[go: up one dir, main page]

JPH0531351A - Catalyst packing method - Google Patents

Catalyst packing method

Info

Publication number
JPH0531351A
JPH0531351A JP21155091A JP21155091A JPH0531351A JP H0531351 A JPH0531351 A JP H0531351A JP 21155091 A JP21155091 A JP 21155091A JP 21155091 A JP21155091 A JP 21155091A JP H0531351 A JPH0531351 A JP H0531351A
Authority
JP
Japan
Prior art keywords
catalyst
reactor
filling
molded
dropped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21155091A
Other languages
Japanese (ja)
Inventor
Seigo Watanabe
聖午 渡辺
Masako Ubuki
昌子 宇吹
Toru Kuroda
徹 黒田
Motomu Okita
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP21155091A priority Critical patent/JPH0531351A/en
Publication of JPH0531351A publication Critical patent/JPH0531351A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Furan Compounds (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【目的】 成型触媒又は担持触媒を固定床反応器に触媒
を落下させて充填する際の触媒の粉化・崩壊を減少す
る。 【構成】 反応器内に触媒の落下を妨げない形状,太さ
を有するひも状物質を介在させて触媒を落下充填する。 【効果】 成型触媒又は担持触媒に必要以上に機械的強
度を持たせる必要がなく、触媒設計上の制限が少くな
る。
(57) [Abstract] [Purpose] To reduce powdering and disintegration of a catalyst when a molded catalyst or a supported catalyst is dropped and packed in a fixed bed reactor. [Structure] The catalyst is dropped and filled in the reactor with a string-like material having a shape and thickness that does not prevent the catalyst from falling. [Effect] It is not necessary to give the molded catalyst or the supported catalyst more mechanical strength than necessary, and the restrictions on the catalyst design are reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成型触媒又は担持触媒
の反応器への充填方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a molded catalyst or a supported catalyst into a reactor.

【0002】[0002]

【従来の技術】一般に、成型触媒又は担持触媒を固定床
反応器に充填するには反応器上部より投入落下させて充
填する方法が採られている。この方法は触媒の投入落下
時の物理的衝撃により触媒が粉化・崩壊することがあ
る。これを防ぐため、触媒自体にある程度以上の機械的
強度を持たせるか、もしくは充填の手法に何らかの工夫
を施す必要がある。
2. Description of the Related Art Generally, in order to fill a fixed bed reactor with a molded catalyst or a supported catalyst, a method of dropping and filling from the upper part of the reactor is employed. In this method, the catalyst may be pulverized and disintegrated by physical impact when the catalyst is dropped. In order to prevent this, it is necessary to give the catalyst itself mechanical strength above a certain level, or to devise a filling method.

【0003】[0003]

【発明が解決しようとする課題】触媒の機械的強度は成
型圧力を調節したり、成型又は担持の操作を工夫するこ
とで、ある程度は改善される。しかし、このような手法
で機械的強度を高くした触媒は、概して触媒の持つ比表
面積が小さくなったり、反応に有効な活性点の数が減少
したり、また、反応に有効な細孔分布が制御できない等
の理由で目的生成物の収率が低くなり実用的ではない。
The mechanical strength of the catalyst can be improved to some extent by adjusting the molding pressure or devising the molding or supporting operation. However, a catalyst whose mechanical strength is increased by such a method generally has a small specific surface area of the catalyst, the number of active sites effective for the reaction decreases, and the pore distribution effective for the reaction is small. This is not practical because the yield of the target product is low due to reasons such as uncontrollability.

【0004】このような見地から、機械的強度の高くな
い成型触媒又は担持触媒の粉化・崩壊を最小限に抑えて
反応器に充填する有効な手法が望まれていた。本発明
は、成型触媒又は担持触媒の新規な充填方法の提供を目
的としている。
From this point of view, there has been a demand for an effective method of filling the reactor with the powdered catalyst or the supported catalyst having a low mechanical strength suppressed to the minimum level. An object of the present invention is to provide a new filling method for a molded catalyst or a supported catalyst.

