JPH05344653A - Automatic voltage controller for power plant - Google Patents
Automatic voltage controller for power plantInfo
- Publication number
- JPH05344653A JPH05344653A JP4147068A JP14706892A JPH05344653A JP H05344653 A JPH05344653 A JP H05344653A JP 4147068 A JP4147068 A JP 4147068A JP 14706892 A JP14706892 A JP 14706892A JP H05344653 A JPH05344653 A JP H05344653A
- Authority
- JP
- Japan
- Prior art keywords
- transformer
- generator
- voltage
- loss
- power plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
(57)【要約】
【目的】 本発明の目的は、昇圧変圧器に接続される発
電所の効率向上を図ることの出来る自動電圧制御装置を
得ることにある。
【構成】 本発明の自動電圧制御装置は、発電所への電
圧制御指令または無効電力指令に応じた発電機および昇
圧変圧器の運転状態を特定する手段と、その運転状態で
の損失を演算する手段と、複数の運転状態が選択できる
場合には前記発電機と前記昇圧変圧器との合計損失が最
小となる運転点を選択して制御を行なう手段とを備えて
いる。
(57) [Summary] [Object] An object of the present invention is to obtain an automatic voltage control device capable of improving the efficiency of a power plant connected to a step-up transformer. An automatic voltage control device according to the present invention calculates a loss in the operating state and means for specifying the operating state of a generator and a step-up transformer according to a voltage control command or a reactive power command to a power plant. And means for performing control by selecting an operating point that minimizes the total loss of the generator and the step-up transformer when a plurality of operating states can be selected.
Description
【0001】[0001]
【産業上の利用分野】本発明は負荷時タップ切換手段を
有する昇圧変圧器を介して発電機が送電系統に連繋され
るような発電所の自動電圧制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic voltage control device for a power plant in which a generator is connected to a power transmission system via a step-up transformer having a load tap switching means.
【0002】[0002]
【従来の技術】電力系統より電力を供給される電気機器
の正常な運転のため、電力系統は電圧変動の小さい安定
した電圧を維持することを要求されている。電力系統の
構成要素である発電所は、電圧制御を行ない、電力系統
の電圧安定に貢献している。2. Description of the Related Art For normal operation of electric equipment supplied with electric power from the electric power system, the electric power system is required to maintain a stable voltage with a small voltage fluctuation. The power station, which is a component of the power system, controls the voltage and contributes to the voltage stability of the power system.
【0003】しかし、この種の発電所の電圧制御装置に
は、発電機用自動電圧制御装置による発電機電圧制御
と、発電機と送電系統の間に介在される昇圧変圧器の負
荷時タップ切換装置による昇圧変圧器の送電系統側電圧
制御を併用したものがある。However, this type of power plant voltage control device includes a generator voltage control by an automatic voltage control device for a generator, and a tap change at load of a step-up transformer interposed between the generator and the transmission system. There is also one that uses voltage control on the transmission system side of a step-up transformer by a device.
