JPH05335311A - Flip chip semiconductor device and manufacture thereof - Google Patents
Flip chip semiconductor device and manufacture thereofInfo
- Publication number
- JPH05335311A JPH05335311A JP4141201A JP14120192A JPH05335311A JP H05335311 A JPH05335311 A JP H05335311A JP 4141201 A JP4141201 A JP 4141201A JP 14120192 A JP14120192 A JP 14120192A JP H05335311 A JPH05335311 A JP H05335311A
- Authority
- JP
- Japan
- Prior art keywords
- flip
- solder bump
- semiconductor device
- solder bumps
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000004065 semiconductor Substances 0.000 title claims description 17
- 229910000679 solder Inorganic materials 0.000 claims abstract description 74
- 238000007689 inspection Methods 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 45
- 238000011156 evaluation Methods 0.000 claims description 10
- 238000003825 pressing Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 238000007747 plating Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はフリップチップ半導体装
置及びその製造方法に関し、特に半田バンプの形状及び
その製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip chip semiconductor device and a method for manufacturing the same, and more particularly to a solder bump shape and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、半導体IC(以下IC)の製造技
術における微小化と、これに伴なう高集積化、高機能
化、多端子化という傾向により、これらのICの接続端
子と回路基板の接続端子との接続についても微小化、多
端子化が要求されている。2. Description of the Related Art Conventionally, due to miniaturization in the manufacturing technology of semiconductor ICs (hereinafter referred to as ICs) and the accompanying trend toward higher integration, higher functionality and more terminals, the connection terminals of these ICs and circuit boards There is also a demand for miniaturization and multi-terminal connection with the connection terminals.
【0003】ICと回路基板との接続方法にはワイヤー
ボンド方式、TAB方式、フリップチップ方式などが知
られているが、多端子を有するICの高密度実装方式と
してはフリップチップ方式が適している。これは、フリ
ップチップ方式ではICの表面上の全面に接続端子を設
けることができ、ICの表面上の周辺部に接続端子を設
けるワイヤーボンド方式やTAB方式に比べ多端子化が
容易であるからである。またこのフリップチップ方式
は、接続に有する配線長が短いため電気的特性も優れて
いる。The wire bonding method, the TAB method, the flip chip method and the like are known as the method of connecting the IC and the circuit board, and the flip chip method is suitable as a high density mounting method of an IC having multiple terminals. .. This is because in the flip chip method, the connection terminals can be provided on the entire surface of the IC, and the number of terminals can be easily increased as compared with the wire bond method or the TAB method in which the connection terminals are provided on the peripheral portion of the IC surface. Is. Further, the flip chip method has excellent electrical characteristics because the wiring length for connection is short.
【0004】これらの理由により10数年前から実装方
式のひとつとして、特に大型コンピューターの実装方式
としてフリップチップ方式が検討あるいは実用化されて
おり、最近では液晶表示電子部品への実装方式としても
検討されている。従来、フリップチップ方式はICの表
面にパターン形成されたパッド部に、例えば半田バンプ
をめっき法や半田ボール供給法で形成する方式であった
が、例えば半田バンプにかわり金バンプや銅バンプある
いはワイヤーボンド方式による金ボールバンプ化や半田
バンプの形状については、球状から鼓状への変更、また
はポリイミドフイルムを介した多段バンプ化等各種の研
究、実験が行なわれている。For these reasons, a flip-chip method has been studied or put into practical use as one of the mounting methods, especially as a mounting method for large-sized computers, for 10 years ago, and recently, it has also been considered as a mounting method for liquid crystal display electronic parts. Has been done. Conventionally, the flip-chip method has been a method in which, for example, solder bumps are formed on a pad portion formed by patterning on the surface of an IC by a plating method or a solder ball supplying method. Regarding the gold ball bump formation and the solder bump shape by the bonding method, various researches and experiments have been conducted such as changing from spherical shape to drum shape, or forming multiple bumps via polyimide film.
