JPH0555610A - Organic file photosensor - Google Patents
Organic file photosensorInfo
- Publication number
- JPH0555610A JPH0555610A JP3215747A JP21574791A JPH0555610A JP H0555610 A JPH0555610 A JP H0555610A JP 3215747 A JP3215747 A JP 3215747A JP 21574791 A JP21574791 A JP 21574791A JP H0555610 A JPH0555610 A JP H0555610A
- Authority
- JP
- Japan
- Prior art keywords
- light
- thin film
- photosensor
- aromatic compound
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 17
- -1 polycyclic aromatic compound Chemical class 0.000 claims abstract description 14
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 4
- 239000010409 thin film Substances 0.000 claims description 28
- 230000003287 optical effect Effects 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 150000001491 aromatic compounds Chemical class 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- QSQIGGCOCHABAP-UHFFFAOYSA-N hexacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C21 QSQIGGCOCHABAP-UHFFFAOYSA-N 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229920004933 Terylene® Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- YVRQEGLKRIHRCH-UHFFFAOYSA-N [1,4]benzothiazino[2,3-b]phenothiazine Chemical compound S1C2=CC=CC=C2N=C2C1=CC1=NC3=CC=CC=C3SC1=C2 YVRQEGLKRIHRCH-UHFFFAOYSA-N 0.000 description 1
- AHWXCYJGJOLNFA-UHFFFAOYSA-N [1,4]benzoxazino[2,3-b]phenoxazine Chemical compound O1C2=CC=CC=C2N=C2C1=CC1=NC3=CC=CC=C3OC1=C2 AHWXCYJGJOLNFA-UHFFFAOYSA-N 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- WEDMWEAVHLDAAH-UHFFFAOYSA-N circumanthracene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C=7C8=C9C%10=C6C(=C3)C=CC%10=CC=C9C=CC8=CC(C=73)=C6)C4=C5C3=C2C6=C1 WEDMWEAVHLDAAH-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- FMULMJRDHBIBNO-UHFFFAOYSA-N dibenzo[a,c]pentacene Chemical compound C1=CC=C2C3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C3=CC=CC=C3C2=C1 FMULMJRDHBIBNO-UHFFFAOYSA-N 0.000 description 1
- JNTHRSHGARDABO-UHFFFAOYSA-N dibenzo[a,l]pyrene Chemical compound C1=CC=CC2=C3C4=CC=CC=C4C=C(C=C4)C3=C3C4=CC=CC3=C21 JNTHRSHGARDABO-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- KDEZIUOWTXJEJK-UHFFFAOYSA-N heptacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC7=CC=CC=C7C=C6C=C5C=C4C=C3C=C21 KDEZIUOWTXJEJK-UHFFFAOYSA-N 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LSQODMMMSXHVCN-UHFFFAOYSA-N ovalene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C(C=C3)=CC=C3C6=C6C(C=C3)=C3)C4=C5C6=C2C3=C1 LSQODMMMSXHVCN-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- GGVMPKQSTZIOIU-UHFFFAOYSA-N quaterrylene Chemical group C12=C3C4=CC=C2C(C2=C56)=CC=C5C(C=57)=CC=CC7=CC=CC=5C6=CC=C2C1=CC=C3C1=CC=CC2=CC=CC4=C21 GGVMPKQSTZIOIU-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- RIQXSPGGOGYAPV-UHFFFAOYSA-N tetrabenzo(a,c,l,o)pentacene Chemical compound C1=CC=CC2=C(C=C3C(C=C4C=C5C6=CC=CC=C6C=6C(C5=CC4=C3)=CC=CC=6)=C3)C3=C(C=CC=C3)C3=C21 RIQXSPGGOGYAPV-UHFFFAOYSA-N 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高感度の光センサーに
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly sensitive optical sensor.