【0004】図3はこのような制御装置の一例を示す単
線結線図である。図3において、発電機1により発生し
た電力は、昇圧変圧器2で電力系統の所用電圧に昇圧さ
れ、電力系統3へ供給される。一方、発電機1の端子電
圧,端子電流および界磁電流は、発電機1の出力端側に
設置した計器用変圧器4,計器用変流器5および界磁回
路に設置した計器用変流器10で検出され、それぞれ自動
電圧制御器(AVR)6に入力される。また、上記所定
値に相当する電圧設定値を設定する電圧設定器7からの
電圧設定値も、自動電圧制御器6に入力される。さら
に、自動電圧制御器6では、計器用変圧器4からの発電
機1端子電圧が、電圧設定器7からの電圧設定値と比較
され、両者の偏差に基づいて発電機励磁電源装置8を調
整して発電機界磁巻線9へ励磁電流を供給することによ
り、発電機1の端子電圧が所定の値に自動的に制御され
る。電圧設定器7による電圧設定値の設定は、手動に
て、あるいは無効電力制御装置等の別途設けられる制御
装置からの指令によって行なわれる。FIG. 3 is a single line connection diagram showing an example of such a control device. In FIG. 3, the electric power generated by the generator 1 is stepped up by the step-up transformer 2 to the required voltage of the electric power system and supplied to the electric power system 3. On the other hand, the terminal voltage, the terminal current, and the field current of the generator 1 are the transformer for the meter 4, the current transformer 5 for the meter installed on the output end side of the generator 1, and the current for the meter installed in the field circuit. It is detected by the device 10 and is input to the automatic voltage controller (AVR) 6, respectively. Further, the voltage setting value from the voltage setting device 7 that sets the voltage setting value corresponding to the above-mentioned predetermined value is also input to the automatic voltage controller 6. Further, in the automatic voltage controller 6, the generator 1 terminal voltage from the instrument transformer 4 is compared with the voltage setting value from the voltage setting device 7, and the generator exciting power supply device 8 is adjusted based on the deviation between the two. By supplying an exciting current to the generator field winding 9, the terminal voltage of the generator 1 is automatically controlled to a predetermined value. The setting of the voltage set value by the voltage setter 7 is performed manually or by a command from a separately provided control device such as a reactive power control device.
【0005】又、昇圧変圧器二次側の電圧は、負荷時タ
ップ切換器(LTC)12を、LTC操作機構13を用いて
切換えることによっても制御される。このLTC操作機
構13への指令は手動にて、あるいは別途設けられるプロ
グラム設定器等の設定器から発せられる。The voltage on the secondary side of the step-up transformer is also controlled by switching the load tap changer (LTC) 12 by using the LTC operating mechanism 13. The command to the LTC operating mechanism 13 is issued manually or from a setting device such as a program setting device provided separately.
【0006】何れの場合でも、発電所の発生無効電力あ
るいは昇圧変圧器二次側電圧を所用の値にするべく制御
を行なう。しかるに、発電機端子電圧は許容範囲が定め
られており、所要の無効電力あるいは昇圧変圧器二次側
電圧を得るためには、発電機端子電圧が許容範囲超える
場合がある。In any case, control is performed so that the reactive power generated at the power plant or the secondary voltage of the step-up transformer is set to a required value. However, the generator terminal voltage has a permissible range, and the generator terminal voltage may exceed the permissible range in order to obtain the required reactive power or secondary voltage of the step-up transformer.
【0007】従来は、発電機端子電圧が許容範囲を超え
た場合に手動にて、あるいはあらかじめ予想してプログ
ラムされた設定値を内容とする指令か、LTC操作機構
13に入力されLTC12により昇圧変圧器2のタップが切
換えられることにより、発電機端子電圧を許容範囲内に
収めかつ所要の無効電力あるいは、昇圧変圧器二次側電
圧を得るようにしている。[0007] Conventionally, when the generator terminal voltage exceeds the allowable range, it is manually operated, or a command having a preset setting value which is predicted and programmed beforehand, or an LTC operating mechanism.
By inputting to 13 and switching the tap of the step-up transformer 2 by the LTC 12, the generator terminal voltage is kept within an allowable range and required reactive power or step-up transformer secondary side voltage is obtained.
【0008】[0008]
【発明が解決しようとする課題】前述のように、従来
は、発電機端子電圧が許容範囲を超える場合にのみ、許
容範囲に収めるように昇圧変圧器タップを動かしてい
た。しかし、発電機電圧の許容変動範囲は通常±5%で
あるのに対し、昇圧変圧器の各タップ電圧は通常 1.
5%程度であることから、発生無効電力指令、或は昇圧
変圧器二次側電圧指令に対しては、複数の発電機電圧,
昇圧変圧器タップの組合せを選べる場合がある。各々の
組合せに於いて、発電機と主変圧器の損失の合計は異な
った値となるが、従来は必ずしも発電機と主変圧器の損
失の合計を最小とする組合せを選んでいたわけではなか
った。As described above, conventionally, only when the generator terminal voltage exceeds the allowable range, the step-up transformer tap is moved so that it falls within the allowable range. However, the allowable fluctuation range of the generator voltage is usually ± 5%, while the tap voltage of the step-up transformer is usually 1.
