JPH0570922A - Pore sealing treatment of laminated material with inorganic compound - Google Patents
Pore sealing treatment of laminated material with inorganic compoundInfo
- Publication number
- JPH0570922A JPH0570922A JP28741291A JP28741291A JPH0570922A JP H0570922 A JPH0570922 A JP H0570922A JP 28741291 A JP28741291 A JP 28741291A JP 28741291 A JP28741291 A JP 28741291A JP H0570922 A JPH0570922 A JP H0570922A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- coating film
- treatment
- base material
- sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 15
- 238000007789 sealing Methods 0.000 title claims description 29
- 150000002484 inorganic compounds Chemical class 0.000 title claims description 8
- 229910010272 inorganic material Inorganic materials 0.000 title claims description 8
- 239000002648 laminated material Substances 0.000 title abstract 3
- 239000011248 coating agent Substances 0.000 claims abstract description 27
- 238000000576 coating method Methods 0.000 claims abstract description 27
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 14
- 238000007654 immersion Methods 0.000 claims abstract description 7
- 238000003980 solgel method Methods 0.000 claims abstract description 4
- 239000002131 composite material Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 21
- 238000001035 drying Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 3
- 238000004381 surface treatment Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 27
- 238000009489 vacuum treatment Methods 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 150000002894 organic compounds Chemical class 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000002848 electrochemical method Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Chemically Coating (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、産業用機械装置に用い
られる部材の表面改質法に関するもので、基材表面に被
覆膜を形成させた、基材と被覆膜からなる複合材におい
て、基材と被覆膜の界面に無機化合物を生成させること
で、被覆膜の貫通気孔を減少させる封孔処理法に係るも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for modifying the surface of a member used in an industrial machine, which is a composite material comprising a base material and a coating film, the base material having a coating film formed thereon. In the above, the present invention relates to a sealing treatment method for reducing the through pores of the coating film by producing an inorganic compound at the interface between the base material and the coating film.
【0002】[0002]
【従来の技術】従来、前記複合材の封孔処理法は、樹脂
などの有機化合物を用いたものがほとんどであり、その
有機化合物を封孔したい部材に塗布したり、あるいは部
材自身を有機化合物の溶液中に浸漬することで、被覆膜
の貫通気孔を含む気孔内にしみ込ませたのち、乾燥さ
せ、場合によっては、加熱して有機化合物を固化させる
方法が知られている。2. Description of the Related Art Heretofore, most of the methods for sealing the pores of composite materials have used an organic compound such as resin. The organic compound is applied to the member to be sealed or the member itself is treated with an organic compound. A method is known in which the organic compound is solidified by immersing it in the solution of (1) to allow it to soak into the pores including the through-pores of the coating film, and then drying it, and in some cases, heating it to solidify the organic compound.
【0003】[0003]
【発明が解決しようとする課題】前記の有機化合物によ
る封孔処理法では、大部分の有機化合物が被覆膜の表面
で固化し、被覆膜内部の気孔に十分に浸透させることが
困難なため、耐摩耗性に問題があり、しかも、封孔剤が
有機化合物であるため熱に弱く、高温になると分解して
封孔が壊れる欠点があり、また耐候・耐久性に問題があ
って長期間の封孔維持は不可能であった。In the above-described method of sealing treatment with an organic compound, most of the organic compound is solidified on the surface of the coating film, and it is difficult to sufficiently permeate the pores inside the coating film. Therefore, there is a problem in abrasion resistance, and since the sealing agent is an organic compound, it is weak against heat and has the drawback that it decomposes at high temperature and the sealing hole is broken. It was impossible to maintain the sealing for a certain period.