【0005】[0005]

【課題を解決するための手段】本発明は、成型触媒又は
担持触媒を固定床反応器に上部より落下充填するに際
し、反応器内に、実質的に触媒の落下を妨げない形状及
び太さを有する少なくとも1本のひも状物質を介在させ
ることを特徴とする成型触媒又は担持触媒の充填方法に
ある。
According to the present invention, when a molded catalyst or a supported catalyst is dropped and packed into a fixed bed reactor from above, a shape and a thickness that do not substantially prevent the fall of the catalyst are provided in the reactor. There is provided a method of filling a molded catalyst or a supported catalyst, characterized in that at least one string-like substance is included.

【0006】本発明において用いることのできる成型触
媒の形状については、とくに限定はなく、球状、円柱
状、円筒状、星型状等、通常の打錠機、押出成型機、転
動造粒機等で成型されるものが用いられる。また、担持
触媒を用いる場合、担体の種類についてはとくに限定は
なく、シリカ、アルミナ、シリカ・アルミナ、マグネシ
ア、チタニア等の通常の担体が用いられる。その形状に
ついてもとくに限定されるものではなく、球状、円柱
状、円筒状、板状等が挙げられる。
The shape of the molded catalyst that can be used in the present invention is not particularly limited, and it may be a usual tableting machine, extrusion molding machine, or rolling granulator, such as spherical, cylindrical, cylindrical, star-shaped, etc. What is molded by etc. is used. When the supported catalyst is used, the type of carrier is not particularly limited, and ordinary carriers such as silica, alumina, silica-alumina, magnesia, titania, etc. are used. The shape is not particularly limited, and examples thereof include spherical shape, cylindrical shape, cylindrical shape, and plate shape.

【0007】本発明は、固定床反応器の形態に制限を加
えるものではなく、さまざまな形態の反応器に適用する
ことができる。なかでも多管垂直型反応器のように、管
径が狭く管長が長いものに適用する場合、非常に有効で
ある。
The present invention does not limit the form of the fixed bed reactor and can be applied to various forms of reactor. In particular, it is very effective when applied to a narrow tube diameter and long tube length such as a multi-tube vertical reactor.

【0008】反応器内に介在させるひも状物質の形状は
触媒の落下を実質的に妨げない形状及び太さであれば特
に制限を設ける必要はなく、針金状、糸状、帯状、チュ
ーブ状、鎖状、板状、らせん状等任意の形状が挙げら
れ、更にその各々に枝状、ブラシ毛状、板状等のものを
備えた形状も挙げられる。これらの材質としては、特に
制限はなく落下する触媒との接触により破損,破断しな
いものであればよく、各種金属,プラスチック,繊維,
木材等の何れであってもよい。また、これらを適宜組合
せたものでもよい。
There is no particular limitation on the shape of the string-like substance interposed in the reactor as long as it has a shape and a thickness that does not substantially impede the fall of the catalyst. Shapes, plates, spirals, and other arbitrary shapes can be mentioned, and further, shapes including branches, brush bristles, plates, and the like can also be mentioned. These materials are not particularly limited as long as they are not broken or broken by contact with a falling catalyst, and various metals, plastics, fibers,
It may be wood or the like. Moreover, what combined these suitably may be sufficient.

【0009】本発明において、反応器内に介在させるひ
も状物質の長さはとくに限定はないが、あまり短すぎる
と触媒充填時の粉化・崩壊を抑制する効果が低下する。
長さとしては、反応器底部に届く程度が好ましい。
In the present invention, the length of the string-like substance interposed in the reactor is not particularly limited, but if it is too short, the effect of suppressing pulverization and disintegration at the time of filling the catalyst is lowered.
The length is preferably such that it reaches the bottom of the reactor.

【0010】ひも状物質の使用本数には特に制限はな
く、本数が多いほど触媒充填時の粉化・崩壊を抑制する
効果は大きい。しかし、本数が多すぎると触媒の落下の
妨げになることがあるため、挿入するひも状物質の形
状、反応器の管径の大小に応じて適宜な本数を選ぶ。
There is no particular limitation on the number of strings used, and the greater the number, the greater the effect of suppressing pulverization and disintegration when the catalyst is filled. However, if the number is too large, it may hinder the dropping of the catalyst. Therefore, an appropriate number is selected according to the shape of the string-like substance to be inserted and the size of the tube diameter of the reactor.