Since it is about 5%, a plurality of generator voltages are generated for the generated reactive power command or the step-up transformer secondary voltage command.
You may be able to choose a combination of step-up transformer taps. In each combination, the total loss of the generator and the main transformer has different values, but in the past it was not always the combination that minimizes the total loss of the generator and the main transformer. It was
【0009】本発明は、発生無効電力指令あるいは昇圧
変圧器高圧側電圧指令に対応する発電機電圧,昇圧変圧
器タップの組合せを、発電機と昇圧変圧器の損失の合計
を最小とし、発電所の効率向上に寄与するような自動電
圧制御装置を提供することを目的とする。According to the present invention, a combination of a generator voltage and a step-up transformer tap corresponding to a generated reactive power command or a step-up transformer high-voltage side command is set so that the total loss of the generator and the step-up transformer is minimized. It is an object of the present invention to provide an automatic voltage control device that contributes to improving the efficiency of the above.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に本発明では、発電機の発生した電力を負荷時タップ切
換器LTCを有する昇圧変圧器を介して電力系統へ供給
する発電所に於いて、発電機の端子電圧を所定の値に自
動的に制御すると共に昇圧変圧器のタップを自動的に切
り換える自動電圧制御装置を、発電機電圧を所定値に相
当する電圧設定値に設定する電圧設定手段と、昇圧変圧
器のタップを所定の位置にするLTC操作指令発生手段
と、発電機の端子電圧,端子電流,界磁電流および昇圧
変圧器の二次側電圧をそれぞれ検出する電気量検出手段
と、電気量検出手段により検出された電気量から発電所
の運転状態を演算する回路と、発電所運転状態と発電所
の指令との偏差を演算する回路と、その偏差分を発生し
得る発電機電圧と昇圧変圧器タップ位置の組合せを演算
する回路と、それぞれの組合せに対する損失を演算し損
失が最小となる組合せを選ぶ回路と、損失演算結果より
損失最小となる発電機電圧目標と昇圧変圧器タップ位置
を設定する回路とを備え構成している。To achieve the above object, the present invention is directed to a power plant for supplying electric power generated by a generator to a power system through a step-up transformer having a load tap changer LTC. The automatic voltage control device that automatically controls the terminal voltage of the generator to a predetermined value and automatically switches the taps of the boost transformer, and sets the generator voltage to the voltage setting value corresponding to the predetermined value. Setting means, LTC operation command generating means for setting the tap of the step-up transformer to a predetermined position, and electric quantity detection for detecting the terminal voltage, terminal current, field current of the generator and secondary side voltage of the step-up transformer, respectively. Means, a circuit for calculating the operating state of the power plant from the amount of electricity detected by the electricity amount detecting means, a circuit for calculating the deviation between the operating state of the power station and the command of the power station, and the deviation can be generated. Generator voltage and A circuit that calculates the combination of voltage transformer tap positions, a circuit that calculates the loss for each combination and selects the combination that minimizes the loss, the generator voltage target that minimizes the loss from the loss calculation result, and the step-up transformer tap position. And a circuit for setting.
【0011】[0011]
【作用】従って、本発明の発電所の自動電圧制御装置に
おいては、以上のような手段を備えたことにより、要求
される運転状態に対して発電機及び昇圧変圧器の損失最
小の運転点を選択できるため、発電所の運転効率向上に
寄与させることができる。Therefore, in the automatic voltage control system for a power plant of the present invention, by providing the above means, the operating point with the minimum loss of the generator and the step-up transformer can be achieved with respect to the required operating condition. Since it can be selected, it can contribute to the improvement of the operating efficiency of the power plant.
【0012】[0012]
【実施例】以下、本発明の一実施例について、図面を参
照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0013】図1は、本発明による自動電圧制御装置を
適用した発電所の構成例を示す単線結線図であり、図3
と同一部分には同一符号を付してその説明を省略し、こ
こでは異なる部分についてのみ述べる。FIG. 1 is a single-line connection diagram showing a structural example of a power plant to which the automatic voltage control device according to the present invention is applied.