【0002】[0002]
【従来の技術】これまでSi、Geなどの無機材料を用
いた半導体光センサーが知られている。これらの光セン
サーは半導体のキャリアー濃度変化に伴う電気的特性変
化を検出するものである。また有機材料を用いた光セン
サーも知られているが、通常有機薄膜の薄膜形成が困難
であるためセンサー作製がむずかしく、作製されたセン
サーの感度も十分ではなかった。2. Description of the Related Art Up to now, a semiconductor optical sensor using an inorganic material such as Si or Ge has been known. These optical sensors detect changes in the electrical characteristics of semiconductors due to changes in carrier concentration. Although an optical sensor using an organic material is also known, it is usually difficult to form an organic thin film, which makes it difficult to manufacture the sensor, and the prepared sensor has insufficient sensitivity.
【0003】[0003]
【発明が解決しようとする課題】本発明の課題は、光応
答性に優れた高感度の光センサーを提供することを目的
とするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a high-sensitivity photosensor having excellent photoresponsiveness.
【0004】[0004]
【課題を解決するための手段】本発明者は、光応答性に
優れた高感度の光センサーを得るべく鋭意検討を重ねた
結果、有機半導体である芳香族化合物の薄膜を半導体基
板上に形成させた高感度の薄膜光センサーを見いだし、
本発明を成すに至った。すなわち本発明は、縮合したベ
ンゼン環の数が4以上13以下である縮合多環芳香族化
合物薄膜を半導体基板上に形成させることを特徴とする
有機薄膜光センサーである。本発明の光センサーは半導
体基板上に縮合多環芳香族化合物の薄膜を形成させて、
このセンサーの光照射に伴う電気的特性変化から光を検
出するものである。The present inventor has conducted extensive studies to obtain a highly sensitive photosensor having excellent photoresponsiveness, and as a result, formed a thin film of an aromatic compound, which is an organic semiconductor, on a semiconductor substrate. I found a highly sensitive thin film optical sensor
The present invention has been accomplished. That is, the present invention is an organic thin-film photosensor characterized by forming a condensed polycyclic aromatic compound thin film having 4 to 13 condensed benzene rings on a semiconductor substrate. The optical sensor of the present invention forms a thin film of a condensed polycyclic aromatic compound on a semiconductor substrate,
Light is detected from the change in electrical characteristics of the sensor due to light irradiation.
【0005】本発明に用いる縮合多環芳香族化合物につ
いて説明する。本発明に用いる縮合多環芳香族化合物
は、その縮合したベンゼン環の数が4以上13以下の化
合物またはそれらの混合物である。このような化合物と
して例えば、ナフタセン、ペンタセン、ヘキサセン、ヘ
プタセン、ジベンゾペンタセン、テトラベンゾペンタセ
ン、ピレン、ジベンゾピレン、クリセン、ペリレン、コ
ロネン、テリレン、オバレン、クオテリレン、サーカム
アントラセンなどを挙げることができる。これらの化合
物の炭素の一部をN、S、Oなどの原子、カルボニル基
などの官能基に置換した誘導体も本発明に用いることが
できる。この誘導体としてトリフェノジオキサジン、ト
リフェノジチアジン、ヘキサセン−6,15−キノンな
どを挙げることができる。The condensed polycyclic aromatic compound used in the present invention will be described. The condensed polycyclic aromatic compound used in the present invention is a compound having 4 to 13 condensed benzene rings or a mixture thereof. Examples of such compounds include naphthacene, pentacene, hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, pyrene, dibenzopyrene, chrysene, perylene, coronene, terylene, ovalene, quaterrylene, and circumanthracene. Derivatives obtained by substituting a part of carbon atoms of these compounds with atoms such as N, S and O and functional groups such as carbonyl groups can also be used in the present invention. Examples of this derivative include triphenodioxazine, triphenodithiazine, and hexacene-6,15-quinone.