【0011】反応器内に介在させたひも状物質は反応開
始前に除去してもよいし、しなくてもよい。用いたひも
状物質の形状及び材質が目的生成物の収率に影響を及ぼ
さないものであれば、必ずしも触媒充填後に除去する必
要はない。また、用いたひも状物質が、充填した触媒の
性能を変化させない範囲の加熱処理により、容易に燃焼
又は気化し除去できるような材質のものであれば、触媒
充填後に適当な熱処理をすることにより除去することも
できる。
The string-like substance interposed in the reactor may or may not be removed before the start of the reaction. If the shape and material of the string-like substance used does not affect the yield of the target product, it is not always necessary to remove it after filling the catalyst. If the string-like material used is a material that can be easily combusted or vaporized and removed by a heat treatment in a range that does not change the performance of the packed catalyst, then perform appropriate heat treatment after the catalyst is packed. It can also be removed.

【0012】しかし、用いたひも状物質の形状及び材質
が上記のようなものでない場合は、反応開始前に除去す
る方が好ましい。その手法としては、反応器への触媒の
充填を終えた後に該ひも状物質を上部より引き抜くこと
は著しく困難であるため、触媒の充填と同時に上部より
徐々に引き上げる方法が好ましい。ひも状物を反応器内
に介在させる手段としては、反応器に吊下げるのがよ
く、また、形状材質によっては反応器の底部に載置して
もよい。
However, when the shape and material of the string-like substance used is not as described above, it is preferable to remove it before starting the reaction. As a method thereof, it is extremely difficult to pull out the string-like substance from the upper portion after the filling of the catalyst into the reactor is completed. Therefore, a method of gradually pulling up the upper portion from the upper portion simultaneously with the filling of the catalyst is preferable. As a means for interposing the string-like material in the reactor, it may be suspended in the reactor, or depending on the shape material, it may be placed on the bottom of the reactor.

【0013】[0013]

【実施例】以下、実施例を挙げて本発明を更に説明す
る。なお文中「部」は重量部を意味する。また、成型触
媒又は担持触媒の充填粉化率(%)は次のように定義さ
れる。触媒a部を、水平方向に対して垂直に設置した反
応器上部より充填し、充填後反応器底部より回収された
触媒のうち、14メッシュのふるいを通過しないものが
b部であったとする。
EXAMPLES The present invention will be further described below with reference to examples. In the text, “part” means part by weight. Further, the filling powdery rate (%) of the molded catalyst or the supported catalyst is defined as follows. It is assumed that the catalyst a part is filled from the upper part of the reactor installed vertically to the horizontal direction, and among the catalysts recovered from the bottom part of the reactor after filling, the part that does not pass through the 14-mesh sieve is the b part.

【0014】[0014]

【化1】[Chemical 1]

【0015】実施例1 イソブタンの酸化によるメタクロレイン及びメタクリル
酸合成用触媒である下記の組成の触媒粉末を調製した。 P1 Mo120.5 Cu0.1 Ni0.2 Ir0.04Cs1 X (式中、P、Mo、V、Cu、Ni、Ir、Cs及びO
はそれぞれリン、モリブデン、バナジウム、銅、ニッケ
ル、イリジウム、セシウム及び酸素を表わす。また、元
素記号右下併記の数字は各元素の原子比であり、xは前
記各成分の原子価を満足するのに必要な酸素原子数であ
る。)得られた触媒粉末970部をグラファイト粉末3
0部とよく混合した後、外径5mm、内径2mm、高さ3mm
の円筒形に打錠成型した。
Example 1 A catalyst powder having the following composition, which is a catalyst for synthesizing methacrolein and methacrylic acid by the oxidation of isobutane, was prepared. P 1 Mo 12 V 0.5 Cu 0.1 Ni 0.2 Ir 0.04 Cs 1 O X (wherein P, Mo, V, Cu, Ni, Ir, Cs and O
Represents phosphorus, molybdenum, vanadium, copper, nickel, iridium, cesium and oxygen, respectively. Further, the numbers in the lower right of the element symbols are the atomic ratios of the respective elements, and x is the number of oxygen atoms required to satisfy the valences of the respective components. ) 970 parts of the obtained catalyst powder was added to graphite powder 3
After mixing well with 0 part, outer diameter 5mm, inner diameter 2mm, height 3mm
Tablet-molded into a cylindrical shape.