【0005】また従来から、フリップチップ方式の半導
体素子はチップに切断する前のウエハー状態でDC特性
等の電気的評価を行なっているが、AC特性等の電気的
評価は、チップが搭載されるパッケージあるいは回路基
板にフリップチップボンディングを行い最終製品の形態
に仕上げてから行われている。従って、フリップチップ
ボンディングを行った後に特性評価を行って、もしチッ
プに異状があった場合、このチップの取り外し(リペ
ア)は非常に困難であり、またチップを搭載する基板の
再生も非常に困難である。Conventionally, flip-chip type semiconductor devices are electrically evaluated for DC characteristics and the like in a wafer state before being cut into chips. However, for electrical evaluation of AC characteristics and the like, the chip is mounted. It is performed after flip-chip bonding to a package or a circuit board to form a final product. Therefore, if flip chip bonding is performed and then the characteristics are evaluated, and if there is something wrong with the chip, it is very difficult to remove (repair) this chip, and it is also very difficult to regenerate the substrate on which the chip is mounted. Is.
【0006】また、一般にICは集積度が大きくなると
若干の欠陥品が混入することは避けることができないた
め、高価なICにおいてはまだ付加価値の低い状態、つ
まり可能なかぎりパッケージされる前の状態、またフリ
ップチップICにおいては永久接続に近いフリップチッ
プ接続される前の状態で特性評価できることが望まれ
る。In general, since it is inevitable that a small amount of defective products will be mixed in the IC as the degree of integration increases, in an expensive IC, the added value is still low, that is, the package is packaged as much as possible. In addition, in a flip chip IC, it is desired that the characteristics can be evaluated in the state before the flip chip connection, which is close to permanent connection.
【0007】このように、従来フリップチップの電気的
評価はチップが搭載されるパッケージあるいは回路基板
にフリップチップボンディングを行い、最も付加価値が
高くなった製品の状態で行われるので、チップ異状があ
ったときには製造工程における損失が大きく、製品の原
価に大きな影響を及ぼすという問題があった。As described above, the electrical evaluation of the conventional flip chip is performed in the state of the product with the highest added value by performing the flip chip bonding on the package or the circuit board on which the chip is mounted, so that there is a chip abnormality. In that case, there was a problem that the loss in the manufacturing process was large and the cost of the product was greatly affected.
【0008】[0008]
【発明が解決しようとする課題】フリップチップ方式で
は、以上述べたように従来は、フリップチップボンディ
ングを実施したあとで最終的特性評価を行っていた。従
ってチップに異状があったとき、製造工程における損失
が大きいという問題があった。In the flip-chip method, as described above, conventionally, the final characteristic evaluation is performed after the flip-chip bonding is performed. Therefore, there is a problem that the loss in the manufacturing process is large when the chip is abnormal.
【0009】これらの原因は、フリップチップボンディ
ングを実施する前にチップ状態で最終的な電気的特性評
価を十分に実施することが困難であったからである。つ
まり、例えば図3の断面図に示すようにウエハー状態で
めっき法等により半田バンプ2を形成するプロセスで
は、ウエハー内あるいはひとつのIC1内においても半
田バンプ2の高さにばらつきが生じてしまい、チップ状
態では検査用基板3のバッドとの電気的導通が加圧のみ
では十分に得られないという問題点があった。These causes are because it is difficult to sufficiently perform final electrical characteristic evaluation in a chip state before performing flip chip bonding. That is, for example, in the process of forming the solder bumps 2 by a plating method or the like in a wafer state as shown in the cross-sectional view of FIG. 3, the height of the solder bumps 2 varies in the wafer or in one IC 1, In the chip state, there is a problem that electrical conduction with the pad of the inspection substrate 3 cannot be sufficiently obtained only by applying pressure.
【0010】また他の方法として、図4の断面図に示す
ようにIC1と検査用基板3の間に、例えば導電性弾性
シート4等を介在させ、IC1の半田バンプ2と検査用
基板3のパッドとを加圧のみにより電気的導通を得る方
法がある。この方式においては、ICの半田バンプ同志
の僅かな高さの差を導電性弾性シートにより吸収できる
ので、半田バンプと検査用基板のパッドとの接触が完全
に得られる。As another method, as shown in the sectional view of FIG. 4, for example, a conductive elastic sheet 4 or the like is interposed between the IC 1 and the inspection substrate 3, and the solder bumps 2 of the IC 1 and the inspection substrate 3 are separated. There is a method of obtaining electrical conduction only by applying pressure to the pad. In this method, since the conductive elastic sheet can absorb the slight difference in height between the solder bumps of the IC, the contact between the solder bump and the pad of the inspection substrate can be completely obtained.