The same parts as those of the above are denoted by the same reference numerals and the description thereof will be omitted, and only different parts will be described here.
【0014】すなわち、この実施例における自動電圧制
御装置は、計器用変圧器11、および図示破線で示すよ
うに、信号入力回路14と、運転状態演算回路15と、偏差
演算回路17と、可能運転状態演算回路18と、損失演算回
路19と、設定回路20と、LTCタップ位置設定器21と
を、図3に加えて備えたものである。That is, the automatic voltage control apparatus in this embodiment includes a voltage transformer 11, and a signal input circuit 14, an operating state calculating circuit 15, a deviation calculating circuit 17, and a possible operating state, as shown by a broken line in the drawing. A state calculation circuit 18, a loss calculation circuit 19, a setting circuit 20, and an LTC tap position setter 21 are provided in addition to FIG.
【0015】ここで、計器用変圧器11は昇圧変圧器2の
二次側電圧を検出するためのものである。また、信号入
力回路14は、計器用変圧器4,11からの電圧信号、自動
電圧制御器6を介しての計器用変流器5,10からの電流
信号およびLTC操作機構13からの昇圧変圧器2のタッ
プ位置を入力するものである。Here, the instrument transformer 11 is for detecting the secondary side voltage of the step-up transformer 2. Further, the signal input circuit 14 includes a voltage signal from the instrument transformers 4 and 11, a current signal from the instrument current transformers 5 and 10 via the automatic voltage controller 6, and a step-up transformer from the LTC operating mechanism 13. The tap position of the container 2 is input.
【0016】一方、運転状態演算回路15は信号入力回路
14にて入力された電圧信号,電流信号に基づいて、発電
機無効電力及び発電機有効電力を演算するものである。
また、偏差演算回路17は、運転状態演算回路15からの発
電所無効電力出力,電圧信号と、発電所への指令16との
偏差分を演算するものである。On the other hand, the operating state calculation circuit 15 is a signal input circuit.
The generator reactive power and the generator active power are calculated based on the voltage signal and the current signal input at 14.
The deviation calculation circuit 17 calculates the deviation between the power station reactive power output and voltage signal from the operating state calculation circuit 15 and the command 16 to the power station.
【0017】また、可能運転状態演算回路18は、偏差演
算回路17により演算された、発電所無効電力偏差分もし
くは、昇圧変圧器二次側電圧偏差分を零とすることがで
きる発電機電圧と昇圧変圧器タップ位置の組合せ、およ
びその時の発電機界磁電流を、あらかじめ記憶された発
電機定数,昇圧変圧器定数,系統定数および発電機運転
許容範囲さらに、信号入力回路14の入力値に基づき演算
するものである。Also, the possible operating state calculation circuit 18 is a generator voltage that can make the power station reactive power deviation or the step-up transformer secondary side voltage deviation calculated by the deviation calculation circuit 17 zero. Based on the combination of the step-up transformer tap position and the generator field current at that time, the preset generator constant, step-up transformer constant, system constant and generator operation allowable range, and the input value of the signal input circuit 14. It is something that is calculated.
【0018】さらに損失演算回路19は、可能運転状態演
算回路18で選ばれた発電機電圧と昇圧変圧器タップ位置
の組合せにつき、あらかじめ記憶された発電機定数と昇
圧変圧器定数に基づき損失を演算し、損失最小の組合せ
を選ぶものである。設定回路20は、損失演算回路19で選
ばれた損失最小となる発電機電圧と昇圧変圧器タップ位
置を電圧設定器7およびLTCタップ位置設定器21へ出
力するものである。次に、以上のようにして構成した自
動電圧制御装置の作用について説明する。Further, the loss calculating circuit 19 calculates the loss based on the generator constant and the step-up transformer constant stored in advance for the combination of the generator voltage and the step-up transformer tap position selected by the possible operating state calculating circuit 18. Then, the combination with the minimum loss is selected. The setting circuit 20 outputs to the voltage setting device 7 and the LTC tap position setting device 21 the generator voltage and the step-up transformer tap position, which are selected by the loss calculation circuit 19 and have the minimum loss. Next, the operation of the automatic voltage control device configured as described above will be described.