【0016】内径3cm、長さ5mの鉄製円筒型反応器上
部より、外径1mm、長さ4.7mの針金を3本挿入し
た。前記で得られた成型触媒2kgを、100g充填する
毎に針金を12cm上部に引き上げる要領で、反応器上部
より落下充填した。このときの充填粉化率を測定したと
ころ、1.1%であった。
Three wires having an outer diameter of 1 mm and a length of 4.7 m were inserted from the upper portion of an iron cylindrical reactor having an inner diameter of 3 cm and a length of 5 m. 2 kg of the molded catalyst obtained above was dropped and filled from the upper part of the reactor in a manner that the wire was pulled up by 12 cm every time 100 g was filled. The filling powder ratio at this time was measured and found to be 1.1%.

【0017】比較例1 実施例1と同様にして得られた成型触媒を実施例1と同
様の反応器に針金を挿入することなくそのまま落下充填
した。このときの充填粉化率を測定したところ4.0%
であった。
Comparative Example 1 The molded catalyst obtained in the same manner as in Example 1 was dropped and charged into the same reactor as in Example 1 without inserting a wire. The filling powder ratio at this time was measured to be 4.0%.
Met.

【0018】実施例2 n−ブテンの酸化による無水マレイン酸合成用触媒であ
る下記の組成の触媒粉末を調製した。 V1 1.5 Li0.5 X (式中、V、P、Li及びOはそれぞれバナジウム、リ
ン、リチウム及び酸素を表わす。また、元素記号右下併
記の数字は各元素の原子比であり、xは前記各成分の原
子価を満足するのに必要な酸素原子数である。)得られ
た触媒粉末970部をグラファイト粉末30部とよく混
合した後、直径5mm、高さ4mmの円柱形に打錠成型し
た。
Example 2 A catalyst powder having the following composition, which is a catalyst for synthesizing maleic anhydride by the oxidation of n-butene, was prepared. V 1 P 1.5 Li 0.5 O X (In the formula, V, P, Li and O respectively represent vanadium, phosphorus, lithium and oxygen. Also, the numbers in the lower right of the element symbols are the atomic ratios of the respective elements, x Is the number of oxygen atoms required to satisfy the valence of each of the above components.) After thoroughly mixing 970 parts of the obtained catalyst powder with 30 parts of graphite powder, a cylindrical shape having a diameter of 5 mm and a height of 4 mm was formed. I made a tablet.

【0019】内径2.7cm、長さ4mのステンレス製円
筒型反応器上部より、幅1cm、長さ3.6mのナイロン
製リボンを1本挿入した。前記で得られた成型触媒2kg
を、100g充填する毎にリボンを15cm上部に引き上
げる要領で、反応器上部より落下充填した。このときの
充填粉化率を測定したところ、0.4%であった。
From the upper part of the stainless steel cylindrical reactor having an inner diameter of 2.7 cm and a length of 4 m, one nylon ribbon having a width of 1 cm and a length of 3.6 m was inserted. 2 kg of the molded catalyst obtained above
Was dropped and filled from the upper part of the reactor in such a manner that the ribbon was pulled up to 15 cm above every 100 g. The filling powder ratio at this time was measured and found to be 0.4%.

【0020】比較例2 実施例2において、リボンを挿入することなくそのまま
落下充填した。このときの充填粉化率を測定したところ
2.0%であった。
Comparative Example 2 In Example 2, the ribbon was dropped and filled as it was without inserting the ribbon. The filling powder ratio at this time was measured and found to be 2.0%.

【0021】実施例3 ベンゾチオフェンの水素化脱硫触媒である下記の組成の
触媒粉末を調製した。 Co1 Mo2 X (式中、Co、Mo及びOはそれぞれコバルト、モリブ
デン及び酸素を表わす。また、元素記号右下併記の数字
は各元素の原子比であり、xは前記各成分の原子価を満
足するのに必要な酸素原子数である。)得られた触媒粉
末20部を直径4mmの球状アルミナ担体80部に担時し
た。
Example 3 A catalyst powder having the following composition, which is a hydrodesulfurization catalyst for benzothiophene, was prepared. Co 1 Mo 2 O X (In the formula, Co, Mo and O represent cobalt, molybdenum and oxygen, respectively. Also, the numbers in the lower right of the element symbols are the atomic ratios of the respective elements, and x is the atom of each component. It is the number of oxygen atoms required to satisfy the valence.) 20 parts of the obtained catalyst powder was supported on 80 parts of a spherical alumina carrier having a diameter of 4 mm.