【0004】[0004]
【課題を解決するための手段】本発明は前述の欠点を改
善すべく、表面処理法によって基材表面に被覆膜を形成
させた、基材と被覆膜からなる複合材を、ゾル・ゲル法
を用い、ゾル溶液に浸漬中に超音波処理を加えたのち、
乾燥させ、さらに150〜1500℃の温度下で一定時
間保持することを特徴とするものであり、また前記の超
音波処理に代えて、減圧処理や、超音波処理及び減圧処
理を行うことを特徴とするものである。In order to remedy the above-mentioned drawbacks, the present invention provides a composite material comprising a base material and a coating film, which has a coating film formed on the surface of the base material by a surface treatment method. After applying ultrasonic treatment during immersion in the sol solution using the gel method,
It is characterized in that it is dried and further held at a temperature of 150 to 1500 ° C. for a certain period of time, and in place of the ultrasonic treatment, a reduced pressure treatment or an ultrasonic treatment and a reduced pressure treatment is performed. Is to
【0005】[0005]
【作用】複合材をゾル溶液に浸漬するとともに、超音波
処理あるいは減圧処理を加えるため、溶液中のゾルは加
水分解され、重合し高分子化する。そして、該複合材を
乾燥させると、ゾルはゲルに変化し、さらに、最終の1
50〜1500℃の温度下で一定時間保持することで有
機分が分解して、ゲルは無機化合物になる。またこれら
の反応は浸漬時に超音波処理あるいは減圧処理を加える
ため、特に被覆膜と基材との界面で、激しく起こり、優
先的に基材を被覆成膜することとなる。この結果、被覆
膜と基材間の貫通気孔が大幅に減少する。The composite material is immersed in the sol solution and subjected to ultrasonic treatment or reduced pressure treatment, so that the sol in the solution is hydrolyzed, polymerized and polymerized. Then, when the composite material is dried, the sol changes into a gel, and the final 1
By keeping it at a temperature of 50 to 1500 ° C. for a certain period of time, organic components are decomposed and the gel becomes an inorganic compound. In addition, since these reactions are subjected to ultrasonic treatment or reduced pressure treatment during immersion, they occur violently at the interface between the coating film and the base material, and the base material is preferentially coated to form a film. As a result, the number of through pores between the coating film and the base material is significantly reduced.
【0006】[0006]
【実施例】実施例1として、超音波処理をゾル・ゲル法
に併用した封孔処理法について説明する。基材として圧
延鋼材(SS400)を用い、その表面をブラストした
後アルミナを溶射して被覆膜を形成させた。その膜厚
は、約250μmであった。つぎに、この基材と被覆膜
からなる複合材に以下の手順で封孔処理を施した。EXAMPLE As Example 1, a sealing treatment method in which ultrasonic treatment is used in combination with the sol-gel method will be described. A rolled steel material (SS400) was used as a base material, the surface thereof was blasted, and then alumina was sprayed to form a coating film. The film thickness was about 250 μm. Next, the composite material including the base material and the coating film was subjected to a sealing treatment by the following procedure.
【0007】ゾル溶液の調製:水90mlに対し、金
属アルコキシドのアルミニウムイソプロポキシドを1
0.22gの割合で加え、同時にHCl(1+1)溶液
を0.5ml加えた後、約30分間攪はん・混合し、さ
らにHCl(1+1)1.2mlを加えて、75℃の恒
温槽中で約1時間攪はん・混合して、ゾル溶液とする。Preparation of sol solution: 1 part of aluminum isopropoxide of metal alkoxide was added to 90 ml of water.
Add 0.22 g and simultaneously add 0.5 ml of HCl (1 + 1) solution, stir and mix for about 30 minutes, add 1.2 ml of HCl (1 + 1), and in a constant temperature bath at 75 ° C. Stir and mix for about 1 hour to prepare a sol solution.
【0008】浸漬・超音波処理:アセトン中で脱脂・
洗浄した複合材を、上記ゾル溶液中に浸漬し、同時に超
音波処理を約10分間加え、ゾル溶液の重合を促進させ
ると共に、基材界面、特に貫通気孔面にアルミナゾルを
結合させ成膜させる。Immersion / sonication: Degreasing in acetone
The washed composite material is immersed in the sol solution described above, and at the same time, ultrasonic treatment is applied for about 10 minutes to accelerate the polymerization of the sol solution, and at the same time, alumina sol is bonded to the interface of the base material, especially the through-pore surface to form a film.
【0009】乾燥:複合材をゾル溶液中から取り出し
て、自然乾燥させた後、乾燥機中で105℃の温度で3
0分間乾燥させ、成膜させたゾルをゲル体とする。Drying: The composite material is taken out of the sol solution, naturally dried, and then dried in a dryer at a temperature of 105 ° C. for 3 hours.
The sol is dried for 0 minutes to form a gel body.
【0010】熱処理:乾燥させた複合材を、電気炉中
で500℃の温度で、1時間加熱する。Heat treatment: The dried composite material is heated in an electric furnace at a temperature of 500 ° C. for 1 hour.
【0011】次に、実施例2として、減圧処理をゾル・
ゲル法に併用した封孔処理法について説明する。複合材
は実施例1と同じもので、以下の手順で封孔処理を施し
た。Next, as a second embodiment, a pressure reducing process is performed on the sol.
