[go: up one dir, main page]

JPH0555610A - Organic file photosensor - Google Patents

Organic file photosensor

Info

Publication number
JPH0555610A
JPH0555610A JP3215747A JP21574791A JPH0555610A JP H0555610 A JPH0555610 A JP H0555610A JP 3215747 A JP3215747 A JP 3215747A JP 21574791 A JP21574791 A JP 21574791A JP H0555610 A JPH0555610 A JP H0555610A
Authority
JP
Japan
Prior art keywords
light
thin film
photosensor
aromatic compound
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3215747A
Other languages
Japanese (ja)
Inventor
Takashi Namikata
尚 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3215747A priority Critical patent/JPH0555610A/en
Publication of JPH0555610A publication Critical patent/JPH0555610A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide a highly sensitive photosensor excellent in response to light. CONSTITUTION:A condensed polycyclic aromatic compound film where the number of condensed benzene rings is not less than four and not more than thirteen is made on a semiconductor substrate. A photosensor detects the light from the change of the electric property accompanying the light application of this sensor, by forming the film of a condensed poIycyclic aromatic compound on the semiconductor substrate. The photosensor is highly sensitive, and is excellent in response to light. Furthermore, since the manufacture of the sensor can be performed with a low-temperature substrate, and it is excellent in surface property of the film and the smoothness, it is useful in industry.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高感度の光センサーに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly sensitive optical sensor.

【0002】[0002]

【従来の技術】これまでSi、Geなどの無機材料を用
いた半導体光センサーが知られている。これらの光セン
サーは半導体のキャリアー濃度変化に伴う電気的特性変
化を検出するものである。また有機材料を用いた光セン
サーも知られているが、通常有機薄膜の薄膜形成が困難
であるためセンサー作製がむずかしく、作製されたセン
サーの感度も十分ではなかった。
2. Description of the Related Art Up to now, a semiconductor optical sensor using an inorganic material such as Si or Ge has been known. These optical sensors detect changes in the electrical characteristics of semiconductors due to changes in carrier concentration. Although an optical sensor using an organic material is also known, it is usually difficult to form an organic thin film, which makes it difficult to manufacture the sensor, and the prepared sensor has insufficient sensitivity.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、光応
答性に優れた高感度の光センサーを提供することを目的
とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-sensitivity photosensor having excellent photoresponsiveness.

【0004】[0004]

【課題を解決するための手段】本発明者は、光応答性に
優れた高感度の光センサーを得るべく鋭意検討を重ねた
結果、有機半導体である芳香族化合物の薄膜を半導体基
板上に形成させた高感度の薄膜光センサーを見いだし、
本発明を成すに至った。すなわち本発明は、縮合したベ
ンゼン環の数が4以上13以下である縮合多環芳香族化
合物薄膜を半導体基板上に形成させることを特徴とする
有機薄膜光センサーである。本発明の光センサーは半導
体基板上に縮合多環芳香族化合物の薄膜を形成させて、
このセンサーの光照射に伴う電気的特性変化から光を検
出するものである。
The present inventor has conducted extensive studies to obtain a highly sensitive photosensor having excellent photoresponsiveness, and as a result, formed a thin film of an aromatic compound, which is an organic semiconductor, on a semiconductor substrate. I found a highly sensitive thin film optical sensor
The present invention has been accomplished. That is, the present invention is an organic thin-film photosensor characterized by forming a condensed polycyclic aromatic compound thin film having 4 to 13 condensed benzene rings on a semiconductor substrate. The optical sensor of the present invention forms a thin film of a condensed polycyclic aromatic compound on a semiconductor substrate,
Light is detected from the change in electrical characteristics of the sensor due to light irradiation.

【0005】本発明に用いる縮合多環芳香族化合物につ
いて説明する。本発明に用いる縮合多環芳香族化合物
は、その縮合したベンゼン環の数が4以上13以下の化
合物またはそれらの混合物である。このような化合物と
して例えば、ナフタセン、ペンタセン、ヘキサセン、ヘ
プタセン、ジベンゾペンタセン、テトラベンゾペンタセ
ン、ピレン、ジベンゾピレン、クリセン、ペリレン、コ
ロネン、テリレン、オバレン、クオテリレン、サーカム
アントラセンなどを挙げることができる。これらの化合
物の炭素の一部をN、S、Oなどの原子、カルボニル基
などの官能基に置換した誘導体も本発明に用いることが
できる。この誘導体としてトリフェノジオキサジン、ト
リフェノジチアジン、ヘキサセン−6,15−キノンな
どを挙げることができる。
The condensed polycyclic aromatic compound used in the present invention will be described. The condensed polycyclic aromatic compound used in the present invention is a compound having 4 to 13 condensed benzene rings or a mixture thereof. Examples of such compounds include naphthacene, pentacene, hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, pyrene, dibenzopyrene, chrysene, perylene, coronene, terylene, ovalene, quaterrylene, and circumanthracene. Derivatives obtained by substituting a part of carbon atoms of these compounds with atoms such as N, S and O and functional groups such as carbonyl groups can also be used in the present invention. Examples of this derivative include triphenodioxazine, triphenodithiazine, and hexacene-6,15-quinone.

【0006】つぎに本発明で使用する半導体基板につい
て説明する。本発明で用いる半導体としては、たとえば
シリコン、ガリウムひ素、ガリウムアルミニウムひ素、
ガリウム燐、インジウムひ素、インジウムアンチモン、
炭素系半導体、酸化すず、酸化インジウム、酸化インジ
ウムすず、酸化チタンなどを挙げることができる。前記
の縮合多環芳香族化合物の薄膜を半導体基板上に作製す
る方法についてその例を示す。縮合多環芳香族化合物の
薄膜は、たとえば真空蒸着法、MBE法、CVD法、ス
パッタリング法などの乾式薄膜形成法によって作製する
ことができる。この縮合多環芳香族化合物薄膜は、基板
温度が常温でも優れた平滑性、表面性を有する。また、
該化合物の溶液をもちいてスプレーコート法、スピンコ
ート法、ブレードコート法、デイップコート法などで薄
膜を形成することもできる。
Next, the semiconductor substrate used in the present invention will be described. Examples of the semiconductor used in the present invention include silicon, gallium arsenide, gallium aluminum arsenide,
Gallium phosphide, indium arsenide, indium antimony,
Examples thereof include carbon-based semiconductors, tin oxide, indium oxide, indium tin oxide, titanium oxide and the like. An example of a method for producing the above-mentioned condensed polycyclic aromatic compound thin film on a semiconductor substrate will be shown. The condensed polycyclic aromatic compound thin film can be produced by a dry thin film forming method such as a vacuum vapor deposition method, an MBE method, a CVD method, and a sputtering method. This condensed polycyclic aromatic compound thin film has excellent smoothness and surface properties even when the substrate temperature is room temperature. Also,
A thin film can be formed by using a solution of the compound by a spray coating method, a spin coating method, a blade coating method, a dip coating method, or the like.

【0007】必要があればこのようにして作製した薄膜
に検出感度調整のためにヨウ素、臭素、SO3 、S
2 、NO2 などのアクセプター分子,Li,K,R
b,Cs,Ca,Sr,Ba,希土類金属などのドナー
分子を導入することもできる。次いで、光の有無に伴う
電気的特性を検出するための電極を設けることができ
る。電極は半導体基板側と縮合多環芳香族化合物薄膜側
に設ける。この電極材料としては金属または半導体材料
を用いることができる。この電極の作製法としては、真
空蒸着法、MBE法、スパッタ法、スプレーコート法な
ど前記の縮合多環芳香族化合物の薄膜形成法が利用でき
る。また、この電極作製を縮合多環芳香族化合物の薄膜
作製より前に行うこともできる。
If necessary, the thin film thus prepared may be adjusted with iodine, bromine, SO 3 , S for adjusting the detection sensitivity.
Acceptor molecules such as O 2 and NO 2 , Li, K, R
Donor molecules such as b, Cs, Ca, Sr, Ba and rare earth metals can also be introduced. Electrodes can then be provided to detect the electrical properties with and without light. The electrodes are provided on the semiconductor substrate side and the condensed polycyclic aromatic compound thin film side. A metal or a semiconductor material can be used as the electrode material. As a method for producing this electrode, the above-mentioned condensed polycyclic aromatic compound thin film forming method such as a vacuum vapor deposition method, an MBE method, a sputtering method and a spray coating method can be used. Further, this electrode preparation can be performed before the preparation of the condensed polycyclic aromatic compound thin film.

【0008】このようにして作製した光センサーは、た
とえば光照射に伴う電気抵抗変化から光検出が可能であ
る。本発明の光センサーは光照射に伴う縮合多環芳香族
化合物の電気的特性変化を利用するものである。本発明
の光センサーの高感度の原因は明らかでないが、この原
因として、光照射によってキャリアー濃度が変化するが
バンド幅はほとんど変化しない無機半導体材料と異な
り、有機材料は光照射によってキャリアー濃度、バンド
幅ともに大きく変化しているものと考えられる。本発明
の光センサーの縮合多環芳香族化合物はp−型半導体で
あると考えられ、半導体基板にn−型半導体を用いた場
合、接合によってダイオード特性を示す。該センサーの
光照射によって、その整流特性が変化し、光センサーと
しても機能させることができる。
The optical sensor manufactured as described above can detect light from the change in electrical resistance caused by light irradiation, for example. The optical sensor of the present invention utilizes changes in the electrical characteristics of the condensed polycyclic aromatic compound due to light irradiation. Although the cause of the high sensitivity of the optical sensor of the present invention is not clear, the cause is that, unlike an inorganic semiconductor material in which the carrier concentration changes by light irradiation but the band width hardly changes, the organic material has a carrier concentration by light irradiation and a band. It is considered that the width has changed significantly. The fused polycyclic aromatic compound of the optical sensor of the present invention is considered to be a p-type semiconductor, and when an n-type semiconductor is used for the semiconductor substrate, it exhibits diode characteristics due to the junction. By irradiating the sensor with light, its rectifying characteristic changes, and it can also function as an optical sensor.

【0009】[0009]

【実施例】次に、実施例および参考例によって本発明を
さらに詳細に説明する。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Reference Examples.

【0010】[0010]

【実施例1】n−型シリコン基板(電導度10S/c
m)上にペンタセン薄膜を2000オングストロームの
膜厚で真空蒸着法で形成させた。該薄膜上に金薄膜を3
00オングストロームの膜厚で積層して電極とした。さ
らにシリコン基板側に金薄膜を取り付け光センサーを作
製した。このようにして作製された光センサーの電気的
特性をI−V曲線測定より評価した(ヒューレットパッ
カード製半導体パラメータアナライザー、4145Bを
使用した)。両電極間に印可電圧を−10から10Vで
繰り返し走査して電流を検出してI−V曲線を測定し
た。暗所では明瞭な整流特性を示し順方向は低抵抗・逆
方向は高抵抗を示した。このI−V曲線から求めた1V
における整流比は約50であった。次にこの光センサー
に懐中電灯の光を照射しながらI−V曲線を測定したと
ころ、暗所では高抵抗であった逆方向の抵抗が減少し
た。この逆方向の抵抗変化から光を検出することができ
た。逆方向の印可電圧−1Vにおける光照射前後の電流
変化は約10であった。
Example 1 n-type silicon substrate (conductivity 10 S / c
A pentacene thin film having a thickness of 2000 angstrom was formed on m) by a vacuum deposition method. 3 gold thin film on the thin film
The electrodes were laminated to have a film thickness of 00 angstrom. Further, a gold thin film was attached to the silicon substrate side to fabricate an optical sensor. The electrical characteristics of the optical sensor thus produced were evaluated by IV curve measurement (using a semiconductor parameter analyzer 4145B manufactured by Hewlett Packard). The IV voltage was measured by repeatedly scanning the applied voltage between both electrodes at -10 to 10 V to detect the current. It showed clear rectification characteristics in the dark and showed low resistance in the forward direction and high resistance in the reverse direction. 1V obtained from this IV curve
The rectification ratio in was about 50. Next, when the IV curve was measured while irradiating the light from the flashlight to this optical sensor, the resistance in the opposite direction, which was high in the dark, decreased. Light could be detected from this resistance change in the opposite direction. The change in current before and after irradiation with light at an applied voltage of -1 V in the reverse direction was about 10.

【0011】[0011]

【実施例2】実施例1で作製した光センサーをヨウ素ガ
ス雰囲気中に置いてペンタセン薄膜にヨウ素をドーピン
グした。ドーピングを施したセンサーの電気的特性を実
施例1と同様にして測定した。暗所におけるI−V曲線
から明瞭な整流性が認められ、その整流比は200(印
可電圧1V)であった。このセンサーに懐中電灯の光を
照射しながらI−V曲線を測定した結果、逆方向の抵抗
が減少し光検出が可能であることがわかった。逆方向の
印可電圧−1Vにおける電流変化は約50であった。ま
た−2Vにおける電流変化は200であった。
Example 2 The optical sensor prepared in Example 1 was placed in an iodine gas atmosphere to dope the pentacene thin film with iodine. The electrical characteristics of the doped sensor were measured as in Example 1. A clear rectifying property was recognized from the IV curve in the dark place, and the rectifying ratio was 200 (applied voltage 1 V). As a result of measuring the IV curve while irradiating the light of a flashlight to this sensor, it was found that the resistance in the opposite direction was decreased and light detection was possible. The change in current at an applied voltage of -1 V in the reverse direction was about 50. The change in current at -2V was 200.

【0012】[0012]

【実施例3】電導度20S/cmのn−型シリコン基板
上にヘキサセン薄膜を膜厚500オングストロームで真
空蒸着法で作製した。さらにヘキサセン薄膜上に金薄膜
(300オングストローム膜厚)を形成させて一方の電
極とした。またヘキサセン薄膜を形成させたシリコン基
板面の裏側に金薄膜(1000オングストローム膜厚)
を設け、電極とした。このようにして作製した光センサ
ーは、実施例1と同様にして暗所における両電極間のI
−V曲線を測定した。その結果、整流特性が認められ、
印可電圧1V(+1Vと−1V)における整流比は10
であった。つぎに懐中電灯の光を照射しながらI−V曲
線を測定したところ、逆方向の抵抗が減少した。−1V
における光照射前後の電流変化は5であった。
Example 3 A hexacene thin film having a film thickness of 500 angstrom was formed on an n-type silicon substrate having an electric conductivity of 20 S / cm by a vacuum deposition method. Further, a gold thin film (300 angstrom film thickness) was formed on the hexacene thin film to form one electrode. Also, a gold thin film (1000 angstrom film thickness) is formed on the back side of the surface of the silicon substrate on which the hexacene thin film is formed.
Was provided as an electrode. The optical sensor thus manufactured was similar to that of Example 1 in that I between both electrodes in a dark place was
The -V curve was measured. As a result, rectification characteristics are recognized,
Rectification ratio at applied voltage 1V (+ 1V and -1V) is 10
Met. Next, when the IV curve was measured while irradiating with the light of the flashlight, the resistance in the opposite direction decreased. -1V
The change in current before and after irradiation with light was 5.

【0013】[0013]

【発明の効果】本発明の光センサーは高感度であり、光
応答性に優れる。さらに該センサーの製造が低温基板で
行えること、薄膜の表面性・平滑性などに優れるため工
業上有用である。
The optical sensor of the present invention has high sensitivity and excellent photoresponsiveness. Further, it is industrially useful because the sensor can be manufactured on a low-temperature substrate and the thin film has excellent surface properties and smoothness.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 縮合したベンゼン環の数が4以上13以
下である縮合多環芳香族化合物薄膜を半導体基板上に形
成することを特徴とする有機薄膜光センサー
1. An organic thin-film optical sensor, comprising: forming a condensed polycyclic aromatic compound thin film having 4 to 13 condensed benzene rings on a semiconductor substrate.
JP3215747A 1991-08-28 1991-08-28 Organic file photosensor Withdrawn JPH0555610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3215747A JPH0555610A (en) 1991-08-28 1991-08-28 Organic file photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3215747A JPH0555610A (en) 1991-08-28 1991-08-28 Organic file photosensor

