JPH0554805A - Magnetron - Google Patents
MagnetronInfo
- Publication number
- JPH0554805A JPH0554805A JP21338991A JP21338991A JPH0554805A JP H0554805 A JPH0554805 A JP H0554805A JP 21338991 A JP21338991 A JP 21338991A JP 21338991 A JP21338991 A JP 21338991A JP H0554805 A JPH0554805 A JP H0554805A
- Authority
- JP
- Japan
- Prior art keywords
- magnetron
- anode cylinder
- cooling
- permanent magnet
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Microwave Tubes (AREA)
Abstract
(57)【要約】
【目的】半導体製造用プラズマエッチング装置などに好
適なクリーンルーム内で連続使用可能な、量産が容易な
液冷方式マグネトロンを提供することにある。
【構成】管中央の陰極を、陽極円筒と其の内壁から突出
させた複数のベインとで形成された空洞共振器群が囲
み、陽極円筒の両端に、それぞれ、磁極と、磁極フラン
ジ部に接して配置された円環状の永久磁石とを備え、更
に永久磁石の管軸方向外側面に密着し管外磁気回路を形
成するヨークを備えたマグネトロンにおいて、高い熱伝
導率を有する固体の内部に冷却用媒体の流通管路を形成
させた冷却ブロックを、陽極円筒外周壁面のほぼ全面に
密着し、且つ、上記永久磁石とヨークそれぞれの一部分
に熱的に接するように設置した。
(57) [Summary] [PROBLEMS] To provide a liquid cooling type magnetron which can be continuously used in a clean room suitable for a plasma etching apparatus for semiconductor manufacturing and which can be easily mass-produced. [Structure] The cathode in the center of the tube is surrounded by a group of cavity resonators formed by an anode cylinder and a plurality of vanes protruding from the inner wall of the anode cylinder, and both ends of the anode cylinder are in contact with a magnetic pole and a magnetic pole flange portion, respectively. In a magnetron equipped with a circularly arranged permanent magnet and a yoke that adheres to the outer surface of the permanent magnet in the axial direction of the tube to form an external magnetic circuit, the magnetron is cooled inside a solid body having high thermal conductivity. The cooling block in which the flow passage of the medium for use was formed was installed so as to be in close contact with almost the entire outer peripheral wall surface of the anode cylinder and to be in thermal contact with part of each of the permanent magnet and the yoke.
Description
【0001】[0001]
【産業上の利用分野】本発明は、液体冷媒を流す冷却ブ
ロックにより発熱部である陽極円筒だけでなく永久磁石
やヨークなどの磁気部材も冷却させて温度上昇による特
性変化を抑制した、室内の空気を撹乱して塵埃を飛散さ
せる恐れなく、工場の無塵室内で長時間連続的に使用し
ても特性変化すなわちマイクロ波出力電力低下が少な
い、マイクロ波を応用した半導体処理用マグネトロンプ
ラズマエッチング装置などに好適な液体冷却方式マグネ
トロンに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention cools not only an anode cylinder, which is a heat generating portion, but also a magnetic member such as a permanent magnet or a yoke by a cooling block in which a liquid refrigerant flows so as to suppress characteristic changes due to temperature rise. A magnetron plasma etching device for semiconductor processing that uses microwaves, which does not disturb air and scatters dust, and has little characteristic change, that is, a decrease in microwave output power, even when used continuously for a long time in a dust-free room of a factory. For example, the present invention relates to a liquid cooling type magnetron.