The sealing treatment method used in combination with the gel method will be described. The composite material was the same as in Example 1, and was subjected to sealing treatment by the following procedure.
【0012】ゾル溶液の調製:水90mlに対し、金
属アルコキシドのアルミニウムイソプロポキシドを1
0.22gの割合で加え、同時にHCl(1+1)溶液
を0.5ml加えた後、約1時間攪はん・混合し、さら
に、HCl(1+1)10mlを加えて、40℃の恒温
下で超音波処理を約2時間行なって攪はん・混合し、ゾ
ル溶液とする。Preparation of sol solution: 1 part of aluminum isopropoxide of metal alkoxide was added to 90 ml of water.
Add 0.22 g, and simultaneously add 0.5 ml of HCl (1 + 1) solution, stir and mix for about 1 hour, and add 10 ml of HCl (1 + 1) at a constant temperature of 40 ° C. Sonicate for about 2 hours, stir and mix to give a sol solution.
【0013】浸漬・減圧処理:エタノール中で脱脂・
洗浄した複合材を、上記ゾル溶液中に浸漬し、同時にア
スピレータによる減圧処理を約10分間加え、ゾル溶液
の重合を促進させると共に、基材界面、特に貫通気孔面
にアルミナゾルを結合させ成膜させる。Immersion / decompression treatment: degreasing in ethanol
The washed composite material is dipped in the sol solution described above, and at the same time, a reduced pressure treatment with an aspirator is applied for about 10 minutes to accelerate the polymerization of the sol solution, and at the same time, the alumina sol is bonded to the base material interface, particularly the through-pore surface to form a film. .
【0014】乾燥:複合材をゾル溶液から取り出し
て、自然乾燥させた後、乾燥機中で、90℃の温度で1
時間乾燥させ、成膜させたゾルをゲル体とする。Drying: The composite material is taken out of the sol solution and naturally dried, and then dried in a dryer at a temperature of 90 ° C. for 1 hour.
The sol that has been dried for a period of time to form a film is used as a gel.
【0015】熱処理:乾燥させた複合材を、電気炉中
で、500℃の温度で1時間加熱する。Heat treatment: The dried composite material is heated in an electric furnace at a temperature of 500 ° C. for 1 hour.
【0016】次に、実施例3として超音波処理及び減圧
処理を、ゾル・ゲル法に併用した封孔処理法について説
明する。基材としてアルミニウムを用い、その表面をブ
ラストした後チタニアを溶射して被覆膜を形成させた。
その膜厚は、約310μmであった。そして、以下の手
順で封孔処理を行った。Next, as Example 3, a sealing treatment method in which ultrasonic treatment and reduced pressure treatment are used in combination with the sol-gel method will be described. Aluminum was used as the base material, the surface was blasted, and then titania was sprayed to form a coating film.
The film thickness was about 310 μm. Then, the sealing treatment was performed in the following procedure.
【0017】ゾル溶液の調製:水100mlに、ケイ
酸ソーダ56.5gを加え、約30分間攪はん・混合し
ゾル溶液とする。Preparation of sol solution: To 100 ml of water, 56.5 g of sodium silicate is added and stirred and mixed for about 30 minutes to obtain a sol solution.
【0018】浸漬・超音波,減圧処理:エタノール中
で脱脂・洗浄した複合材を、上記ゾル溶液中に浸漬し、
同時に超音波処理を約5分間加え、その後アスピレータ
による減圧処理を約2時間加えて、ゾル溶液の重合を促
進させると共に、基材界面、特に貫通気孔面にシリカゾ
ルを結合させ成膜させる。 乾燥・熱処理:複合材をゾル溶液から取り出して、自
然乾燥させた後、乾燥機中で、150℃の温度で2時間
加熱する。Immersion, ultrasonic wave, reduced pressure treatment: The composite material degreased and washed in ethanol is immersed in the above sol solution,
At the same time, ultrasonic treatment is applied for about 5 minutes, and then depressurization treatment with an aspirator is applied for about 2 hours to accelerate the polymerization of the sol solution and to bond silica sol to the base material interface, particularly the through-pore surface to form a film. Drying / Heat Treatment: The composite material is taken out of the sol solution, naturally dried, and then heated in a dryer at a temperature of 150 ° C. for 2 hours.
【0019】次に成果を確認するため、未封孔の複合材
及び該複合材に、本発明の封孔処理を施した実施例1の
複合材の貫通気孔率を、大阪大学溶接工学研究所大森明
助教授他が開発した電気化学的方法(大森明他:高温学
会誌,16(1990)332)で測定した。図1にお
いて、(1)は封孔をしていない複合材、(2)は本発
明の封孔処理を施した複合材、(3)は界面で成膜によ
る封孔が行われているのを見るため、本発明による封孔
処理を施した後、研磨してアルミナ溶射膜を約200μ
m除いた複合材の測定結果である。この結果から、基材
の界面で成膜されているのが観測される。また、実施例
2及びその他の実施例を図2において説明する。図2
で、(1)は封孔していない実施例2の複合材、(2)
は本発明の減圧による封孔処理を施した実施例2の複合
材、(3)は実施例2のゾル溶液を用い、本発明の超音
波による封孔処理を施した複合材、(4)は本発明の実
施例2の減圧による封孔処理を2回施した複合材の、前
記電気化学的方法による貫通気孔率の測定結果である。
また、実施例3を図3,4において説明する。図3は本
発明の実施例3の封孔処理を施した後、研磨してチタニ
ア溶射膜を約250μm除いた複合材表面の電子顕微鏡
写真である。図4は、封孔が基材界面で行われているの
を見るため、前記と同じ処理を施した複合材表面につい
て、X線マイクロアナライザーでSi元素を面分析した
結果である。Next, in order to confirm the results, the through-porosity of the unsealed composite material and the composite material of Example 1 obtained by subjecting the composite material to the sealing treatment of the present invention was measured by using the Welding Engineering Laboratory, Osaka University. It was measured by an electrochemical method developed by Associate Professor Akira Omori et al. (Akira Omori et al., Journal of High Temperature Society, 16 (1990) 332). In FIG. 1, (1) is a composite material which is not sealed, (2) is a composite material which has been subjected to the sealing treatment of the present invention, and (3) is a sealing material formed by film formation at the interface. In order to see, the alumina sprayed film was polished to about 200 μm after the sealing treatment according to the present invention was performed.
It is a measurement result of the composite material excluding m. From this result, it is observed that a film is formed at the interface of the base material. In addition, Embodiment 2 and other embodiments will be described with reference to FIG. Figure 2
(1) is the composite material of Example 2 which is not sealed, (2)
Is the composite material of Example 2 that has been subjected to the sealing treatment by reduced pressure of the present invention, (3) is the composite material that has been subjected to the ultrasonic sealing treatment of the present invention using the sol solution of Example 2, (4) FIG. 3 is a result of measuring the through-porosity of the composite material of Example 2 of the present invention, which was subjected to the sealing treatment by reduced pressure twice, by the electrochemical method.
A third embodiment will be described with reference to FIGS. FIG. 3 is an electron micrograph of the surface of the composite material obtained by performing the sealing treatment of Example 3 of the present invention and then polishing it to remove the titania sprayed film by about 250 μm. FIG. 4 shows the results of surface analysis of Si element by an X-ray microanalyzer on the surface of the composite material subjected to the same treatment as described above in order to see that the sealing is performed at the interface of the base material.
【0020】なお、前記実施例は、金属の基材にセラミ
ックスの被覆膜を形成させた複合材の例であるが、これ
をセラミックスの基材に金属又はセラミックスの被覆膜
を形成させた複合材でも、同等の作用効果を有するもの
である。それは、基材がセラミックスの場合、金属に比
べて無機化合物と濡れがよく、より強固に結合するた
め、基材が金属である複合材に比べて、よりよい封孔の
結果が期待できるためである。また、金属の基材に金属
の被覆膜を形成させた複合材でも、同等の作用効果を有
する。なぜなら、被覆膜がセラミックスから金属になっ
ているため、被覆膜と基材の界面での無機化合物による
被覆成膜が強固に行われるためである。The above-mentioned embodiment is an example of a composite material in which a ceramic coating film is formed on a metal base material, and a metal or ceramic coating film is formed on a ceramic base material. Even the composite material has the same effect. This is because when the base material is ceramics, it is more wettable with the inorganic compound than the metal and is more strongly bonded, so that better sealing results can be expected compared with the composite material in which the base material is metal. is there. Further, a composite material in which a metal coating film is formed on a metal base material also has the same function and effect. This is because the coating film is changed from ceramics to metal, and the coating film formation with the inorganic compound is strongly performed at the interface between the coating film and the substrate.