【0022】内径3cm、長さ4.5mのステンレス製円
筒型反応器上部より、羊毛製で長さ1cmのブラシ毛を備
えた直径0.8mm、長さ4.2mの針金を1本挿入し
た。前記で得られた担持触媒2kgを、100g充填する
毎にブラシ毛付き針金を12cm上部に引き上げる要領
で、反応器上部より落下充填した。このときの充填粉化
率を測定したところ、0.2%であった。
From the upper portion of the stainless steel cylindrical reactor having an inner diameter of 3 cm and a length of 4.5 m, one wire having a diameter of 0.8 mm and a length of 4.2 m equipped with a bristle of 1 cm and made of wool was inserted. .. 2 kg of the supported catalyst obtained above was dropped and filled from the upper part of the reactor in a manner that the wire with brush bristles was pulled up to 12 cm every time 100 g was charged. The filling powder ratio at this time was measured and found to be 0.2%.

【0023】比較例3 実施例3において、ブラシ毛付き針金を挿入することな
くそのまま落下充填した。このときの充填粉化率を測定
したところ1.7%であった。
Comparative Example 3 In Example 3, dropping and filling was performed as it was without inserting the wire with brush bristles. The filling powder ratio at this time was measured and found to be 1.7%.

【0024】実施例4 イソ酪酸の脱水素によるメタクリル酸合成用触媒である
下記の組成の触媒粉末を調製した。 V1 0.5 Mo5 Pb0.25X (式中、V、P、Mo、Pb及びOはそれぞれバナジウ
ム、リン、モリブデン、鉛及び酸素を表わす。また、元
素記号右下併記の数字は各元素の原子比であり、xは前
記各成分の原子価を満足するのに必要な酸素原子数であ
る。)得られた触媒粉末に少量の水を加え、よく混合し
た後、押出成型機により、直径4mm、高さ5mmの円柱形
に成型した。
Example 4 A catalyst powder having the following composition, which is a catalyst for methacrylic acid synthesis by dehydrogenation of isobutyric acid, was prepared. V 1 P 0.5 Mo 5 Pb 0.25 O X (In the formula, V, P, Mo, Pb and O represent vanadium, phosphorus, molybdenum, lead and oxygen, respectively. Also, the numbers in the lower right of the element symbols are the numbers of each element. It is an atomic ratio, and x is the number of oxygen atoms required to satisfy the valences of the above components.) A small amount of water is added to the obtained catalyst powder and mixed well, and then the diameter is measured by an extruder. It was molded into a cylindrical shape with a height of 4 mm and a height of 5 mm.

【0025】内径3cm、長さ5.5mのステンレス製円
筒型反応器上部より、外径6mm、内径3mm、長さ5.2
mのテフロン製チューブを2本挿入した。前記で得られ
た成型触媒2kgを、100g充填する毎にチューブを1
2cm上部に引き上げる要領で、反応器上部より落下充填
した。このときの充填粉化率を測定したところ、1.1
%であった。
From the upper part of the stainless steel cylindrical reactor having an inner diameter of 3 cm and a length of 5.5 m, an outer diameter of 6 mm, an inner diameter of 3 mm and a length of 5.2.
Two Teflon tubes of m were inserted. A tube is added for every 100 g of the molded catalyst obtained above (2 kg).
It was dropped and filled from the upper part of the reactor in a manner of pulling it up to 2 cm. When the filling powder ratio at this time was measured, it was 1.1.
%Met.

【0026】比較例4 実施例4において、テフロン製チューブを挿入すること
なくそのまま落下充填した。このときの充填粉化率を測
定したところ2.5%であった。
Comparative Example 4 In Example 4, dropping and filling was performed as it was without inserting a Teflon tube. The filling powder ratio at this time was measured and found to be 2.5%.