【0002】[0002]
【従来の技術】マグネトロンが動作する際には、陽極に
熱損失が発生するので、強制空冷または液冷などによっ
て上記熱損失による陽極などの温度上昇を、実使用に耐
えられる程度に抑制しなければならない。非常に多く用
いられている電子レンジ用などのマグネトロンでは、例
えば特開昭63−81734号公報に開示されているよ
うな、陽極円筒に複数個のラジエータフィンを圧入嵌合
させ、このラジエータフィンを送風機による空気流で冷
却させる強制空冷方式が好んで用いられてきた。図2
は、この種の従来のマグネトロンの管軸を含む平面によ
る断面図で、図中、1はヘリクス状にトリア入りタング
ステン線を巻いたフィラメント陰極、2は陽極円筒、3
は陽極円筒内壁から放射状に突出したベイン、4は陰極
とベイン端部に囲まれた作用空間に管軸方向に静磁界を
形成させるための軟強磁性体製の磁極、5は永久磁石、
6は陽極円筒両端に配設された磁石間を連結し磁気回路
を形成するヨーク(内部を真空に排気済みのマグネトロ
ン本体の陽極円筒にラジエータフィンを嵌合させ、陽極
円筒両端の磁極の平坦なフランジ部にそれぞれ永久磁石
を載せたのちに取付ける組立作業の便宜上、上下に分か
れている)、7はラジエータフィン、10はマイクロ波
電力出力部、11はマイクロ波電力が陰極加熱用導線に
乗って外部商用交流電源側へ漏洩するのを防止するため
のフィルタを収納するフィルタケース、12は陰極加熱
用導線で商用交流電源に接続されている。このようなマ
グネトロンが強制空冷方式を採っているのは、液冷方式
にすると、たとえ冷却液として通常の水を用いるにして
も、家庭用としては通水が厄介で不具合なためである。
このようなマグネトロンの出力は5kW未満である。こ
れに対し工業加熱用の出力が5kW以上の大電力マグネ
トロンや極短時間ずつ超大出力で用いられる種類のレー
ダ用マグネトロンなどでは、陽極を液体冷媒で冷却させ
る液冷方式を採用しているものもある。これら液冷方式
マグネトロンには、例えば、図3に示すように冷却液を
流すための冷却管13を陽極円筒の外周に巻き付けて、
ろう付けしたり、図4に示すように陽極円筒の外周に密
着させて冷却管の代りに円筒形中空部材14を設置し、
これに適当な位置、方向に冷却液の圧入口と排出口を設
けて内部に管路はないが冷却液が適当に陽極円筒の周囲
を巡回するようにして冷却管を巻き付ける場合よりは製
作容易化を図ったものなどがあった。なお、上記の従来
から液冷方式を用いていた大電力出力マグネトロンの場
合は、通常、マイクロ波発振動作時に主たる発熱源であ
る陽極を冷却液で液冷するほか、静磁界形成用の電磁石
や陰極フィラメント端子部分を強制空冷によって冷却す
る方法が採られていた。2. Description of the Related Art When a magnetron operates, heat loss occurs in the anode. Therefore, the temperature rise of the anode due to the above heat loss must be suppressed to the extent that it can be actually used by forced air cooling or liquid cooling. I have to. In a magnetron for a microwave oven, which is very often used, a plurality of radiator fins are press-fitted into an anode cylinder as disclosed in, for example, JP-A-63-81734, and the radiator fins are fitted. A forced air cooling system in which air is cooled by a blower has been preferred and used. Figure 2
Is a cross-sectional view of a plane including the tube axis of a conventional magnetron of this type, in which 1 is a filament cathode in which a thoria-containing tungsten wire is wound in a helix shape, 2 is an anode cylinder, 3
Is a vane radially protruding from the inner wall of the anode cylinder, 4 is a magnetic pole made of a soft ferromagnetic material for forming a static magnetic field in the tube axial direction in the working space surrounded by the cathode and the end of the vane, 5 is a permanent magnet,
Reference numeral 6 is a yoke that connects the magnets arranged at both ends of the anode cylinder to form a magnetic circuit (a radiator fin is fitted to the anode cylinder of the magnetron body whose interior has been evacuated to a vacuum, and the magnetic poles at both ends of the anode cylinder are flat. For convenience of assembly work after mounting permanent magnets on the flanges respectively, they are separated into upper and lower parts. 7 is a radiator fin, 10 is a microwave power output part, and 11 is microwave power on a cathode heating conductor. A filter case 12 for housing a filter for preventing leakage to the external commercial AC power source side is connected to the commercial AC power source by a cathode heating lead wire. The magnetron adopts the forced air cooling system because the liquid cooling system is troublesome and troublesome for household use even if normal water is used as the cooling liquid.