【0006】つぎに本発明で使用する半導体基板につい
て説明する。本発明で用いる半導体としては、たとえば
シリコン、ガリウムひ素、ガリウムアルミニウムひ素、
ガリウム燐、インジウムひ素、インジウムアンチモン、
炭素系半導体、酸化すず、酸化インジウム、酸化インジ
ウムすず、酸化チタンなどを挙げることができる。前記
の縮合多環芳香族化合物の薄膜を半導体基板上に作製す
る方法についてその例を示す。縮合多環芳香族化合物の
薄膜は、たとえば真空蒸着法、MBE法、CVD法、ス
パッタリング法などの乾式薄膜形成法によって作製する
ことができる。この縮合多環芳香族化合物薄膜は、基板
温度が常温でも優れた平滑性、表面性を有する。また、
該化合物の溶液をもちいてスプレーコート法、スピンコ
ート法、ブレードコート法、デイップコート法などで薄
膜を形成することもできる。Next, the semiconductor substrate used in the present invention will be described. Examples of the semiconductor used in the present invention include silicon, gallium arsenide, gallium aluminum arsenide,
Gallium phosphide, indium arsenide, indium antimony,
Examples thereof include carbon-based semiconductors, tin oxide, indium oxide, indium tin oxide, titanium oxide and the like. An example of a method for producing the above-mentioned condensed polycyclic aromatic compound thin film on a semiconductor substrate will be shown. The condensed polycyclic aromatic compound thin film can be produced by a dry thin film forming method such as a vacuum vapor deposition method, an MBE method, a CVD method, and a sputtering method. This condensed polycyclic aromatic compound thin film has excellent smoothness and surface properties even when the substrate temperature is room temperature. Also,
A thin film can be formed by using a solution of the compound by a spray coating method, a spin coating method, a blade coating method, a dip coating method, or the like.
【0007】必要があればこのようにして作製した薄膜
に検出感度調整のためにヨウ素、臭素、SO3 、S
O2 、NO2 などのアクセプター分子,Li,K,R
b,Cs,Ca,Sr,Ba,希土類金属などのドナー
分子を導入することもできる。次いで、光の有無に伴う
電気的特性を検出するための電極を設けることができ
る。電極は半導体基板側と縮合多環芳香族化合物薄膜側
に設ける。この電極材料としては金属または半導体材料
を用いることができる。この電極の作製法としては、真
空蒸着法、MBE法、スパッタ法、スプレーコート法な
ど前記の縮合多環芳香族化合物の薄膜形成法が利用でき
る。また、この電極作製を縮合多環芳香族化合物の薄膜
作製より前に行うこともできる。If necessary, the thin film thus prepared may be adjusted with iodine, bromine, SO 3 , S for adjusting the detection sensitivity.
Acceptor molecules such as O 2 and NO 2 , Li, K, R
Donor molecules such as b, Cs, Ca, Sr, Ba and rare earth metals can also be introduced. Electrodes can then be provided to detect the electrical properties with and without light. The electrodes are provided on the semiconductor substrate side and the condensed polycyclic aromatic compound thin film side. A metal or a semiconductor material can be used as the electrode material. As a method for producing this electrode, the above-mentioned condensed polycyclic aromatic compound thin film forming method such as a vacuum vapor deposition method, an MBE method, a sputtering method and a spray coating method can be used. Further, this electrode preparation can be performed before the preparation of the condensed polycyclic aromatic compound thin film.