【0011】しかしながら導電性弾性シートの導通抵抗
は、例えば数Ωから数百Ω程度と大きく、ICがパワー
IC等の場合、検査時の大電流により導電性弾性シート
が発熱し、その物性値が劣化してしまうという点や、半
田バンプの高さの差が有るために各半田バンプと導電性
弾性シートとの接触抵抗に差が生じることや、特に多端
子のICの場合、完全な接触を得るには大きな圧力、例
えば300ピンのICでは4.5kg 〜6kg 程の
圧力が必要となり、IC及び検査用基板が破損する恐れ
が有る等の問題点があった。However, the conductive resistance of the conductive elastic sheet is large, for example, about several Ω to several hundred Ω, and when the IC is a power IC or the like, the conductive elastic sheet generates heat due to a large current at the time of inspection, and its physical property value is increased. Deterioration and the difference in the height of the solder bumps causes a difference in the contact resistance between each solder bump and the conductive elastic sheet. In particular, in the case of a multi-terminal IC, complete contact is required. In order to obtain it, a large pressure, for example, a pressure of about 4.5 kg to 6 kg is required for a 300-pin IC, and there is a problem that the IC and the inspection board may be damaged.
【0012】これらの問題点が有ったため、図5の断面
図に示すように検査用基板3又は回路基板にICの半田
バンプを溶融させてフリップチップボンディングを実施
し、最終的な電気的特性評価を行っていた。Because of these problems, as shown in the sectional view of FIG. 5, solder bumps of the IC are melted on the inspection substrate 3 or the circuit substrate to perform flip chip bonding, and the final electrical characteristics are obtained. I was doing an evaluation.
【0013】[0013]
【課題を解決するための手段】本発明のフリップチップ
半導体装置及びその製造方法は、ICの表面上に設けら
れた複数個の半田バンプの先端部に平坦面を形成したフ
リップチップ半導体装置で、その製造方法は半田バンプ
の先端部に平面板を配置し、その状態でリフローを行な
うことにより半田バンプの先端部に平坦面を形成する方
法である。A flip-chip semiconductor device and a method of manufacturing the same according to the present invention are a flip-chip semiconductor device in which a plurality of solder bumps provided on the surface of an IC are formed with flat surfaces at their tips. The manufacturing method is a method in which a flat plate is arranged at the tip of the solder bump and reflow is performed in that state to form a flat surface at the tip of the solder bump.
【0014】またこのICの半田バンプの先端部に直接
あるいは導電性弾性シートを介して複数個の電極パター
ンが設けられた検査用基板に、ICを加圧した状態で電
気的接触させて最終的な電気的特性評価を行なうので、
従来のフリップチップ方式の問題点を解決することがで
きる。Further, the IC is electrically contacted in a pressurized state to a test substrate having a plurality of electrode patterns provided directly on the tip of the solder bump of the IC or via a conductive elastic sheet, and finally. Since the electrical characteristics are evaluated,
It is possible to solve the problems of the conventional flip chip method.
【0015】[0015]
【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(b)は本発明の第1の実施例の製造
工程を示す断面図である。The present invention will be described below with reference to the drawings. 1A and 1B are cross-sectional views showing the manufacturing process of the first embodiment of the present invention.