The output of such a magnetron is less than 5 kW. On the other hand, high power magnetrons for industrial heating with output of 5 kW or more and radar magnetrons of the type used for ultra-high power for a very short period of time also use a liquid cooling method in which the anode is cooled with a liquid refrigerant. is there. In these liquid cooling type magnetrons, for example, as shown in FIG. 3, a cooling pipe 13 for flowing a cooling liquid is wound around the outer circumference of the anode cylinder,
By brazing, or as shown in FIG. 4, the cylindrical hollow member 14 is installed in place of the cooling tube by closely contacting with the outer periphery of the anode cylinder,
It has an inlet and outlet for the cooling liquid at appropriate positions and directions, and there is no pipe line inside, but it is easier to manufacture than when the cooling pipe is wound so that the cooling liquid appropriately circulates around the anode cylinder. There were things that were aimed at becoming. In the case of the high power output magnetron that has conventionally used the liquid cooling method, the anode, which is the main heat source during microwave oscillation operation, is usually liquid cooled with a cooling liquid, and an electromagnet for static magnetic field formation or A method of cooling the cathode filament terminal portion by forced air cooling has been adopted.
【0003】[0003]
【発明が解決しようとする課題】近年マイクロ波により
プラズマを発生させ、それを質量の大きなイオン源とし
て利用した、例えば、半導体製造などに好適なプラズマ
エッチング装置やプラズマアッシャ装置などが開発、利
用されている。これらの装置に用いるマイクロ波電力は
1kW〜3kW程度の場合が多く、丁度、電子レンジ用
マグネトロンと工業加熱用マグネトロンの中間に位置す
る出力を用いている。以前はこれらの装置に適した出力
のマグネトロンは生産されておらず、電子レンジ用や工
業加熱用の5kW級のマグネトロンを用いていた。In recent years, a plasma etching apparatus or a plasma asher apparatus, for example, which is suitable for semiconductor manufacturing, has been developed and utilized, in which plasma is generated by microwave and used as an ion source having a large mass. ing. The microwave power used in these devices is often about 1 kW to 3 kW, and an output located just between the microwave oven magnetron and the industrial heating magnetron is used. Previously, no output magnetron suitable for these devices was produced, and a 5 kW-class magnetron for microwave ovens and industrial heating was used.
【0004】しかし、半導体製造の主力製品が極めて微
細な素子を100万個程度も集積したULSIやVLS
Iに漸次移り、その所謂最小線幅がμm程度またはそれ
以下になるにつれ湿式エッチングでは対応困難になり、
乾式のマグネトロンプラズマエッチング装置に対する需
要が急激に増大してきた。一方、半導体製造用のプラズ
マエッチング装置はクリーンルーム内で使用するが、強
制空冷方式マグネトロンは冷却風が極微小異物を散乱さ
せるためクリーンルーム内使用には不向きで、この種の
用途のマグネトロンは出力の大小にかかわらず液冷方式
にせざるを得ない。また、半導体製造などの工業用の場
合は家庭用の場合と異なり、液冷とすること自体に問題
はない。このような需要に対応するために、例えば、特
願平3−49347号として、真空に排気したマグネト
ロンの本体部分には電子レンジ用マグネトロンのものを
流用し、冷却方法を強制空冷から液冷に変えたものが提
案されている。この提案によるマグネトロンの側面図を
図5(a)に示し、図中、5は永久磁石、6はヨーク、
10はマイクロ波電力出力部、11はフィルタケース、
12は陰極加熱用導線、15は上記提案に係る冷却ブロ
ック、15a、15bはそれぞれ冷却ブロックへの冷却
液の出入口である。図5(b)は此のマグネトロンで使
用する冷却ブロック15を示す斜視図で、図中、15c
は冷却ブロック15の内部に冷却液の流路を加工形成し
たのち加工の際に生じた不要な開口部を塞ぐためのめく
ら栓で、その他の符号は図5(a)の場合と同じであ
る。このような冷却ブロック15は、図5(b)に示す
ようにブロックの中央部に穿設した冷却用孔をマグネト
ロンの陽極円筒に嵌合させたのち、この孔の周囲の1個
所に設けた切り込みの両側からねじで締めて冷却孔の内
面を陽極円筒の外面に密着させる。なお、図示のよう
に、この提案では冷却ブロック15は陽極円筒の外面だ
けを冷却している。However, the main products of semiconductor manufacturing are ULSI and VLS in which about 1 million extremely fine elements are integrated.