【0008】このようにして作製した光センサーは、た
とえば光照射に伴う電気抵抗変化から光検出が可能であ
る。本発明の光センサーは光照射に伴う縮合多環芳香族
化合物の電気的特性変化を利用するものである。本発明
の光センサーの高感度の原因は明らかでないが、この原
因として、光照射によってキャリアー濃度が変化するが
バンド幅はほとんど変化しない無機半導体材料と異な
り、有機材料は光照射によってキャリアー濃度、バンド
幅ともに大きく変化しているものと考えられる。本発明
の光センサーの縮合多環芳香族化合物はp−型半導体で
あると考えられ、半導体基板にn−型半導体を用いた場
合、接合によってダイオード特性を示す。該センサーの
光照射によって、その整流特性が変化し、光センサーと
しても機能させることができる。The optical sensor manufactured as described above can detect light from the change in electrical resistance caused by light irradiation, for example. The optical sensor of the present invention utilizes changes in the electrical characteristics of the condensed polycyclic aromatic compound due to light irradiation. Although the cause of the high sensitivity of the optical sensor of the present invention is not clear, the cause is that, unlike an inorganic semiconductor material in which the carrier concentration changes by light irradiation but the band width hardly changes, the organic material has a carrier concentration by light irradiation and a band. It is considered that the width has changed significantly. The fused polycyclic aromatic compound of the optical sensor of the present invention is considered to be a p-type semiconductor, and when an n-type semiconductor is used for the semiconductor substrate, it exhibits diode characteristics due to the junction. By irradiating the sensor with light, its rectifying characteristic changes, and it can also function as an optical sensor.
【0009】[0009]
【実施例】次に、実施例および参考例によって本発明を
さらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Reference Examples.
【0010】[0010]
【実施例1】n−型シリコン基板(電導度10S/c
m)上にペンタセン薄膜を2000オングストロームの
膜厚で真空蒸着法で形成させた。該薄膜上に金薄膜を3
00オングストロームの膜厚で積層して電極とした。さ
らにシリコン基板側に金薄膜を取り付け光センサーを作
製した。このようにして作製された光センサーの電気的
特性をI−V曲線測定より評価した(ヒューレットパッ
カード製半導体パラメータアナライザー、4145Bを
使用した)。両電極間に印可電圧を−10から10Vで
繰り返し走査して電流を検出してI−V曲線を測定し
た。暗所では明瞭な整流特性を示し順方向は低抵抗・逆
方向は高抵抗を示した。このI−V曲線から求めた1V
における整流比は約50であった。次にこの光センサー
に懐中電灯の光を照射しながらI−V曲線を測定したと
ころ、暗所では高抵抗であった逆方向の抵抗が減少し
た。この逆方向の抵抗変化から光を検出することができ
た。逆方向の印可電圧−1Vにおける光照射前後の電流
変化は約10であった。Example 1 n-type silicon substrate (conductivity 10 S / c
A pentacene thin film having a thickness of 2000 angstrom was formed on m) by a vacuum deposition method. 3 gold thin film on the thin film
The electrodes were laminated to have a film thickness of 00 angstrom. Further, a gold thin film was attached to the silicon substrate side to fabricate an optical sensor. The electrical characteristics of the optical sensor thus produced were evaluated by IV curve measurement (using a semiconductor parameter analyzer 4145B manufactured by Hewlett Packard). The IV voltage was measured by repeatedly scanning the applied voltage between both electrodes at -10 to 10 V to detect the current. It showed clear rectification characteristics in the dark and showed low resistance in the forward direction and high resistance in the reverse direction. 1V obtained from this IV curve
The rectification ratio in was about 50. Next, when the IV curve was measured while irradiating the light from the flashlight to this optical sensor, the resistance in the opposite direction, which was high in the dark, decreased. Light could be detected from this resistance change in the opposite direction. The change in current before and after irradiation with light at an applied voltage of -1 V in the reverse direction was about 10.
【0011】[0011]
【実施例2】実施例1で作製した光センサーをヨウ素ガ
ス雰囲気中に置いてペンタセン薄膜にヨウ素をドーピン
グした。ドーピングを施したセンサーの電気的特性を実
施例1と同様にして測定した。暗所におけるI−V曲線
から明瞭な整流性が認められ、その整流比は200(印
可電圧1V)であった。このセンサーに懐中電灯の光を
照射しながらI−V曲線を測定した結果、逆方向の抵抗
が減少し光検出が可能であることがわかった。逆方向の
印可電圧−1Vにおける電流変化は約50であった。ま
た−2Vにおける電流変化は200であった。Example 2 The optical sensor prepared in Example 1 was placed in an iodine gas atmosphere to dope the pentacene thin film with iodine. The electrical characteristics of the doped sensor were measured as in Example 1. A clear rectifying property was recognized from the IV curve in the dark place, and the rectifying ratio was 200 (applied voltage 1 V). As a result of measuring the IV curve while irradiating the light of a flashlight to this sensor, it was found that the resistance in the opposite direction was decreased and light detection was possible. The change in current at an applied voltage of -1 V in the reverse direction was about 50. The change in current at -2V was 200.
【0012】[0012]
【実施例3】電導度20S/cmのn−型シリコン基板
上にヘキサセン薄膜を膜厚500オングストロームで真
空蒸着法で作製した。さらにヘキサセン薄膜上に金薄膜
(300オングストローム膜厚)を形成させて一方の電
極とした。またヘキサセン薄膜を形成させたシリコン基
板面の裏側に金薄膜(1000オングストローム膜厚)
を設け、電極とした。このようにして作製した光センサ
ーは、実施例1と同様にして暗所における両電極間のI
−V曲線を測定した。その結果、整流特性が認められ、
印可電圧1V(+1Vと−1V)における整流比は10
であった。つぎに懐中電灯の光を照射しながらI−V曲
線を測定したところ、逆方向の抵抗が減少した。−1V
における光照射前後の電流変化は5であった。Example 3 A hexacene thin film having a film thickness of 500 angstrom was formed on an n-type silicon substrate having an electric conductivity of 20 S / cm by a vacuum deposition method. Further, a gold thin film (300 angstrom film thickness) was formed on the hexacene thin film to form one electrode. Also, a gold thin film (1000 angstrom film thickness) is formed on the back side of the surface of the silicon substrate on which the hexacene thin film is formed.
Was provided as an electrode. The optical sensor thus manufactured was similar to that of Example 1 in that I between both electrodes in a dark place was
The -V curve was measured. As a result, rectification characteristics are recognized,
Rectification ratio at applied voltage 1V (+ 1V and -1V) is 10
Met. Next, when the IV curve was measured while irradiating with the light of the flashlight, the resistance in the opposite direction decreased. -1V
The change in current before and after irradiation with light was 5.
【0013】[0013]
【発明の効果】本発明の光センサーは高感度であり、光
応答性に優れる。さらに該センサーの製造が低温基板で
行えること、薄膜の表面性・平滑性などに優れるため工
業上有用である。The optical sensor of the present invention has high sensitivity and excellent photoresponsiveness. Further, it is industrially useful because the sensor can be manufactured on a low-temperature substrate and the thin film has excellent surface properties and smoothness.