【0016】同図(a)において1は半導体IC,2は
半田バンプ,6はガラス板,7は重りである。半田バン
プ2はウエハー状態の時に、例えば次に記述するような
めっき法により形成される。IC1上のAl等で形成さ
れた電極上に、スパッタ法等により例えばCr,Pd,
Cuの順に薄膜を形成し、レジスト塗布,露光,現像等
の処理により電極部に開口をもつレジストを配置し、こ
の開口部に電解めっき法により半田バンプを形成する。
次にレジスト剥離,半田バンプ部以外のCr,Pd,C
uの剥離を行ない、最後に半田バンプのウエットバック
処置を行なうことにより半球状の半田バンプ2が形成さ
れる。In FIG. 1A, 1 is a semiconductor IC, 2 is a solder bump, 6 is a glass plate, and 7 is a weight. The solder bumps 2 are formed in a wafer state by a plating method as described below, for example. For example, Cr, Pd,
A thin film is formed in the order of Cu, a resist having an opening is arranged in the electrode portion by processing such as resist coating, exposure, and development, and a solder bump is formed in this opening by electrolytic plating.
Next, resist peeling, Cr, Pd, C other than solder bumps
The semi-spherical solder bumps 2 are formed by removing u and finally performing wet back treatment of the solder bumps.
【0017】この半田バンプ形成プロセスで製作された
半田バンプは、ひとつのIC1内においても半田バンプ
2の高さは例えば平均100μmに対して±10〜30
μmのばらつきが生じている。そこでウエハーをチップ
に切断後、チップサイズに対応したICの半田バンプ2
の先端部に接触する面の平面度が±1μm以下に仕上げ
られた例えば石英ガラス板6にIC1を挿入し、IC1
の裏面上に重り7を配置する。この状態で窒素等の不活
性ガスを使用したリフロー炉で、例えばMAX230
℃、また190℃から230℃までの時間は2〜4分と
いう熱処理を行なうことにより、半田バンプ2は図1
(b)に示す形状に形成される。In the solder bumps manufactured by this solder bump forming process, the height of the solder bumps 2 within one IC 1 is, for example, ± 10 to 30 with respect to an average of 100 μm.
There is a variation of μm. Therefore, after cutting the wafer into chips, the solder bumps 2 of the IC corresponding to the chip size
IC1 is inserted into, for example, a quartz glass plate 6 whose flatness of the surface in contact with the tip of the is finished to be ± 1 μm or less.
Place the weight 7 on the back surface of the. In this state, in a reflow furnace using an inert gas such as nitrogen, for example, MAX230
The solder bumps 2 are formed on the solder bumps 2 by applying a heat treatment of 2 to 4 minutes at a temperature of 190 ° C to 230 ° C.
It is formed in the shape shown in FIG.
【0018】この半田バンプ21の形状は、ガラス板6
のエッジ部10の高さ寸法hによって任意に形成するこ
とができ、例えば半田バンプのピッチが300μmで半
田バンプの高さhを100μmに設定すれば、半田バン
プ先端部の平坦面は直径50〜60μmの大きさで得ら
れ、その高さのばらつきは±1μm以下で形成される。
このリフロー炉での処理時には、必要に応じてフラック
スを半田バンプ部に塗布してもよい。本実施例によれば
従来の製法で作らるたフリップチップ用半田バンプ部の
高さばらつきを容易に極端に小さくすることが可能とな
る。The shape of the solder bump 21 is the glass plate 6
Can be formed arbitrarily according to the height dimension h of the edge portion 10. For example, if the pitch of the solder bumps is 300 μm and the height h of the solder bumps is 100 μm, the flat surface of the tip end of the solder bumps has a diameter of 50 to 50 μm. It is obtained in a size of 60 μm, and the variation in height is formed within ± 1 μm.
During processing in this reflow furnace, flux may be applied to the solder bumps if necessary. According to the present embodiment, it is possible to easily reduce the height variation of the flip-chip solder bump portion manufactured by the conventional manufacturing method to an extremely small value.
【0019】この製法で作られたフリップチップIC1
は、図1(C)に示すように検査用基板3上に形成され
た電極5に半田バンプ21を位置合わせし、加圧した状
態にすることによって電気的導通が十分に得られるよう
になる。検査用基板3上の電極5も高さのばらつきは小
さい方が良いので、検査用基板3の材質が例えばアルミ
ナセラミックの場合、電極5の形成前に研磨処理を行な
い、その後でスクリーン印刷法,蒸着法,めっき法等に
より電極5を形成し、電極5の高さばらつきを±1μm
以下に形成する必要があるが、これは従来技術で実現で
きるものである。Flip chip IC1 manufactured by this manufacturing method
As shown in FIG. 1C, the solder bumps 21 are aligned with the electrodes 5 formed on the inspection substrate 3 and brought into a pressurized state, whereby sufficient electrical conduction can be obtained. .. Since it is preferable that the height variation of the electrodes 5 on the inspection substrate 3 is also small, when the inspection substrate 3 is made of alumina ceramic, for example, a polishing process is performed before the electrodes 5 are formed, and then the screen printing method is performed. The electrode 5 is formed by vapor deposition, plating, etc., and the height variation of the electrode 5 is ± 1 μm.
