBN成形体治具 2 セラミックス成形体 3 棚板 1 Carbon or BN compact jig 2 Ceramic compact 3 Shelf board
Claims (2)
物セラミックス、超硬合金およびサーメットなどの焼結
体の製造方法において、最終製品における孔部ないし凹
部の寸法に近い形状を有するカーボンおよび/または窒
化ほう素からなる治具を挿入して焼結処理する手段を含
むことを特徴とする焼結体の製造方法。1. In a method for producing a sintered body such as a non-oxide ceramic having a hole or a recess, a cemented carbide and a cermet, carbon having a shape close to the size of the hole or the recess in the final product and / or Alternatively, the method for producing a sintered body includes a means for inserting a jig made of boron nitride and performing a sintering process.
最終製品の焼結温度における孔部ないし凹部の寸法の−
0.5%〜+0.8%の範囲であることを特徴とする請
求項1記載の焼結体の製造方法。2. The size of the jig at the sintering temperature is smaller than the size of the holes or recesses at the sintering temperature of the final product.
The method for producing a sintered body according to claim 1, wherein the range is 0.5% to + 0.8%.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4153077A JPH05319938A (en) | 1992-05-21 | 1992-05-21 | Production of sintered material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4153077A JPH05319938A (en) | 1992-05-21 | 1992-05-21 | Production of sintered material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05319938A true JPH05319938A (en) | 1993-12-03 |
Family
ID=15554479
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4153077A Pending JPH05319938A (en) | 1992-05-21 | 1992-05-21 | Production of sintered material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05319938A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6770114B2 (en) | 2001-12-19 | 2004-08-03 | Honeywell International Inc. | Densified sintered powder and method |
| US6838046B2 (en) | 2001-05-14 | 2005-01-04 | Honeywell International Inc. | Sintering process and tools for use in metal injection molding of large parts |
| JP2015102095A (en) * | 2013-11-25 | 2015-06-04 | ゼネラル・エレクトリック・カンパニイ | Process of producing ceramic matrix composite turbine bucket, insert for ceramic matrix composite turbine bucket and ceramic matrix composite turbine bucket |
-
1992
- 1992-05-21 JP JP4153077A patent/JPH05319938A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6838046B2 (en) | 2001-05-14 | 2005-01-04 | Honeywell International Inc. | Sintering process and tools for use in metal injection molding of large parts |
| US6770114B2 (en) | 2001-12-19 | 2004-08-03 | Honeywell International Inc. | Densified sintered powder and method |
| JP2015102095A (en) * | 2013-11-25 | 2015-06-04 | ゼネラル・エレクトリック・カンパニイ | Process of producing ceramic matrix composite turbine bucket, insert for ceramic matrix composite turbine bucket and ceramic matrix composite turbine bucket |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6056915A (en) | Rapid manufacture of metal and ceramic tooling | |
| EP0516165B1 (en) | Method of manufacturing a hard sintered component | |
| US4719078A (en) | Method of sintering compacts | |
| JPH05319938A (en) | Production of sintered material | |
| EP4628470A1 (en) | Material for ceramic ball, method for producing ceramic ball using same, and ceramic ball | |
| US4153666A (en) | Hot-pressing of shapes of non-uniform cross-sectional thickness | |
| JPH03505908A (en) | shaft bearing unit | |
| US4542072A (en) | Processing silicon nitride by use of boron nitride as a barrier layer | |
| JPH05320711A (en) | Production of sintered compact | |
| JP2002292613A (en) | Manufacturing method of ceramic molded body | |
| JPH0526585A (en) | Jig for sintering ceramics formed body | |
| EP0321430B1 (en) | Method for producing a tubular compact and apparatus for carrying out said method | |
| JP3051897B2 (en) | Method for producing graphite dispersed ceramic molded body | |
| Ikegami et al. | The low pressure injection moulding of stainless steel powder | |
| JPH0683890B2 (en) | Method for manufacturing wear resistant member for molding machine | |
| JPH04218605A (en) | Core for preventing deformation of sintered compact | |
| JPS6233284A (en) | A jig for firing a tubular silicon nitride sintered body and a firing method using the same | |
| JP2926881B2 (en) | Ceramic firing method | |
| JP2003238260A (en) | Manufacturing method of cylindrical long ceramic body | |
| JPH05171334A (en) | Hard sintered part and manufacturing method thereof | |
| JPH05195017A (en) | Method for producing high-density iron-based metal powder sintered body with little shape deformation during sintering | |
| JPH03103363A (en) | Method for sintering ceramic compact and sintering jig | |
| Briscoe et al. | Ceramics–the fabrication challenge | |
| JPS6141516A (en) | Plunger for transfer molding machine | |
| JPS63112455A (en) | Ceramic powder and forming process |