As the so-called minimum line width becomes about μm or less, it becomes difficult to cope with the wet etching.
The demand for dry-type magnetron plasma etching equipment has increased rapidly. On the other hand, the plasma etching equipment for semiconductor manufacturing is used in a clean room, but the forced air cooling type magnetron is not suitable for use in a clean room because the cooling air scatters minute foreign matter. However, the liquid cooling method is unavoidable. Further, in the case of industrial use such as semiconductor manufacturing, unlike the case of domestic use, there is no problem in liquid cooling itself. In order to meet such demand, for example, as Japanese Patent Application No. 3-49347, a magnetron for a microwave oven is diverted from the main body of a magnetron evacuated to a vacuum, and the cooling method is changed from forced air cooling to liquid cooling. A changed one is proposed. A side view of the magnetron according to this proposal is shown in FIG. 5A, in which 5 is a permanent magnet, 6 is a yoke,
10 is a microwave power output unit, 11 is a filter case,
Reference numeral 12 is a cathode heating lead wire, 15 is a cooling block according to the above proposal, and 15a and 15b are inlets and outlets of a cooling liquid to and from the cooling block. FIG. 5B is a perspective view showing the cooling block 15 used in this magnetron.
Is a blind plug for closing an unnecessary opening formed at the time of processing after forming the flow path of the cooling liquid inside the cooling block 15, and other symbols are the same as those in FIG. 5 (a). .. Such a cooling block 15 was provided at one position around the hole after the cooling hole bored in the center of the block was fitted into the anode cylinder of the magnetron as shown in FIG. 5B. Tighten the screws from both sides of the notch to bring the inner surface of the cooling hole into close contact with the outer surface of the anode cylinder. As shown, in this proposal, the cooling block 15 cools only the outer surface of the anode cylinder.
【0005】上記提案に係るマグネトロンはクリーンル
ーム内での使用に適し、一応所期の目的を果たしたが、
製造工業用として連続的に使用していると、使用中に永
久磁石など磁気部材の温度も陽極からの熱伝導により温
度上昇して作用空間内の静磁界の磁界強度を低下させ、
マグネトロンの電気特性を変化させ、マイクロ波出力を
低下させるのを解決することが課題になってきた。Although the magnetron according to the above proposal is suitable for use in a clean room and has fulfilled its intended purpose,
When used continuously for the manufacturing industry, the temperature of magnetic members such as permanent magnets during use also rises due to heat conduction from the anode, reducing the magnetic field strength of the static magnetic field in the working space,
It has been a problem to solve the problem of changing the electric characteristics of the magnetron and reducing the microwave output.
【0006】本発明は上記従来の課題を解決した、しか
も構造が簡単な、液冷方式で量産容易なマグネトロンを
提供することを目的とする。It is an object of the present invention to provide a magnetron which solves the above-mentioned conventional problems and has a simple structure and which can be easily mass-produced by a liquid cooling system.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に本発明においては、管の中央部に位置する陰極を、円
筒形の作用空間を隔てて、陽極円筒と其の内壁から放射
状に突出させた複数のベインとで形成された空洞共振器
群が囲み、作用空間に管軸方向の静磁界を形成させるた
め、陽極円筒の両端に、それぞれ、平らなフランジ部と
其の内側で作用空間端部近傍まで伸びた円錐面部よりな
る軟強磁性体製の磁極と、磁極の管軸方向外側に配置さ
れ起磁力源となる円環状の永久磁石とを備え、更に上記
両端永久磁石の管軸方向外側円環状端面に密着し陽極円
筒の外方を囲んで磁気回路を形成する軟強磁性体製のヨ
ークを備えたマグネトロンにおいて、高い熱伝導率を有
する固体の内部に冷却用液体の流通管路を形成させた冷
却ブロックを、陽極円筒外周壁のほぼ全面に密着し、且
つ、上記永久磁石とヨークそれぞれの一部分に熱的に接
するように設置することにした。In order to solve the above-mentioned problems, according to the present invention, a cathode located in the center of a tube is radially projected from an anode cylinder and its inner wall with a cylindrical working space. Surrounded by a group of cavities formed by multiple vanes, a flat magnetic field is formed at both ends of the anode cylinder to form a static magnetic field in the tube axial direction in the working space. The magnetic pole is made of a soft ferromagnetic material and has a conical surface extending to the vicinity of the end, and the annular permanent magnet is disposed outside the magnetic pole in the tube axial direction and serves as a magnetomotive force source. In the magnetron equipped with a yoke made of a soft ferromagnetic material that adheres to the annular end face in the direction outer direction and surrounds the outside of the anode cylinder to form a magnetic circuit, a cooling liquid flow pipe inside a solid having high thermal conductivity. The cooling block that formed the path is In close contact with substantially the entire surface of the outer cylindrical wall, and was intended for installation in contact with the heat to a portion of each of the permanent magnets and the yoke.