【0021】また、前記実施例では、いずれも被覆膜が
単層であるが、金属とセラミックスや、金属と金属、ま
たはセラミックスとセラミックスの組合せの、湿式めっ
き法や乾式気相めっき法で成膜させた積層膜でも、同等
の作用効果を有するものである。これは、作用の項で述
べたたように、封孔が基材と被覆膜の界面で優先的に行
われることから明かである。In each of the above embodiments, the coating film is a single layer, but it is formed by a wet plating method or a dry vapor deposition method using a combination of metal and ceramics, metal and metal, or ceramics and ceramics. Even a laminated film having a film has the same action and effect. This is obvious because the sealing is preferentially performed at the interface between the base material and the coating film, as described in the section of the action.
【0022】[0022]
【発明の効果】貫通気孔を有する複合材に、本発明の封
孔処理を施すことで、その貫通気孔が大幅に減少し、そ
の結果、耐食性、耐熱性及び耐候性を有する複合材の製
造が可能となり、広範囲な産業用機械部材への適用が行
え、大きな経済効果が期待できる。By applying the sealing treatment of the present invention to a composite material having through pores, the through pores are significantly reduced, and as a result, a composite material having corrosion resistance, heat resistance and weather resistance can be produced. It becomes possible and can be applied to a wide range of industrial machine parts, and a large economic effect can be expected.
【図1】未封孔の複合材及び実施例1の複合材の貫通気
孔率を示すグラフである。FIG. 1 is a graph showing through-porosity of an unsealed composite material and a composite material of Example 1.
【図2】未封孔の複合材、実施例2の複合材及び他の実
施例の複合材の貫通気孔率を示すグラフである。FIG. 2 is a graph showing through-porosity of unsealed composite materials, composite materials of Example 2 and composite materials of other examples.
【図3】本発明の封孔処理を施した後、研磨処理した実
施例3の複合材表面の電子顕微鏡写真である。FIG. 3 is an electron micrograph of the surface of the composite material of Example 3 which was subjected to polishing treatment after being subjected to the sealing treatment of the present invention.
【図4】本発明の封孔処理を施した後、研磨処理した実
施例3の複合材表面のX線マイクロアナライザーによる
面分析結果である。FIG. 4 is a result of surface analysis by an X-ray microanalyzer of the surface of the composite material of Example 3 which has been subjected to the sealing treatment of the present invention and then subjected to the polishing treatment.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 卓雄 香川県仲多度郡琴平町685−23 (72)発明者 大森 明 大阪府吹田市江の木町12−5−516 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuo Hara 685-23 Kotohira Town, Nakatado-gun, Kagawa Prefecture (72) Inventor Akira Omori 12-5-516 Eki Town, Suita City, Osaka Prefecture
Claims (3)
形成させた、基材と被覆膜からなる複合材を、ゾル・ゲ
ル法を用い、ゾル溶液に浸漬中に超音波処理を加えたの
ち、乾燥させ、さらに150〜1500℃の温度下で一
定時間保持することを特徴とする複合材の無機化合物に
よる封孔処理法。1. A composite material comprising a substrate and a coating film having a coating film formed on the surface of the substrate by a surface treatment method is subjected to ultrasonic treatment during immersion in a sol solution by the sol-gel method. A method for sealing pores with an inorganic compound of a composite material, which comprises adding, drying, and holding at a temperature of 150 to 1500 ° C. for a certain period of time.
載の複合材の無機化合物による封孔処理法。2. The method for sealing a composite material with an inorganic compound according to claim 1, wherein the ultrasonic treatment is a reduced pressure treatment.