【0019】発電機1の出力端側に設置した計器用変圧
器4,計器用変流器5および発電機1の界磁回路に設置
した計器用変流器10で検出された発電機1の端子電圧,
端子電流,界磁電流,および昇圧変圧器2の二次側に設
置した計器用変圧器11で検出された昇圧変圧器2の二次
側電圧は、信号入力回路14へ入力される。そして、運転
状態演算回路15では、信号入力回路14より入力された電
圧信号,電流信号に基づいて、発電機無効電力及び発電
機有効電力が演算される。The generator transformer 4 installed on the output end side of the generator 1, the instrument current transformer 5, and the generator current 1 detected by the instrument current transformer 10 installed in the field circuit of the generator 1. Terminal voltage,
The terminal current, the field current, and the secondary side voltage of the step-up transformer 2 detected by the instrument transformer 11 installed on the secondary side of the step-up transformer 2 are input to the signal input circuit 14. Then, the operating state calculation circuit 15 calculates the generator reactive power and the generator active power based on the voltage signal and the current signal input from the signal input circuit 14.
【0020】次に、偏差演算回路17では、発電所への発
電機無効電力あるいは昇圧変圧器二次側電圧の指令16
と、運転状態演算回路15で得られた発電機無効電力ある
いは昇圧変圧器二次側電圧との偏差が演算される。Next, in the deviation calculation circuit 17, the command 16 of the generator reactive power or the step-up transformer secondary side voltage to the power plant is given.
Then, the deviation from the generator reactive power or the step-up transformer secondary side voltage obtained by the operating state calculation circuit 15 is calculated.
【0021】次いで、可能運転状態演算回路18では、偏
差演算回路17で演算された偏差を零とすることができる
発電機電圧と昇圧変圧器タップ位置の組合せが演算され
る。以下この点につき詳述する。図2は、図1における
発電機1,昇圧変圧器2,電力系統3の等価回路を示す
図である。Next, the possible operating state calculation circuit 18 calculates a combination of the generator voltage and the step-up transformer tap position that can make the deviation calculated by the deviation calculation circuit 17 zero. This point will be described in detail below. FIG. 2 is a diagram showing an equivalent circuit of the generator 1, the step-up transformer 2, and the power system 3 in FIG.
【0022】図2に於いて、VG は発電機端子電圧,P
G は発電機有効電力,QG は発電機無効電力,Xt は昇
圧変圧器インピ―ダンス,nは昇圧変圧器変圧比,VT
は昇圧変圧器二次側電圧,Xe は送電線インピ―ダン
ス,VB は仮想無限大母線電圧である。In FIG. 2, V G is the generator terminal voltage, P
G is generator active power, Q G is generator reactive power, X t is step-up transformer impedance, n is step-up transformer transformation ratio, V T
Is the secondary voltage of the step-up transformer, X e is the impedance of the transmission line, and V B is the virtual infinite bus voltage.
【0023】この場合、VB を一定とし、VG ,nを、
ΔVG ,Δn変化させた場合のVT,QG の変化分ΔV
T ,ΔQG は、次の様に表わすことができる。In this case, V B is constant and V G , n is
Change ΔV in V T and Q G when ΔV G and Δn are changed
T and ΔQ G can be expressed as follows.
【0024】[0024]
【数1】 ΔVT =An Δn+AVGΔVG …(1) ΔQG =Bn Δn+BVGΔVG …(2) ここでAn ,AVG,Bn ,BVGは一般に電圧−無効電力
係数と呼ばれるものであり、単位法を用いると、次の様
に表わすことができる。ΔV T = A n Δn + A VG ΔV G (1) ΔQ G = B n Δn + B VG ΔV G (2) where A n , A VG , B n , and B VG are generally voltage-reactive power coefficients It can be expressed as follows using the unit method.