【0027】[0027]

【発明の効果】本発明による方法で、成型触媒又は担持
触媒を固定床反応器に充填すると、落下時の物理的衝撃
による触媒の粉化・崩壊が著しく少なくすることができ
る。このため充填時における触媒の粉化等を懸念して触
媒の機械的強度を必要以上に高くする必要がなくなる。
従って、触媒設計上の制限が少なくなり、幅広い条件で
の触媒調製が可能となる。
When the molded catalyst or the supported catalyst is packed in the fixed bed reactor by the method according to the present invention, the powdering / disintegration of the catalyst due to the physical impact at the time of dropping can be significantly reduced. Therefore, there is no need to raise the mechanical strength of the catalyst more than necessary because of concern about powdering of the catalyst during filling.
Therefore, restrictions on catalyst design are reduced, and catalyst preparation under a wide range of conditions becomes possible.

【数1】 [Equation 1]

【手続補正書】[Procedure amendment]

【提出日】平成3年10月8日[Submission date] October 8, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

1】[ Equation 1]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】[0027]

【発明の効果】本発明による方法で、成型触媒又は担持
触媒を固定床反応器に充填すると、落下時の物理的衝撃
による触媒の粉化・崩壊著しく少なくすることができ
る。このため充填時における触媒の粉化等を懸念して触
媒の機械的強度を必要以上に高くする必要がなくなる。
従って、触媒設計上の制限が少なくなり、幅広い条件で
の触媒調製が可能となる。 ─────────────────────────────────────────────────────
[Effect of the Invention] In the process according to the invention, when filling the molding catalyst or supported catalyst in a fixed bed reactor, it is possible to significantly reduce the powdering-disintegration of the catalyst by physical impact during dropping. Therefore, there is no need to raise the mechanical strength of the catalyst more than necessary because of concern about powdering of the catalyst during filling.
Therefore, restrictions on catalyst design are reduced, and catalyst preparation under a wide range of conditions becomes possible. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年12月12日[Submission date] December 12, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

1】[ Equation 1]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】実施例3 ベンゾチオフェンの水素化脱硫触媒である下記の組成の
触媒粉末を調製した。 CoMo (式中、Co、Mo及びOはそれぞれコバルト、モリブ
デン及び酸素を表わす。また、元素記号右下併記の数字
は各元素の原子比であり、xは前記各成分の原子価を満
足するのに必要な酸素原子数である。)得られた触媒粉
末20部を直径4mmの球状アルミナ担体80部に拒
した。
Example 3 A benzothiophene hydrodesulfurization catalyst having the following composition
A catalyst powder was prepared. Co1MoTwoOx  (In the formula, Co, Mo and O are respectively cobalt and molybdenum.
Represents den and oxygen. The numbers in the lower right of the element symbols
Is the atomic ratio of each element, and x is the valence of each component.
It is the number of oxygen atoms required to add. ) Obtained catalyst powder
20 parts of powder are rejected to 80 parts of spherical alumina carrier with a diameter of 4 mm.Possession
did.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 57/05 6742−4H C07D 307/60 B 7729−4C (72)発明者 大北 求 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location C07C 57/05 6742-4H C07D 307/60 B 7729-4C (72) Inventor Ohkita Juku Hiroshima Prefecture 20-1 Miyukicho, Otake City, Central Research Laboratory, Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 成型触媒又は担持触媒を固定床反応器に
上部より落下充填するに際し、反応器内に、実質的に触
媒の落下を妨げない形状及び太さを有する少なくとも1
個のひも状物質を介在させることを特徴とする成型触媒
又は担持触媒の充填方法。
Claim: What is claimed is: 1. When a molded catalyst or a supported catalyst is dropped and packed into a fixed bed reactor from above, the reactor has at least a shape and a thickness that do not substantially prevent the fall of the catalyst. 1
A method for filling a molded catalyst or a supported catalyst, which comprises interposing individual string-like substances.
JP21155091A 1991-07-29 1991-07-29 Catalyst packing method Pending JPH0531351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21155091A JPH0531351A (en) 1991-07-29 1991-07-29 Catalyst packing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21155091A JPH0531351A (en) 1991-07-29 1991-07-29 Catalyst packing method

Publications (1)

Publication Number Publication Date
JPH0531351A true JPH0531351A (en) 1993-02-09

Family

ID=16607673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21155091A Pending JPH0531351A (en) 1991-07-29 1991-07-29 Catalyst packing method