【0008】[0008]
【作用】マグネトロンの動作時には陽極に大きな熱損失
が発生するので陽極の温度上昇は大きい。しかし、陽極
以外の部分でも陽極に近接して配置されている永久磁石
やヨークも陽極からの熱伝導で温度上昇する。また、陰
極フィラメントに対しても約40〜120Wの加熱電力
が供給されており、陽極以外でも、陰極への給電線、高
温度に加熱されたフィラメント陰極を支持する陰極ステ
ム、フィルタ従ってフィルタケースなども温度上昇し、
これらに接するヨークの温度を上昇させる。永久磁石と
して電子レンジ用にはコストパフォーマンス的に優れた
フェライト系磁石が採用されているが、この磁石は負の
かなり大きい温度係数を有し、上記従来の陽極だけを冷
却したマグネトロンの場合には、動作時に磁石の温度が
78℃まで上昇し、作用空間内静磁界強度低下により、
動作開始時に陽極電圧4.2kVであった場合、マグネ
トロンが動作して磁石温度が上昇した時、陽極電流を同
じ適正値に保持する陽極動作電圧は450Vも低下する
ことになり、それに応じてマイクロ波出力が低下する。
これに対し、本発明により、主たる発熱源である陽極の
ほか、永久磁石やヨークも冷却するようにすれば、作用
空間内の静磁界の強度低下が小さくなり、マグネトロン
の電気特性の変化も抑制できる。[Operation] During the operation of the magnetron, a large heat loss is generated in the anode, so that the temperature rise of the anode is large. However, even in portions other than the anode, the temperature of the permanent magnets and the yokes arranged close to the anode also rises due to heat conduction from the anode. Further, heating power of about 40 to 120 W is supplied also to the cathode filament, and in addition to the anode, a power supply line to the cathode, a cathode stem supporting the filament cathode heated to a high temperature, a filter and thus a filter case, etc. Even the temperature rises,
The temperature of the yoke in contact with these is raised. Ferrite magnets that are excellent in cost performance are used as permanent magnets for microwave ovens, but this magnet has a considerably large negative temperature coefficient, and in the case of a magnetron that cools only the conventional anode described above, During operation, the temperature of the magnet rises to 78 ° C, and the static magnetic field strength in the working space decreases,
When the anode voltage was 4.2 kV at the start of operation, when the magnetron operates and the magnet temperature rises, the anode operating voltage that keeps the anode current at the same proper value will decrease by 450 V, and accordingly the micro-voltage will decrease. Wave output decreases.
On the other hand, according to the present invention, by cooling not only the anode, which is the main heat source, but also the permanent magnet and the yoke, the decrease in the strength of the static magnetic field in the working space is reduced, and changes in the electrical characteristics of the magnetron are suppressed. it can.