Claims (1)
下である縮合多環芳香族化合物薄膜を半導体基板上に形
成することを特徴とする有機薄膜光センサー1. An organic thin-film optical sensor, comprising: forming a condensed polycyclic aromatic compound thin film having 4 to 13 condensed benzene rings on a semiconductor substrate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3215747A JPH0555610A (en) | 1991-08-28 | 1991-08-28 | Organic file photosensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3215747A JPH0555610A (en) | 1991-08-28 | 1991-08-28 | Organic file photosensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0555610A true JPH0555610A (en) | 1993-03-05 |
Family
ID=16677545
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3215747A Withdrawn JPH0555610A (en) | 1991-08-28 | 1991-08-28 | Organic file photosensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0555610A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8682357B2 (en) | 2006-05-02 | 2014-03-25 | Intellectual Ventures Holding 81 Llc | Paging in a wireless network |
-
1991
- 1991-08-28 JP JP3215747A patent/JPH0555610A/en not_active Withdrawn
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8682357B2 (en) | 2006-05-02 | 2014-03-25 | Intellectual Ventures Holding 81 Llc | Paging in a wireless network |
| US9532330B2 (en) | 2006-05-02 | 2016-12-27 | Intellectual Ventures Holding 81 Llc | Paging in a wireless network |
| US10743284B2 (en) | 2006-05-02 | 2020-08-11 | Intellectual Ventures Ii Llc | Paging in a wireless network |
| US11564202B2 (en) | 2006-05-02 | 2023-01-24 | Intellectual Ventures Ii Llc | Paging in a wireless network |
| US11792769B2 (en) | 2006-05-02 | 2023-10-17 | Intellectual Ventures Ii Llc | Paging in a wireless network |
| US12082153B2 (en) | 2006-05-02 | 2024-09-03 | Intellectual Ventures Ii Llc | Paging in a wireless network |
| US12418888B2 (en) | 2006-05-02 | 2025-09-16 | Intellectual Ventures Ii Llc | Paging in a wireless network |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Forrest et al. | Organic‐on‐inorganic semiconductor contact barrier diodes. II. Dependence on organic film and metal contact properties | |
| Koch et al. | Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone | |
| Nawar et al. | Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction | |
| Shao et al. | Crystallinity and grain boundary control of TIPS-pentacene in organic thin-film transistors for the ultra-high sensitive detection of NO 2 | |
| Chen et al. | Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials | |
| Kılıçoğlu et al. | The determination of the interface state density distribution of the Al/methyl red/p-Si Schottky barrier diode by using a capacitance method | |
| Bernède et al. | XPS study of the band alignment at ITO/oxide (n‐type MoO3 or p‐type NiO) interface | |
| Alptekin et al. | Determination of surface states energy density distributions and relaxation times for a metal-polymer-semiconductor structure | |
| Erdogan et al. | Modification of barrier diode with cationic dye for high power applications | |
| Liu et al. | Fabrication and Characterization of (100)‐Oriented Single‐Crystal Diamond p–i–n Junction Ultraviolet Detector | |
| Çakar et al. | The conductance and capacitance–frequency characteristics of the organic compound (pyronine-B)/p-Si structures | |
| El-Nahass et al. | Temperature dependent I–V characterization of Coronene/p-Si based heterojunctions: space charge limited current, Schottky emission at high voltages, thermionic emission and pool-Frenkel emission at low voltages | |
| Zhang et al. | Ultraviolet to near-infrared broadband phototransistors based on hybrid InGaZnO/C8-BTBT heterojunction structure | |
| Eymur et al. | Illumination dependent electrical and photovoltaic properties of Au/n-Type Si schottky diode with anthracene-based NAMA interlayer | |
| Bouvet et al. | Electrical transduction in phthalocyanine-based gas sensors: from classical chemiresistors to new functional structures | |
| Jones et al. | Effects of thickness on surface potential and surface conductivity in non-insulating Langmuir-Blodgett multilayers of porphyrins | |
| Mi et al. | Enhanced performance of ultraviolet photodetector based on amorphous Ga2O3 films through formation of heterojunction with ZnO nanoparticles | |
| JPH0555610A (en) | Organic file photosensor | |
| Mäkinen et al. | Electronic structure of a silole derivative-magnesium thin film interface | |
| Wu et al. | Fabrication and electrical properties of p-CuAlO2/(n-, p-) Si heterojunctions | |
| Paz et al. | Selective photosensitivity of metal–oxide–semiconductor structures with SiO x layer annealed at high temperature | |
| JPH08236799A (en) | Semiconductor radiation detecting element and rectifying element | |
| Lefki et al. | Internal photoemission in metal/β-FeSi2/Si heterojunctions | |
| Ozaydin et al. | Electrical and photoelectrical properties of copper (II) complex/n-Si/Au heterojunction diode | |
| Bhagavat et al. | Semiconducting amorphous carbon films and carbon-single-crystal silicon heterojunctions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981112 |