Country Status (1)

Country Link
JP (1) JPH0531351A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527070A (en) * 2003-04-24 2006-11-30 キャット テック インコーポレイテッド Method and apparatus for filling catalyst
US7147011B2 (en) 2004-01-22 2006-12-12 Mitsubishi Chemical Corporation Method for packing solid catalyst
JP2008509002A (en) * 2004-08-13 2008-03-27 トータル・フランス Apparatus for loading solid particles in a container and method of using the same
EP1925606A2 (en) 2001-12-28 2008-05-28 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
US7549341B2 (en) 2004-05-31 2009-06-23 Mitsubishi Chemical Corporation Method of maintaining a multitubular reactor
JP2020163373A (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Granule filling method
CN114450081A (en) * 2019-10-15 2022-05-06 科莱恩国际有限公司 Reactor system for the preparation of maleic anhydride by catalytic oxidation of n-butane

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925606A2 (en) 2001-12-28 2008-05-28 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
US7528281B2 (en) 2001-12-28 2009-05-05 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
JP2006527070A (en) * 2003-04-24 2006-11-30 キャット テック インコーポレイテッド Method and apparatus for filling catalyst
US7770613B2 (en) 2003-04-24 2010-08-10 Clean Harbors Catalyst Technologies, Llc Method and apparatus for loading catalyst
US7147011B2 (en) 2004-01-22 2006-12-12 Mitsubishi Chemical Corporation Method for packing solid catalyst
US7549341B2 (en) 2004-05-31 2009-06-23 Mitsubishi Chemical Corporation Method of maintaining a multitubular reactor
JP2008509002A (en) * 2004-08-13 2008-03-27 トータル・フランス Apparatus for loading solid particles in a container and method of using the same
JP2020163373A (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Granule filling method
US11975318B2 (en) 2019-03-29 2024-05-07 Mitsubishi Chemical Corporation Granule loading method
CN114450081A (en) * 2019-10-15 2022-05-06 科莱恩国际有限公司 Reactor system for the preparation of maleic anhydride by catalytic oxidation of n-butane

Similar Documents

Publication Publication Date Title
JP4204092B2 (en) Reactor and fluid material processing method
KR100709055B1 (en) Catalyst for preparation of unsaturated aldehyde and unsaturated carboxylic acid
EP2617491B1 (en) Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
RU2016114683A (en) CATALYST FOR SYNTHESIS OF UNSATURATED CARBONIC ACID BY GAS-PHASE OXIDATION OF UNSATURATED ALDEHYDE
JP3272745B2 (en) Method for producing methacrolein and methacrylic acid
KR20110074913A (en) Modified Trirobe Forms for Maleic Anhydride Catalyst
WO2005047224A1 (en) Method for long term operation of a heterogeneously catalysed gas phase partial oxidation of propene in order to form acrolein
JPH0531351A (en) Catalyst packing method
JP2007509051A (en) Method for producing unsaturated aldehyde and / or unsaturated fatty acid
JP2004255343A (en) Composite oxide catalyst, and method for manufacturing acrylic acid by using the same
JP3272925B2 (en) Filling method of solid catalyst
JP2002306953A (en) Fixed bed multitubular reactor and its usage
JP7156506B2 (en) Molded catalyst, molded catalyst for producing methacrolein and/or methacrylic acid, and method for producing methacrolein and/or methacrylic acid
US5606099A (en) Process for the preparation of succinic acid dialkyl esters
JPH067669A (en) Packing method of catalyst for synthesizing acrolein and acrylic acid
JP2852712B2 (en) Catalyst for synthesizing acrolein and acrylic acid and method for producing the same
JPH0597730A (en) Method of filling catalyst for methacrolein and methacrylic acid synthesis
DE2325325A1 (en) METHOD AND DEVICE FOR PRODUCING AN ALUMINUM HALOGENIDE COMPLEX
JP2819078B2 (en) Method for filling molybdenum-containing oxide catalyst
JP2004082099A (en) Filling method of solid catalyst
JP3260185B2 (en) Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JPS63315148A (en) Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
JP2004249196A (en) Method for filling particulate matter and fixed bed
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids