[go: up one dir, main page]

JPH0583305A - Msk modulation circuit - Google Patents

Msk modulation circuit

Info

Publication number
JPH0583305A
JPH0583305A JP24226391A JP24226391A JPH0583305A JP H0583305 A JPH0583305 A JP H0583305A JP 24226391 A JP24226391 A JP 24226391A JP 24226391 A JP24226391 A JP 24226391A JP H0583305 A JPH0583305 A JP H0583305A
Authority
JP
Japan
Prior art keywords
signal
channel
output
frequency
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24226391A
Other languages
Japanese (ja)
Inventor
Shinya Muraoka
真也 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24226391A priority Critical patent/JPH0583305A/en
Publication of JPH0583305A publication Critical patent/JPH0583305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To simplify the circuit and to reduce the scale by using a sample data generator so as to digitize I channel and Q channel data and using digital signal processing. CONSTITUTION:Sample data generators 1, 2 generate sampling data resulting from quantizing sinusoidal waves of I channel and Q channel data signals. Then a signal I1 outputted in m-bits is multiplied digitally with an I clock whose frequency is Fs/4 for all the entire m-bits and the product is D/A- converted by a D/A converter 7, and outputted through a low pass filter(LPF) 9. The other output signal Q1 similarly passes through a digital multiplier 6, a D/A converter 8 and an LPF 10 and the result is outputted as an analog quantity. Moreover, an output signal I3 of the LPF 9 is multiplied with a carrier (CAR) at a multiplier 11 and an output signal Q3 of the LPF 10 is multiplied with a multiplier 12 with a signal resulting from delaying the CAR by 90 deg. and each output signal is synthesized by a synthesizer 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMSK変調回路に関し、
特にディジタル衛星通信システムに使用されるMSK変
調回路に関する。
BACKGROUND OF THE INVENTION The present invention relates to an MSK modulator circuit,
In particular, it relates to an MSK modulation circuit used in a digital satellite communication system.

【0002】[0002]

【従来の技術】一般に、衛星通信における変復調方式に
おいては4相PSK変調方式が広く用いられているが、
非線形領域においてはMSK変調方式の方が優れた特性
を示すということは良く知られている。まず、図4,図
5を参照しながらMSK変調方式について説明する。
今、ビットレートをFsとすると、ベースバンド信号I
ch,QchのボーレートはFs/2となっている。図
5において、それぞれのベースバンド信号をI1,Q1
とする。クロックCLKは周波数Fs/2のクロックを
表し、搬送波CARは周波数F0であり、ここではこれ
を余弦波と考える。図4において、周波数Fs/2のク
ロックは分周器203において2分周され、周波数Fs
/4のクロックとなり、LPF204において高調波を
除去される(これを余弦波と考える)。この出力をIC
LKとし90度シフタ205でIchCLKの位相を9
0度遅らせたものをQCLKとする(これを正弦波と考
える)。図5にICLK、QCLKを示す。図4にもど
り、入力されたベースバンド信号I1は乗算器201に
おいてICLKと乗算され、その出力をI2とする。同
様にベースバンド信号Q1は乗算器202においてQC
LKと乗算され、その出力をQ2とする(図5のI2,
Q2参照)。さらにI2は乗算器206において搬送波
CARと乗算されて出力I3となる。Q2は乗算器20
7において90度シフタ208によって位相が90度遅
れたCARと乗算され、出力Q3となる。I3とQ3は
合成器209において合成され、その出力がMSK変調
波となる。このMSK変調波信号は搬送波信号の角周波
数とIch,Qchのクロックの角周波数をそれぞれω
0=2πF0,ωs=2πFsとすると、(1)式で表
される。
2. Description of the Related Art Generally, a four-phase PSK modulation system is widely used as a modulation / demodulation system in satellite communication.
It is well known that the MSK modulation method exhibits superior characteristics in the nonlinear region. First, the MSK modulation method will be described with reference to FIGS.
Now, assuming that the bit rate is Fs, the baseband signal I
The baud rate of ch and Qch is Fs / 2. In FIG. 5, the respective baseband signals are I1 and Q1.
And The clock CLK represents a clock having a frequency of Fs / 2, and the carrier wave CAR has a frequency of F0. Here, this is considered as a cosine wave. In FIG. 4, the clock of frequency Fs / 2 is divided by 2 in the frequency divider 203 to obtain the frequency Fs / 2.
The clock becomes / 4 and the harmonics are removed by the LPF 204 (this is considered as a cosine wave). This output is IC
Set LK to 90 ° shifter 205 to set IchCLK phase to 9
QCLK delayed by 0 degrees is considered as a sine wave. FIG. 5 shows ICLK and QCLK. Returning to FIG. 4, the input baseband signal I1 is multiplied by ICLK in the multiplier 201, and the output is taken as I2. Similarly, the baseband signal Q1 is QC in the multiplier 202.
It is multiplied by LK and its output is designated as Q2 (I2 in FIG. 5).
See Q2). Further, I2 is multiplied by the carrier wave CAR in the multiplier 206 and becomes the output I3. Q2 is a multiplier 20
At 7, the 90-degree shifter 208 multiplies the CAR with the phase delayed by 90 degrees to obtain the output Q3. I3 and Q3 are combined in the combiner 209, and the output becomes an MSK modulated wave. In this MSK modulated wave signal, the angular frequency of the carrier wave signal and the angular frequency of the Ich and Qch clocks are respectively ω
If 0 = 2πF0 and ωs = 2πFs, then it is expressed by equation (1).

【0003】 I1 cosωs/4・(cosω0t)+ Q1 sinωs/4・(sinω0t) ……(1) 従来のMSK変調回路の構成は図4と同等の方式である
が、通常図6のMSK変調回路により実現される。ここ
でIch,Qch,クロックCLK,搬送波周波数F
0,クロック周波数Fsは前述の説明と同じである。図
4において、クロックCLKは分周器404において2
分周され、さらにLPF405において高調波を除去さ
れたICLKと入力される搬送CARとが乗算器401
で乗算され、その出力をICARとする。CARが90
度シフタ403において位相が90度遅れたCARと、
ICLKを90度シフタ406で90度遅らせたQCL
Kとを乗算器402で乗算し、その出力をQCARとす
る。Ichに入力された信号I1は乗算器407におい
てICARと乗算されその出力をI2とする。Qchに
入力された信号Q1は乗算器408においてQCARと
乗算されその出力をQ2とする。I2とQ2は合成器4
09において合成され、MSK変調波が出力され(1)
式のものと同じMSK変調信号が得られる。
I1 cos ωs / 4 · (cos ω0t) + Q1 sin ωs / 4 · (sin ω0t) (1) The conventional MSK modulation circuit has a configuration similar to that of FIG. 4, but normally the MSK modulation circuit of FIG. It is realized by. Here, Ich, Qch, clock CLK, carrier frequency F
0 and the clock frequency Fs are the same as those described above. In FIG. 4, the clock CLK is divided by 2 in the frequency divider 404.
The frequency-divided ICLK from which harmonics have been removed by the LPF 405 and the input carrier CAR are multiplied by the multiplier 401.
And the output is ICAR. CAR is 90
CAR whose phase is delayed by 90 degrees in the degree shifter 403,
QCL with ICLK delayed 90 degrees by 90 degree shifter 406
The multiplier 402 multiplies K and the output is QCAR. The signal I1 input to Ich is multiplied by ICAR in the multiplier 407, and its output is set to I2. The signal Q1 input to Qch is multiplied by QCAR in the multiplier 408, and its output is designated as Q2. I2 and Q2 are synthesizer 4
09, and the MSK modulated wave is output (1)
The same MSK modulated signal as in the equation is obtained.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のMSK
変調回路は搬送波とクロックを乗算した結果と、Ic
h,QchデータがLPFを通過して正弦波状になった
アナログ信号を乗算しているので、回路的に難しく、ま
た回路の規模も大きくなってしまうという欠点を有す
る。
DISCLOSURE OF THE INVENTION The conventional MSK described above
The modulation circuit outputs the result of multiplying the carrier wave and the clock by Ic
Since the h and Qch data pass through the LPF and are multiplied by the sine-wave analog signal, there is a drawback that the circuit is difficult and the circuit scale becomes large.

【0005】[0005]

【課題を解決するための手段】本発明のMSK変調回路
は、ボーレートが周波数Fs/2で位相が1/2ビット
ずれたIチャネル,Qチャネルの正弦波データ信号の振
幅をそれぞれ所定のサンプル数でサンプリングしディジ
タル信号に変換するIチャネルおよびQチャネル用のサ
ンプルデータ発生器と、周波数Fs/2のクロックを1
/2分周する分周器と、この分周器の出力クロックを2
分岐した一方のクロックを前記Iチャネルサンプルデー
タ発生器の出力ディジタル信号とディジタル乗算する第
1のディジタル乗算器と、前記分周器の出力クロックを
2分岐した他方のクロックを90度移相して前記Qチャ
ネルサンプルデータ発生器の出力ディジタル信号とディ
ジタル乗算する第2のディジタル乗算器とを含んでい
る。
In the MSK modulation circuit of the present invention, the amplitudes of the I-channel and Q-channel sine wave data signals with a baud rate of frequency Fs / 2 and a phase shift of 1/2 bit are respectively determined by a predetermined number of samples. Sample data generators for I and Q channels that are sampled at and converted to digital signals, and a clock of frequency Fs / 2 is set to 1
A frequency divider that divides the frequency by 2 and the output clock of this frequency divider by 2
A first digital multiplier that digitally multiplies one of the branched clocks with the output digital signal of the I-channel sample data generator, and the other clock obtained by bifurcating the output clock of the frequency divider by 90 degrees, A second digital multiplier for digitally multiplying the output digital signal of the Q channel sample data generator is included.

【0006】[0006]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例のブロック図、図2
(a),(b)および図3は本実施例の信号フォーマッ
トおよび各部波形の説明図である。
The present invention will be described below with reference to the drawings. 1 is a block diagram of an embodiment of the present invention, FIG.
(A), (b) and FIG. 3 are explanatory diagrams of a signal format and waveforms of respective parts in this embodiment.