【0025】[0025]
【数2】 [Equation 2]
【0026】xt ,xe は昇圧変圧器定数,系統定数と
して既知であることから、要求されるΔVT 或いはΔQ
G を実現するΔnとΔVG との組合せを演算により求め
ることができる。次で、損失演算回路19では、可能運転
状態演算回路18で演算されたΔnとΔVG の組合せでの
発電機の損失と昇圧変圧器の損失を演算する。以下この
点につき詳述する。発電機の損失LG 及び昇圧変圧器の
損失LT はその運転状態で決まり、次の関数で表わすこ
とができる。Since x t and x e are known as step-up transformer constants and system constants, the required ΔV T or ΔQ
The combination of Δn and [Delta] V G to achieve a G can be obtained by calculation. Next, the loss calculation circuit 19 calculates the loss of the generator and the loss of the step-up transformer in the combination of Δn and ΔV G calculated by the possible operation state calculation circuit 18. This point will be described in detail below. The generator loss L G and the step-up transformer loss L T are determined by their operating conditions and can be expressed by the following functions.
【0027】[0027]
【数3】 LG =A1 (VG )+A2 (IG )+A3 (If )+A4 …(3) LT =B1 (n,VG )+B2 (n,IG ) …(4)L G = A 1 (V G ) + A 2 (I G ) + A 3 (I f ) + A 4 (3) L T = B 1 (n, V G ) + B 2 (n, I G ) … (4)
【0028】ここで、IG は発電機電流,If は発電機
界磁電流であり、A1 (VG ),B1 (n,VG )は鉄
損に、A2 (IG ),B2 (n,IG )は負荷損に、A
3 (If )は界磁回路抵抗損に、A4 は機械損に該当す
る。信号入力回路14にはVG,IG ,If ,nの諸量が
入力されており、これを基に、可能運転状態演算回路で
演算されたΔn,ΔVG からHere, I G is a generator current, I f is a generator field current, A 1 (V G ), B 1 (n, V G ) are iron losses, and A 2 (I G ). , B 2 (n, I G ) is the load loss, A
3 (I f ) corresponds to field circuit resistance loss, and A 4 corresponds to mechanical loss. Various quantities of V G , I G , If , and n are input to the signal input circuit 14, and based on this, from Δn and ΔV G calculated by the possible operating state calculation circuit.
【0029】[0029]
【数4】 VG (新)=VG (旧)+ΔVG …(5) n(新)=n(旧)+Δn …(6) が演算される。一方、運転状態演算回路15にてQG およ
びPG が求められており、(2)式で求められたΔQG
を用いて、## EQU4 ## V G (new) = V G (old) + ΔV G (5) n (new) = n (old) + Δn (6) is calculated. On the other hand, Q G and P G are obtained by the operating state calculation circuit 15, and ΔQ G obtained by the equation (2)
Using,
【0030】[0030]
【数5】 が求められる。If (新)は、PG 及びQG (新)から
発電機Vカ―ブを使って求められる。上述の様にして、
Δn,ΔVG に対応する新しいVG ,IG ,If,nが
演算により求められ、(3),(4)式の各関数は発電
機及び昇圧変圧器の設計値及び試験値から既知であるの
で、発電機損失LG 及び昇圧変圧器損失LT が求められ
る。[Equation 5] Is required. I f (new) is obtained from P G and Q G (new) using the generator V-curve. As above
New V G , I G , If , and n corresponding to Δn and ΔV G are obtained by calculation, and each function of equations (3) and (4) is known from the design value and test value of the generator and the step-up transformer. Therefore, the generator loss L G and the step-up transformer loss L T are obtained.
【0031】可能なΔn,ΔVG の組合せが複数ある場
合、(LG +LT )が最小となる組合せを選ぶことにな
る。When there are a plurality of possible combinations of Δn and ΔV G , the combination that minimizes (L G + L T ) is selected.
【0032】次いで、設定回路20では損失演算回路19で
選ばれた損失最小となる発電機電圧と昇圧変圧器タップ
位置を電圧設定器7およびLTCタップ位置設定器21へ
出力する。本発明は上記実施例に限定されるものではな
く、次のようにしても同様に実施できるものである。Next, the setting circuit 20 outputs the generator voltage and the step-up transformer tap position, which are selected by the loss calculation circuit 19 and which minimizes the loss, to the voltage setting device 7 and the LTC tap position setting device 21. The present invention is not limited to the above embodiments, but can be implemented in the same manner as described below.
【0033】上記実施例では、送電線インピ―ダンスを
系統定数として扱ったが、通常、送電線インピ―ダンス
は刻一刻若干量変化しているものでり、定期的に或いは
任意の時点での送電線インピ―ダンスを推定することが
できれば、その数値を基に発電所の可能運転状態を演算
してもよい。In the above embodiment, the transmission line impedance is treated as a system constant, but the transmission line impedance usually changes slightly every moment, and is regularly or at an arbitrary time point. If the transmission line impedance can be estimated, the possible operating state of the power plant may be calculated based on the numerical value.
【0034】[0034]
【発明の効果】以上説明したように、本発明によれば、
要求される発電機無効電力或いは昇圧変圧器二次側電圧
に対して、発電機損失と昇圧変圧器損失の和を最小にす
るよう発電機端子電圧変化量と昇圧変圧器切換タップと
を選ぶようにしたので、発電所の効率向上に寄与するこ
とのできる自動電圧制御装置が提供できる。As described above, according to the present invention,
Select the generator terminal voltage change amount and the step-up transformer switching tap so as to minimize the sum of the generator loss and step-up transformer loss for the required generator reactive power or step-up transformer secondary voltage. Therefore, it is possible to provide an automatic voltage control device that can contribute to improving the efficiency of a power plant.
【図1】本発明の自動電圧制御装置を電力系統に接続し
た一実施例を示す単線結線図。FIG. 1 is a single wire connection diagram showing an embodiment in which an automatic voltage control device of the present invention is connected to a power system.
【図2】本発明の自動電圧制御装置を電力系統に接続し
た場合の電力系統の等価回路。FIG. 2 is an equivalent circuit of a power system when the automatic voltage control device of the present invention is connected to the power system.
【図3】従来例を示す単線結線図。FIG. 3 is a single line connection diagram showing a conventional example.
1 発電機 2 昇圧変圧器 3 電力系統 4 計器用変圧器 5 計器用変流器 6 自動電圧制御器 7 電圧設定器 8 励磁電源装置 9 界磁巻線 10 計器用変流器 11 計器用変圧器 12 負荷時タップ切換器 13 LTC操作機構 14 信号入力回路 15 運転状態演算回路 16 発電所への指令 17 偏差演算回路 18 可能運転状態演算回路 19 損失演算回路 20 電圧目標値タップ位置設定回路 21 LTCタップ位置設定器 1 generator 2 step-up transformer 3 power system 4 instrument transformer 5 instrument current transformer 6 automatic voltage controller 7 voltage setting device 8 exciting power supply device 9 field winding 10 instrument current transformer 11 instrument transformer 12 Tap switch during load 13 LTC operating mechanism 14 Signal input circuit 15 Operating state calculation circuit 16 Command to power plant 17 Deviation calculation circuit 18 Possible operating state calculation circuit 19 Loss calculation circuit 20 Voltage target value tap position setting circuit 21 LTC tap Position setter
Claims (1)
器を介して発電機が送電系統に連繋される発電所におい
て、発電所への電圧制御指令又は無効電力指令に応じた
発電機及び昇圧変圧器の運転状態を特定する手段と、そ
の運転状態での損失を演算する手段と、複数の運転状態
が選択できる場合には前記発電機と前記昇圧変圧器との
合計損失が最小となる運転点を選択して制御を行なう手
段とを具備したことを特徴する発電所の自動電圧制御装
置。1. A power plant in which a generator is connected to a power transmission system via a step-up transformer having a load tap switching means, the generator and the step-up transformer responding to a voltage control command or a reactive power command to the power plant. Means for identifying the operating state of the generator, means for calculating the loss in that operating state, and an operating point at which the total loss of the generator and the step-up transformer is minimum when a plurality of operating states can be selected An automatic voltage control device for a power plant, comprising:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4147068A JPH05344653A (en) | 1992-06-08 | 1992-06-08 | Automatic voltage controller for power plant |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4147068A JPH05344653A (en) | 1992-06-08 | 1992-06-08 | Automatic voltage controller for power plant |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH05344653A true JPH05344653A (en) | 1993-12-24 |