【0009】[0009]
【実施例】図1(a)は本発明の一実施例の側面図で、
5は永久磁石、6はヨーク、9は本発明に係る冷却ブロ
ック、9a、9bはそれぞれ冷却ブロックの冷却液送入
口と排出口、10はマイクロ波電力出力部、11はフィ
ルタケース、12は陰極加熱用導線である。なお、既述
のように、冷却ブロック9に隠れて見えない部分は、図
2に示した従来のマグネトロンの本体部分(ラジエータ
を取り除いた、内部が真空に排気された部分)と同様で
ある。図1(b)は上記本発明に係る冷却ブロック9の
斜視図で、図中、9は冷却ブロック、9a、9bはそれ
ぞれ冷却ブロックの冷却液送入口と排出口、9cは冷却
ブロック9の内部に冷却液の流路を加工形成したのち加
工の際に生じた不要な開口部を塞ぐためのめくら栓であ
る。図示のように本発明に係る冷却ブロック9の中央に
穿設された冷却孔は、両端部の直径は永久磁石5の外径
より僅かに大きく、中間部は直径が陽極円筒の外径に等
しく、軸方向の長さが陽極円筒の軸方向の高さと同じ
な、3部分よりなる。なお、冷却ブロックの材料には熱
伝導率が高く加工も容易なアルミニウムを用いた。FIG. 1A is a side view of an embodiment of the present invention.
Reference numeral 5 is a permanent magnet, 6 is a yoke, 9 is a cooling block according to the present invention, 9a and 9b are cooling liquid inlets and outlets of the cooling blocks, 10 is a microwave power output part, 11 is a filter case, and 12 is a cathode. It is a conducting wire for heating. As described above, the part hidden by the cooling block 9 and not visible is the same as the main part of the conventional magnetron shown in FIG. 2 (the part where the radiator is removed and the inside is evacuated to a vacuum). FIG. 1 (b) is a perspective view of the cooling block 9 according to the present invention, in which 9 is a cooling block, 9a and 9b are cooling liquid inlets and outlets of the cooling block, and 9c is an inside of the cooling block 9. It is a blind plug for closing an unnecessary opening generated during processing after forming a cooling liquid flow path in the inside. As shown in the drawing, the cooling hole formed in the center of the cooling block 9 according to the present invention has a diameter at both ends slightly larger than the outer diameter of the permanent magnet 5, and a diameter in the middle is equal to the outer diameter of the anode cylinder. , The length in the axial direction is the same as the height in the axial direction of the anode cylinder. The cooling block was made of aluminum, which has a high thermal conductivity and is easy to process.
【0010】冷却ブロック9の中間部の直径と陽極円筒
の外径とは等しくしてあるが、実際には工作上不可避の
誤差により切り込み部を両側から締め付けても全面的に
密着させることはできない。また磁石5やヨーク6と冷
却ブロック9の間には通常僅かな隙間が生ずる。このた
め、マグネトロンの被冷却部分である陽極円筒外側など
に、熱伝導ペースト例えば富士高分子社製FS熱拡散コ
ンパウンドなどを塗布して空隙が生じないようにして熱
抵抗を小さくさせる。ヨーク6は永久磁石5の管軸方向
外側の面に接しているからヨーク6を冷却すれば間接的
に永久磁石5を冷却するのにも役立つ。Although the diameter of the intermediate portion of the cooling block 9 and the outer diameter of the anode cylinder are made equal, in reality, even if the notches are tightened from both sides due to an unavoidable error in working, they cannot be brought into close contact with each other. .. In addition, a small gap is usually formed between the magnet 5 or the yoke 6 and the cooling block 9. Therefore, a thermal conductive paste such as FS thermal diffusion compound manufactured by Fuji Polymer Co., Ltd. is applied to the outside of the anode cylinder, which is the cooled portion of the magnetron, to reduce the thermal resistance by preventing voids. Since the yoke 6 is in contact with the outer surface of the permanent magnet 5 in the tube axis direction, cooling the yoke 6 also serves to indirectly cool the permanent magnet 5.
【0011】本発明により下記表1に示すように磁石の
温度上昇が30℃小さくなり、陽極動作電圧の低下した
がってマイクロ波出力低下量もほぼ半減した。According to the present invention, as shown in Table 1 below, the temperature rise of the magnet was reduced by 30 ° C., the anode operating voltage was lowered, and the microwave output reduction amount was also halved.
【0012】[0012]
【表1】 [Table 1]
【0013】マグネトロンのマイクロ波出力は陽極電流
が一定の場合、動作電圧で定まるので従来の陽極だけを
冷却した場合には0.45/4.2=10.7%の出力
低下が生じたのに対して、本発明実施例では0.25/
4.2=6%となり、出力低下を約半分に抑制すること
ができた。Since the microwave output of the magnetron is determined by the operating voltage when the anode current is constant, the output decrease of 0.45 / 4.2 = 10.7% occurs when only the conventional anode is cooled. On the other hand, in the embodiment of the present invention, 0.25 /
It was 4.2 = 6%, and the output reduction could be suppressed to about half.
【0014】[0014]
【発明の効果】以上説明したように本発明によれば、極
めて容易に、クリーンルーム内で使用可能な、半導体製
造用プラズマエッチング装置などに好適な液冷マグネト
ロンを量産できる。As described above, according to the present invention, a liquid-cooled magnetron that can be used in a clean room and that is suitable for a plasma etching apparatus for manufacturing semiconductors can be mass-produced extremely easily.
【図1】図1(a)は本発明の一実施例の側面図、図1
(b)は本発明に係る冷却ブロックの斜視図である。1A is a side view of an embodiment of the present invention, FIG.
(B) is a perspective view of a cooling block according to the present invention.
【図2】従来のマグネトロンの管軸を含む平面による断
面図である。FIG. 2 is a sectional view taken along a plane including a tube axis of a conventional magnetron.
【図3】冷却液を流すための冷却管を陽極円筒の外周に
巻き付けて、ろう付けした工業加熱用などの従来の大電
力マグネトロン側面図である。FIG. 3 is a side view of a conventional high-power magnetron for industrial heating, in which a cooling tube for flowing a cooling liquid is wrapped around the outer periphery of an anode cylinder and brazed.
【図4】冷却管を陽極円筒の外周に巻き付ける代りに円
筒形タンクへの冷却液出入口のつけ方を工夫して製造容
易化を図った従来の大電力マグネトロン側面図である。FIG. 4 is a side view of a conventional high-power magnetron in which a cooling liquid inlet / outlet is attached to a cylindrical tank instead of winding a cooling tube around an anode cylinder to facilitate manufacturing.
【図5】図5(a)はマグネトロン本体部分は従来の電
子レンジ用のものを流用し、陽極だけを液冷した従来の
半導体製造装置用マグネトロンの側面図、図5(b)は
その冷却ブロックの斜視図である。FIG. 5 (a) is a side view of a conventional magnetron for a semiconductor manufacturing apparatus in which a magnetron main body part for a conventional microwave oven is diverted, and only an anode is liquid-cooled, and FIG. 5 (b) is its cooling. It is a perspective view of a block.
1…ヘリクス状にトリア入りタングステン線を巻いたフ
ィラメント陰極、 2…陽極円筒、 3…ベイン、 4
…磁極、 5…永久磁石、 6…ヨーク、 7…ラジエ
ータフィン、 9…本発明に係る冷却ブロック、 10
…マイクロ波出力部、 11…フィルタケース、 12
…陰極加熱用導線。DESCRIPTION OF SYMBOLS 1 ... Filament cathode in which thoria-containing tungsten wire is wound in a helix, 2 ... Anode cylinder, 3 ... Bain, 4
... magnetic pole, 5 ... permanent magnet, 6 ... yoke, 7 ... radiator fin, 9 ... cooling block according to the present invention, 10
… Microwave output part, 11… Filter case, 12
... Conductive wire for heating the cathode.