This needs to be formed below, but this can be realized by the conventional technique.
【0020】ここでIC1の半田バンプ21の高さを1
00μm、平坦面の直径を60μmとしたとき、ひとつ
の半田バンプに対して5gを印加すると半田バンプは約
1μm変形するので、例えば300ピンのICでは1.
5kg〜3kg程度の低荷重で検査用基板とICとの電
気導通が得られる。またパワーIC等以外の大電流を検
査時に必要としないICでは、図1(d)に示すような
導電性弾性シート4をICと検査用基板3との間に介在
させた形態でもよい。Here, the height of the solder bump 21 of the IC 1 is set to 1
If the diameter of the flat surface is 00 μm and the diameter of the flat surface is 60 μm, applying 5 g to one solder bump deforms the solder bump by about 1 μm.
Electrical connection between the inspection substrate and the IC can be obtained with a low load of about 5 kg to 3 kg. Further, in an IC other than the power IC, which does not require a large current at the time of inspection, the conductive elastic sheet 4 as shown in FIG. 1D may be interposed between the IC and the inspection substrate 3.
【0021】以上説明したような半田バンプ形状を有す
るICを製造し、検査用基板と組合せることにより、最
終的なフリップチップボンディングを実施する前に、I
C単体のままで最終的な電気的特性評価を実施できるよ
うになる。従来、フリップチップICはフリップチップ
ボンディングを行ってから電気的評価を行っていたため
に欠陥品が生じたときにはリペア等が困難であり生産性
を非常に悪くしていたが、本発明のフリップチップIC
及び製造方法によりこの問題は解決し、フリップチップ
IC製造効率の向上や信頼性向上に大きな効果がある。By manufacturing an IC having a solder bump shape as described above and combining it with an inspection substrate, I can be manufactured before the final flip chip bonding.
It becomes possible to perform final electrical characteristic evaluation with C alone. Conventionally, a flip-chip IC has been electrically evaluated after flip-chip bonding. Therefore, when a defective product is produced, repair or the like is difficult and productivity is extremely deteriorated.
The manufacturing method solves this problem, and has a great effect on improving the manufacturing efficiency and reliability of the flip chip IC.
【0022】図2(a)〜(f)は本発明の第2の実施
例の製造工程を示す断面図である。同図において、1は
半導体IC、22、23は半田バンプ、61はガラス
板、71は重り、8はレジスト、9は半導体IC上の電
極、32は真空吸着口、31は検査用治貝、10は検査
用プローバーであり、半田バンプ22、23の形成法を
図(a)〜(e)で示している。半田バンプ22はウエ
ハー状態でめっき法等により形成されるが、図(a)に
おいては半田バンプ形成の前段階を示している。電極9
の周囲には露光〜現象等の処理により開口部をもつレジ
スト8が配置され、次に図(b)のようにめっき法で半
田バンプ22が形成される。この段階ではひとつのIC
の中でも半田バンプの高さはばらつきを生じるいる。2A to 2F are sectional views showing the manufacturing process of the second embodiment of the present invention. In the figure, 1 is a semiconductor IC, 22 and 23 are solder bumps, 61 is a glass plate, 71 is a weight, 8 is a resist, 9 is an electrode on the semiconductor IC, 32 is a vacuum suction port, 31 is an inspection shell, Reference numeral 10 is an inspection prober, and a method of forming the solder bumps 22 and 23 is shown in FIGS. The solder bumps 22 are formed in a wafer state by a plating method or the like, and FIG. (A) shows a pre-stage of solder bump formation. Electrode 9
A resist 8 having an opening is disposed around the periphery of the substrate by exposure to a phenomenon or the like, and then solder bumps 22 are formed by a plating method as shown in FIG. One IC at this stage
Among them, the height of the solder bump varies.