Publications (1)

Publication Number Publication Date
JPH0555610A true JPH0555610A (en) 1993-03-05

Family

ID=16677545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3215747A Withdrawn JPH0555610A (en) 1991-08-28 1991-08-28 Organic file photosensor

Country Status (1)

Country Link
JP (1) JPH0555610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682357B2 (en) 2006-05-02 2014-03-25 Intellectual Ventures Holding 81 Llc Paging in a wireless network

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682357B2 (en) 2006-05-02 2014-03-25 Intellectual Ventures Holding 81 Llc Paging in a wireless network
US9532330B2 (en) 2006-05-02 2016-12-27 Intellectual Ventures Holding 81 Llc Paging in a wireless network
US10743284B2 (en) 2006-05-02 2020-08-11 Intellectual Ventures Ii Llc Paging in a wireless network
US11564202B2 (en) 2006-05-02 2023-01-24 Intellectual Ventures Ii Llc Paging in a wireless network
US11792769B2 (en) 2006-05-02 2023-10-17 Intellectual Ventures Ii Llc Paging in a wireless network
US12082153B2 (en) 2006-05-02 2024-09-03 Intellectual Ventures Ii Llc Paging in a wireless network
US12418888B2 (en) 2006-05-02 2025-09-16 Intellectual Ventures Ii Llc Paging in a wireless network

Similar Documents

Publication Publication Date Title
Forrest et al. Organic‐on‐inorganic semiconductor contact barrier diodes. II. Dependence on organic film and metal contact properties
Koch et al. Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone
Nawar et al. Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction
Shao et al. Crystallinity and grain boundary control of TIPS-pentacene in organic thin-film transistors for the ultra-high sensitive detection of NO 2
Chen et al. Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials
Kılıçoğlu et al. The determination of the interface state density distribution of the Al/methyl red/p-Si Schottky barrier diode by using a capacitance method
Bernède et al. XPS study of the band alignment at ITO/oxide (n‐type MoO3 or p‐type NiO) interface
Alptekin et al. Determination of surface states energy density distributions and relaxation times for a metal-polymer-semiconductor structure
Erdogan et al. Modification of barrier diode with cationic dye for high power applications
Liu et al. Fabrication and Characterization of (100)‐Oriented Single‐Crystal Diamond p–i–n Junction Ultraviolet Detector
Çakar et al. The conductance and capacitance–frequency characteristics of the organic compound (pyronine-B)/p-Si structures
El-Nahass et al. Temperature dependent I–V characterization of Coronene/p-Si based heterojunctions: space charge limited current, Schottky emission at high voltages, thermionic emission and pool-Frenkel emission at low voltages
Zhang et al. Ultraviolet to near-infrared broadband phototransistors based on hybrid InGaZnO/C8-BTBT heterojunction structure
Eymur et al. Illumination dependent electrical and photovoltaic properties of Au/n-Type Si schottky diode with anthracene-based NAMA interlayer
Bouvet et al. Electrical transduction in phthalocyanine-based gas sensors: from classical chemiresistors to new functional structures
Jones et al. Effects of thickness on surface potential and surface conductivity in non-insulating Langmuir-Blodgett multilayers of porphyrins
Mi et al. Enhanced performance of ultraviolet photodetector based on amorphous Ga2O3 films through formation of heterojunction with ZnO nanoparticles
JPH0555610A (en) Organic file photosensor
Mäkinen et al. Electronic structure of a silole derivative-magnesium thin film interface
Wu et al. Fabrication and electrical properties of p-CuAlO2/(n-, p-) Si heterojunctions
Paz et al. Selective photosensitivity of metal–oxide–semiconductor structures with SiO x layer annealed at high temperature
JPH08236799A (en) Semiconductor radiation detecting element and rectifying element
Lefki et al. Internal photoemission in metal/β-FeSi2/Si heterojunctions
Ozaydin et al. Electrical and photoelectrical properties of copper (II) complex/n-Si/Au heterojunction diode
Bhagavat et al. Semiconducting amorphous carbon films and carbon-single-crystal silicon heterojunctions

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112