Claims (1)
用空間を隔てて、陽極円筒とその内壁から放射状に突出
させた複数のベインとで形成された空洞共振器群が囲
み、作用空間に管軸方向の静磁界を形成させるため、陽
極円筒の両端に、それぞれ、平らなフランジ部と其の内
側で作用空間端部近傍まで伸びた円錐面部よりなる軟強
磁性体製の磁極と、磁極フランジ部の管軸方向外側に接
して配置され起磁力源となる円環状の永久磁石とを備
え、更に上記両端永久磁石の管軸方向外側円環状端面に
密着し陽極円筒の外方を囲んで磁気回路を形成する軟強
磁性体製のヨークを備えたマグネトロンにおいて、高い
熱伝導率を有する固体の内部に冷却用液体の流通管路を
形成させた冷却ブロックを、陽極円筒外周壁のほぼ全面
に密着し、かつ、上記永久磁石とヨークそれぞれの一部
分に熱的に接するように設置したことを特徴とするマグ
ネトロン。1. A group of cavities formed by an anode cylinder and a plurality of vanes radially protruding from an inner wall of the cathode, which surrounds a cathode located in the center of the tube, is surrounded by a cylindrical working space. In order to form a static magnetic field in the working space in the axial direction of the tube, soft magnetic poles made of flat flanges on both ends of the anode cylinder and a conical surface extending inside the working space to the end of the working space. And an annular permanent magnet serving as a magnetomotive force source, which is arranged in contact with the outer side of the magnetic pole flange portion in the tube axis direction. In a magnetron provided with a soft ferromagnetic yoke that encloses a magnetic circuit, a cooling block in which a cooling liquid flow passage is formed inside a solid having high thermal conductivity Adheres to almost the entire surface of the Magnetron, characterized in that installed in contact with the thermally and permanent magnet and the yoke portion of each of the.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21338991A JPH0554805A (en) | 1991-08-26 | 1991-08-26 | Magnetron |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21338991A JPH0554805A (en) | 1991-08-26 | 1991-08-26 | Magnetron |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0554805A true JPH0554805A (en) | 1993-03-05 |
Family
ID=16638395
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP21338991A Pending JPH0554805A (en) | 1991-08-26 | 1991-08-26 | Magnetron |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0554805A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1355340A3 (en) * | 2002-04-18 | 2006-03-01 | Lg Electronics Inc. | Magnetron |
| WO2011111396A1 (en) | 2010-03-12 | 2011-09-15 | パナソニック株式会社 | Magnetron, and device using microwaves |
| KR101381887B1 (en) * | 2006-03-30 | 2014-04-04 | 컨덕틱스 웜프러 프랑스 | Magnetic coupling with hysteresis, particularly for winding/unwinding devices |
| US9208984B2 (en) | 2013-11-07 | 2015-12-08 | Panasonic Intellectual Property Management Co., Ltd. | Magnetron |
-
1991
- 1991-08-26 JP JP21338991A patent/JPH0554805A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1355340A3 (en) * | 2002-04-18 | 2006-03-01 | Lg Electronics Inc. | Magnetron |
| KR101381887B1 (en) * | 2006-03-30 | 2014-04-04 | 컨덕틱스 웜프러 프랑스 | Magnetic coupling with hysteresis, particularly for winding/unwinding devices |
| WO2011111396A1 (en) | 2010-03-12 | 2011-09-15 | パナソニック株式会社 | Magnetron, and device using microwaves |
| US9208984B2 (en) | 2013-11-07 | 2015-12-08 | Panasonic Intellectual Property Management Co., Ltd. | Magnetron |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4670027B2 (en) | Magnetron | |
| US4028583A (en) | High power-double strapped vane type magnetron | |
| JPH0554805A (en) | Magnetron | |
| EP1355340B1 (en) | Magnetron | |
| JPH05275038A (en) | X-ray tube equipped with filament transformer with ferrite core | |
| US12191106B2 (en) | Method for manufacturing industrial magnetron | |
| JPH11149877A (en) | Collector structure of traveling wave tube | |
| KR20000035553A (en) | Magnetron apparatus and manufacturing method therefor | |
| JP4263896B2 (en) | Magnetron | |
| US12119200B2 (en) | Industrial magnetron | |
| JP2005209426A (en) | Magnetron | |
| JPH03297034A (en) | magnetron | |
| KR100611492B1 (en) | Magnetron Cooling Fins | |
| JPS62130Y2 (en) | ||
| KR200141153Y1 (en) | Combination device of magnet and seal of magnetron | |
| JP2579118B2 (en) | Magnetron for microwave oven | |
| JP2001243887A (en) | Magnetron | |
| US3459994A (en) | Crossed-field discharge device and improved magnetic pole structures therefor | |
| KR200157587Y1 (en) | Microwave Magnetron Cooling Structure | |
| JPH05304000A (en) | High frequency coupler | |
| US3412283A (en) | Coaxial magnetron in which the anode is welded to the body | |
| JPH0574355A (en) | Magnetron | |
| JP3159536B2 (en) | Magnetron equipment | |
| JPH04184899A (en) | Plasma generation device | |
| JPS6041740Y2 (en) | Gas laser tube equipment |