ある請求項1記載の複合材の無機化合物による封孔処理
法。3. The method of sealing a composite material with an inorganic compound according to claim 1, wherein the ultrasonic treatment is ultrasonic treatment and reduced pressure treatment.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28741291A JPH0570922A (en) | 1991-08-09 | 1991-08-09 | Pore sealing treatment of laminated material with inorganic compound |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28741291A JPH0570922A (en) | 1991-08-09 | 1991-08-09 | Pore sealing treatment of laminated material with inorganic compound |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0570922A true JPH0570922A (en) | 1993-03-23 |
Family
ID=17716997
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP28741291A Pending JPH0570922A (en) | 1991-08-09 | 1991-08-09 | Pore sealing treatment of laminated material with inorganic compound |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0570922A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5635309A (en) * | 1994-03-24 | 1997-06-03 | Sharp Kabushiki Kaisha | Magneto-optical recording medium |
| JP2004190136A (en) * | 2002-11-28 | 2004-07-08 | Tokyo Electron Ltd | Member inside plasma treatment vessel |
| KR100772740B1 (en) * | 2002-11-28 | 2007-11-01 | 동경 엘렉트론 주식회사 | Internal member of a plasma processing vessel |
| US8043971B2 (en) | 2003-02-07 | 2011-10-25 | Tokyo Electron Limited | Plasma processing apparatus, ring member and plasma processing method |
| WO2011135786A1 (en) * | 2010-04-26 | 2011-11-03 | 日本発條株式会社 | Insulation coating method for metal base, insulation coated metal base, and semiconductor manufacturing apparatus using same |
| US11173641B2 (en) | 2015-12-25 | 2021-11-16 | Panasonic Intellectual Property Management Co., Ltd. | Mold and method for manufacturing mold |
-
1991
- 1991-08-09 JP JP28741291A patent/JPH0570922A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5635309A (en) * | 1994-03-24 | 1997-06-03 | Sharp Kabushiki Kaisha | Magneto-optical recording medium |
| US5730846A (en) * | 1994-03-24 | 1998-03-24 | Sharp Kabushiki Kaisha | Method of producing a magneto-optical recording medium |
| JP2004190136A (en) * | 2002-11-28 | 2004-07-08 | Tokyo Electron Ltd | Member inside plasma treatment vessel |
| KR100772740B1 (en) * | 2002-11-28 | 2007-11-01 | 동경 엘렉트론 주식회사 | Internal member of a plasma processing vessel |
| US8043971B2 (en) | 2003-02-07 | 2011-10-25 | Tokyo Electron Limited | Plasma processing apparatus, ring member and plasma processing method |
| WO2011135786A1 (en) * | 2010-04-26 | 2011-11-03 | 日本発條株式会社 | Insulation coating method for metal base, insulation coated metal base, and semiconductor manufacturing apparatus using same |
| JP2011231356A (en) * | 2010-04-26 | 2011-11-17 | Nhk Spring Co Ltd | Insulation coating method of metal base, insulation coated metal base, and apparatus for producing semiconductor using the same |
| US11173641B2 (en) | 2015-12-25 | 2021-11-16 | Panasonic Intellectual Property Management Co., Ltd. | Mold and method for manufacturing mold |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Thim et al. | Sol–gel silica film preparation from aqueous solutions for corrosion protection | |
| US5672390A (en) | Process for protecting a surface using silicate compounds | |
| JPH025401A (en) | Protection of neodymium-boron -iron magnet | |
| CN114941164B (en) | Preparation method of magnesium alloy surface dual-function composite coating | |
| RU2106916C1 (en) | Methods of treatment of article, method of treatment of article surface and article having protective material | |
| JPH0570922A (en) | Pore sealing treatment of laminated material with inorganic compound | |
| JP2015134958A (en) | Heat resistant mirror coating | |
| JPH10130884A (en) | Treatment of heat resistant anodically oxidized coating | |
| US3862851A (en) | Method of producing Magnesium-Based coating for the sacrificial protection of metals | |
| JP2002529575A (en) | Adhesive bonding process for aluminum and / or aluminum alloy | |
| US3748172A (en) | Magnesium based coating for the sacrificial protection of metals | |
| JPH08134694A (en) | Super alkaline resistant aluminum oxide composite film and its manufacturing method | |
| US1281108A (en) | Process of coating metals, alloys, or other materials with protective coats of metals or alloys. | |
| JPH0320480A (en) | Surface oxidation treatment of aluminum | |
| EP0701489A1 (en) | Process for protecting a surface using silicate compounds | |
| JPH0344455A (en) | Highly corrosion resistant roll and its production | |
| JPH0610112A (en) | Method for strengthening inorganic coating film | |
| JP2511236B2 (en) | Sealing method for thermal spray coating and coating composite | |
| JPH06306571A (en) | Formation of reinforced layer on base material | |
| JPH0759687B2 (en) | Joining method for multiple articles | |
| KR19980042570A (en) | Single Layer Grease For Micromachine | |
| SU259598A1 (en) | METHOD OF COATING | |
| JPH0290976A (en) | Coating method of fluororesin | |
| JP2506162B2 (en) | Corrosion resistant thermal spray material and method for producing the same, and method for forming corrosion resistant coating | |
| JPH04147985A (en) | Wear resistant coating film on aluminum material and its production |