【0023】図(c)ではレジスト剥離後の状態を示
し、次に図(d)のようにチップ状態に切断したIC
を、このチップサイズに対応したICの半田バンプ22
の先端部に接触する面の平面度が±1μm以下に仕上げ
られた例えば石英ガラス板61に挿入し、IC1の裏面
上に重り71を配置する。この状態で不活性ガスを使用
したリフロー炉で熱処理を行なうことにより、半田バン
プ22は図(e)に示すような半田バンプ23の状態に
形成される。FIG. 3C shows the state after the resist is peeled off, and then the IC is cut into chips as shown in FIG. 2D.
IC solder bumps 22 corresponding to this chip size
Inserted into, for example, a quartz glass plate 61 whose flatness of the surface in contact with the tip end of is 1 μm or less, and a weight 71 is arranged on the back surface of the IC 1. By performing heat treatment in a reflow furnace using an inert gas in this state, the solder bumps 22 are formed into the solder bumps 23 as shown in FIG.
【0024】この製法は、レジスト剥離後の半田バンプ
のウエットバック処理と半田バンプの平坦面形成処理と
を同時に行なうものである。本実施例によれば、従来の
製法で作られたフリップチップ用半田バンプ部の高さば
らつきを容易にかつ工数を増加させることなく小さくす
ることが可能となる。In this manufacturing method, the wet back process of the solder bumps after the resist peeling and the flat surface forming process of the solder bumps are simultaneously performed. According to the present embodiment, it is possible to easily reduce the height variation of the flip-chip solder bump portion manufactured by the conventional manufacturing method and without increasing the number of steps.
【0025】この製法で作られたフリップチップIC1
は、本発明の第1の実施例の中の図1(c),(d)に
示す検査用基板3を用いて、最終的なフリップチップボ
ンディングを実施する前にIC単体のまますべての電気
的特性評価を実施できるようになる。また検査用基板を
使用しない検査法も可能である。例えば図2(f)に示
すような真空吸着口32を有する検査用治具31にIC
1を吸着し、検査用プローバー10を半田バンプ23に
直接接触させ電気的特性評価を行なうものである。Flip chip IC1 manufactured by this method
Using the inspection substrate 3 shown in FIGS. 1 (c) and 1 (d) in the first embodiment of the present invention, all the electrical components are left as they are before the final flip-chip bonding. Characterization can be carried out. An inspection method that does not use an inspection substrate is also possible. For example, an IC is mounted on an inspection jig 31 having a vacuum suction port 32 as shown in FIG.
1 is adsorbed and the inspection prober 10 is brought into direct contact with the solder bumps 23 to evaluate the electrical characteristics.
【0026】これは半田バンプの高さを100μmとし
たとき、半田バンプ表面の平坦面は直径50〜60μm
の面積が得られる半田バンプ形状の形成法を採用してい
るからであり、これらの検査法は半田バンプの形状の大
小、半田バンプの数、ICのチップサイズ、大電流用I
Cかどうか等によって使い分けが可能となる。When the height of the solder bump is 100 μm, the flat surface of the solder bump surface has a diameter of 50 to 60 μm.
This is because the solder bump shape forming method that can obtain the area of the solder bump is adopted. These inspection methods use the solder bump shape size, the number of solder bumps, the IC chip size, and the large current I
It can be used properly depending on whether it is C or not.
【0027】[0027]
【発明の効果】以上説明したように本発明は、ICの表
面上に設けられた複数個の半田バンプの先端部に平坦面
を形成したフリップチップ半導体装置であり、またその
製造方法は半田バンプの先端部に平面板を配置して加圧
し、その状態でリフローを行なうことにより半田バンプ
の先端部に平坦面を形成する方法である。As described above, the present invention is a flip chip semiconductor device in which a flat surface is formed at the tip of a plurality of solder bumps provided on the surface of an IC, and the manufacturing method thereof is a solder bump. Is a method of forming a flat surface on the tip of the solder bump by disposing a flat plate at the tip of the solder bump, applying pressure, and then performing reflow in that state.