Family
ID=15421758
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4147068A Pending JPH05344653A (en) | 1992-06-08 | 1992-06-08 | Automatic voltage controller for power plant |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH05344653A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011200004A (en) * | 2010-03-18 | 2011-10-06 | Osaka Gas Co Ltd | Transformer control device |
| CN102709947A (en) * | 2012-06-12 | 2012-10-03 | 中国电力科学研究院 | Wind power station equating method based on micro voltage deviation |
| JP2015180164A (en) * | 2014-03-20 | 2015-10-08 | 三菱電機株式会社 | Generator voltage controller |
| JP2021191953A (en) * | 2020-06-05 | 2021-12-16 | デンヨー株式会社 | Fuel consumption acquisition device, fuel consumption calculation method and engine-driven power generation device |
-
1992
- 1992-06-08 JP JP4147068A patent/JPH05344653A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011200004A (en) * | 2010-03-18 | 2011-10-06 | Osaka Gas Co Ltd | Transformer control device |
| CN102709947A (en) * | 2012-06-12 | 2012-10-03 | 中国电力科学研究院 | Wind power station equating method based on micro voltage deviation |
| JP2015180164A (en) * | 2014-03-20 | 2015-10-08 | 三菱電機株式会社 | Generator voltage controller |
| JP2021191953A (en) * | 2020-06-05 | 2021-12-16 | デンヨー株式会社 | Fuel consumption acquisition device, fuel consumption calculation method and engine-driven power generation device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7449851B2 (en) | Arrangement for automatically influencing a mains supply and motor drive therefor | |
| US4413189A (en) | Demand reduction system for regulated electric utility distribution circuits | |
| EP2482415A1 (en) | On-load tap changer control method, excitation control system carrying out said control method and power excitation chain | |
| EP2390750A1 (en) | Automatic voltage regulator and toroidal transformer | |
| WO2012109509A2 (en) | Apparatus and method for generating a metering voltage output for a voltage regulator using a microprocessor | |
| JP6877295B2 (en) | Judgment method of voltage regulator and voltage regulator | |
| RU2416855C1 (en) | Control device of voltage mode in electric network by using fuzzy logic | |
| JPH05344653A (en) | Automatic voltage controller for power plant | |
| JPH0578250B2 (en) | ||
| AU2009243376B2 (en) | Automatic voltage regulator | |
| US8415934B2 (en) | Automatic voltage regulator | |
| CA1181806A (en) | Method and device for continuously controlling the phase angle in electric energy transmission equipment | |
| RU2772263C1 (en) | DEVICE FOR SWITCHING COILS OF WINDING OF TRANSFORMER 6(10)/0.4 kV | |
| US3237083A (en) | Welding transformer with variac in the control winding supply line | |
| KR200416148Y1 (en) | Voltage regulator using reactor transformer | |
| CN110988670B (en) | Heavy current generating device and device for checking circuit breaker | |
| JP2025515031A (en) | Method for adapting a voltage target value for controlling a tap transformer and installation for adapting a voltage target value for controlling a tap transformer | |
| KR100857236B1 (en) | Voltage regulator for 3-phase voltage and its control method | |
| Schroeder et al. | Automatic control and switching equipment for capacitor banks and its application | |
| JPH0514504B2 (en) | ||
| JPH05146076A (en) | Automatic switch for control accuracy | |
| SU864408A1 (en) | Method of single-phase automatic reconnection of power transmission line | |
| JPH09191574A (en) | Power-saving device | |
| JPH05146075A (en) | Power flow controller | |
| JP3526513B2 (en) | Automatic voltage regulator |