【0028】また、2の半田バンプに対応する複数個の
電極パターンが設けられた検査用基板にICを加圧した
状態で電気的接触させることによって、最終的な電気的
特性評価をIC単体のまま行なえるので、従来の最終的
なフリップチップボンディングを行なってから電気的特
性評価を行っていたために生じる生産性の悪化を改善
し、かつ信頼性の向上に大きな効果がある。Further, the IC is electrically contacted with the inspection substrate provided with a plurality of electrode patterns corresponding to the two solder bumps in a pressurized state, so that the final evaluation of the electrical characteristics of the IC alone can be performed. Since it can be carried out as it is, the deterioration of productivity caused by the electrical characteristic evaluation after the conventional final flip-chip bonding is improved, and the reliability is greatly improved.
【図1】本発明の第1の実施例の製造方法を示す工程図
で、同図(a)〜(d)はそれぞれ断面図である。FIG. 1 is a process diagram showing a manufacturing method of a first embodiment of the present invention, and FIGS. 1 (a) to 1 (d) are cross-sectional views, respectively.
【図2】本発明の第2の実施例の製造方法を示す工程図
で、同図(a)〜(f)はそれぞれ断面図である。FIG. 2 is a process drawing showing the manufacturing method of the second embodiment of the present invention, and FIGS. 2 (a) to 2 (f) are sectional views.
【図3】従来技術を示す断面図である。FIG. 3 is a cross-sectional view showing a conventional technique.
【図4】従来技術の他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the conventional technique.
【図5】従来の製造方法を説明する断面図である。FIG. 5 is a cross-sectional view illustrating a conventional manufacturing method.
1 半導体IC 2,21,22,23 半田バンプ 3 検査用基板 4 導電性弾性シート 5 電極 6,61 ガラス板 7,71 重り 8 レジスト 9 電極 10 検査用プローバー 31 検査用治貝 32 真空吸着口 DESCRIPTION OF SYMBOLS 1 Semiconductor IC 2,21,22,23 Solder bump 3 Inspection substrate 4 Conductive elastic sheet 5 Electrode 6,61 Glass plate 7,71 Weight 8 Resist 9 Electrode 10 Inspection prober 31 Inspection recovery shell 32 Vacuum suction port
Claims (4)
複数個の半田バンプの先端部にそれぞれ高さを揃えて平
坦面が形成されたことを特徴とするフリップチップ半導
体装置。1. A flip-chip semiconductor device, wherein a plurality of solder bumps provided on the flip-chip semiconductor device are formed with flat surfaces at respective tip portions of the solder bumps so as to have the same height.
複数個の半田バンプの先端部に平面板を押し当て、リフ
ローを行なうことにより半田バンプの先端部に平坦面を
形成することを特徴とするフリップチップ半導体装置の
製造方法。2. A flip characterized by forming a flat surface on the tip of the solder bump by pressing a flat plate against the tip of a plurality of solder bumps provided on the flip chip semiconductor device and performing reflow. Manufacturing method of chip semiconductor device.
ターンと複数個の半田バンプの先端部とを直接あるいは
導電性弾性シートを介して同時に加圧接触させ、電気的
評価を行なうことを特徴とするフリップチップ半導体装
置の製造方法。3. A plurality of electrode patterns provided on the inspection substrate and a plurality of solder bump tips are simultaneously brought into pressure contact with each other directly or via a conductive elastic sheet to perform electrical evaluation. A method for manufacturing a flip-chip semiconductor device having a feature.
用プローブを接触させて電気的評価を行なうことを特徴
とするフリップチップ半導体装置の製造方法。4. A method of manufacturing a flip-chip semiconductor device, wherein an inspection probe is directly brought into contact with a flat surface of a tip portion of a solder bump to perform electrical evaluation.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4141201A JPH05335311A (en) | 1992-06-02 | 1992-06-02 | Flip chip semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4141201A JPH05335311A (en) | 1992-06-02 | 1992-06-02 | Flip chip semiconductor device and manufacture thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05335311A true JPH05335311A (en) | 1993-12-17 |
Family
ID=15286502
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4141201A Pending JPH05335311A (en) | 1992-06-02 | 1992-06-02 | Flip chip semiconductor device and manufacture thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05335311A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1997027492A1 (en) * | 1996-01-22 | 1997-07-31 | Hitachi, Ltd. | Method for mounting bare chip and bare chip carrier |
| US6660944B1 (en) | 1996-03-29 | 2003-12-09 | Ngk Spark Plug Co., Ltd. | Circuit board having solder bumps |
| WO2006075361A1 (en) * | 2005-01-12 | 2006-07-20 | Renesas Technology Corp. | Method for manufacturing semiconductor integrated circuit device |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56142656A (en) * | 1980-04-09 | 1981-11-07 | Fujitsu Ltd | Semiconductor device |
| JPS6422034U (en) * | 1987-07-29 | 1989-02-03 | ||
| JPH02174232A (en) * | 1988-12-27 | 1990-07-05 | Seiko Epson Corp | Semiconductor device and its manufacturing method |
-
1992
- 1992-06-02 JP JP4141201A patent/JPH05335311A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56142656A (en) * | 1980-04-09 | 1981-11-07 | Fujitsu Ltd | Semiconductor device |
| JPS6422034U (en) * | 1987-07-29 | 1989-02-03 | ||
| JPH02174232A (en) * | 1988-12-27 | 1990-07-05 | Seiko Epson Corp | Semiconductor device and its manufacturing method |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1997027492A1 (en) * | 1996-01-22 | 1997-07-31 | Hitachi, Ltd. | Method for mounting bare chip and bare chip carrier |
| US6660944B1 (en) | 1996-03-29 | 2003-12-09 | Ngk Spark Plug Co., Ltd. | Circuit board having solder bumps |
| WO2006075361A1 (en) * | 2005-01-12 | 2006-07-20 | Renesas Technology Corp. | Method for manufacturing semiconductor integrated circuit device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2500462B2 (en) | Inspection connector and manufacturing method thereof | |
| US5576630A (en) | Probe structure for measuring electric characteristics of a semiconductor element | |
| KR100335168B1 (en) | Method of temporarily, then permanently, connecting to a semiconductor device | |
| JP2000111576A (en) | Packaging and mutual connection of contact structure | |
| JPH04261035A (en) | Mounting apparatus of integrated circuit | |
| KR100349896B1 (en) | Mounting Structure of Integrated Circuit Chip and Its Mounting Method | |
| JPH0766286A (en) | Method for connecting electrically integrated circuit with substrate, and integrated circuit assembly | |
| US6507118B1 (en) | Multi-metal layer circuit | |
| JP2003508898A (en) | Microbeam assembly and internal connection method between integrated circuit and substrate | |
| JP2715793B2 (en) | Semiconductor device and manufacturing method thereof | |
| JPH053052A (en) | Detachable package | |
| WO1999004424A1 (en) | Semiconductor device, mounting structure thereof and method of fabrication thereof | |
| JPH05335311A (en) | Flip chip semiconductor device and manufacture thereof | |
| JP2894594B2 (en) | Manufacturing method of know good die having solder bump | |
| TWI829063B (en) | Testing substrate and manufacturing method thereof and probe card | |
| JP3050172B2 (en) | Inspection method and inspection substrate for flip-chip IC | |
| JP2638557B2 (en) | Semiconductor device | |
| JP4182611B2 (en) | Manufacturing method of semiconductor device | |
| WO2002013254A2 (en) | Electroplating multi-trace circuit board substrates using single tie bar | |
| JP2001118994A (en) | Semiconductor device | |
| JP2000012587A (en) | Electric characteristic inspection and coining method of solder bumps of circuit board for semiconductor chip mounting | |
| JPH11224915A (en) | Substrate for semiconductor connection | |
| JPH04291993A (en) | Method of joining thin film unit | |
| JP2004301713A (en) | Electronic circuit device and test method thereof | |
| JP3446608B2 (en) | Semiconductor unit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19990112 |