【0007】ここでIchとQchのデータ信号はボー
レードがFs/2で位相が図2(a)に示すように1/
2ビットずれて入力される2系列のディジタル信号であ
る。クロックCLKは周波数Fs/2のクロックを、搬
送波CARは周波数F0の搬送波cos2πF0tを表
すこととする。図1において、サンプルデータ発生器
1,2では、各Ich,Qchデータ信号が図2(b)
の様な周波数Fs/4の正弦波を次のようにサンプリン
グする。入力信号のディジタル値が“1”の場合には、
アナログ値で図2(b)のAの部分になるので、Aを等
間隔にnサンプルしたとき(n≧4)のそれぞれのサン
プルポイントに対応する振幅をD1,D2…Dnとし、
このそれぞれの振幅をmビットのディジタル値に量子化
して2Tsの間にD1からDnまで順次出力する。ま
た、入力信号のディジタル値が“0”の場合には、アナ
ログ値で図2(b)のBの部分になるのでBを等間隔に
nサンプルしたときのそれぞれのサンプルポイントに対
応する振幅をD1A,D2A…DnAとし、このそれぞ
れの振幅をmビットのディジタル値に量子化して2Ts
の間にD1AからDnAまで順次出力する。この時のサ
ンプルデータ発生器1,2からの出力信号をそれぞれI
1,Q1とする。mビットで出力されたI1はディジタ
ル乗算器5でmビットそれぞれが周波数Fs/4のIC
LKとディジタル的に乗算される。このmビットの出力
信号はD/A CONV 7においてディジタル/アナ
ログ変換され、アナログ値としてLPF9を通過し出力
される。ここでLPF9の入力信号をI2,出力信号を
I3とする。Q1も同様にディジタル乗算器6において
QCLKと乗算され、D/ACONV 8でディジタル
/アナログ変換され、LPF10を通過してアナログ値
として出力する。ここでLPF10の入力及び出力信号
それぞれをQ2,Q3とする。ただし、ICLKはクロ
ックが分周器3で分周されたもので、QCLKはさらに
ICLKを90度シフタで90度位相を遅らせたもので
ある。信号I,Q,ICLK,QCLK,I2,Q2,
I3,Q3の関係を図3に示す。ただし、I2,Q2の
サンプル数はn=6の例である。I3は乗算器11にお
いてCARと乗算され、Q3はCARを90度位相を遅
らせたものと乗算器12で乗算され、乗算器11,12
の出力信号は合成器14において合成され、MSK変調
波が出力される。
Here, the Ich and Qch data signals have a baud rate of Fs / 2 and a phase of 1/1 as shown in FIG.
It is a two-series digital signal input with a shift of 2 bits. The clock CLK represents a clock having a frequency Fs / 2, and the carrier CAR represents a carrier cos2πF0t having a frequency F0. In FIG. 1, in the sample data generators 1 and 2, each Ich and Qch data signal is shown in FIG.
A sine wave having a frequency Fs / 4 such as is sampled as follows. If the digital value of the input signal is "1",
Since the analog value corresponds to the portion A in FIG. 2B, the amplitudes corresponding to the respective sampling points when A is sampled n at equal intervals (n ≧ 4) are D1, D2 ... Dn,
The respective amplitudes are quantized into m-bit digital values and sequentially output from D1 to Dn during 2Ts. Further, when the digital value of the input signal is “0”, the analog value corresponds to the portion B in FIG. 2B, and therefore the amplitudes corresponding to the respective sampling points when B is sampled n at equal intervals. D1A, D2A ... DnA, and quantize the respective amplitudes into m-bit digital values to obtain 2Ts.
During this period, D1A to DnA are sequentially output. The output signals from the sample data generators 1 and 2 at this time are respectively I
1 and Q1. The I1 output in m bits is the digital multiplier 5 and each m bit is an IC of frequency Fs / 4.
It is digitally multiplied by LK. The m-bit output signal is digital / analog converted in the D / A CONV 7, passes through the LPF 9 and is output as an analog value. Here, the input signal of the LPF 9 is I2 and the output signal is I3. Similarly, Q1 is also multiplied by QCLK in the digital multiplier 6, digital-to-analog converted by D / ACONV 8, passes through the LPF 10, and is output as an analog value. Here, the input and output signals of the LPF 10 are designated as Q2 and Q3, respectively. However, ICLK is obtained by dividing the clock by the frequency divider 3, and QCLK is obtained by further delaying the phase of ICLK by 90 degrees by a 90 degree shifter. Signals I, Q, ICLK, QCLK, I2, Q2
The relationship between I3 and Q3 is shown in FIG. However, the number of samples of I2 and Q2 is an example of n = 6. I3 is multiplied by CAR in the multiplier 11, Q3 is multiplied by CAR that is 90 degrees out of phase with the multiplier 12, and the multipliers 11, 12
The output signals of 1 are combined in the combiner 14, and the MSK modulated wave is output.

【0008】[0008]

【発明の効果】上述したように本発明は、サンプルデー
タ発生器によりIch,Qchデータをディジタル化
し、ディジタル信号で処理するので、簡単な回路で実現
でき、また回路規模も比較的小さくすることができると
いう効果を有する。
As described above, according to the present invention, the Ich and Qch data are digitized by the sample data generator and processed by the digital signal, so that they can be realized by a simple circuit and the circuit scale can be made relatively small. It has the effect of being able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】本実施例の信号フォーマット及び波形の説明図
である。
FIG. 2 is an explanatory diagram of signal formats and waveforms according to the present embodiment.

【図3】本実施例の各部波形の説明図である。FIG. 3 is an explanatory diagram of waveforms at various points in this embodiment.

【図4】従来のMSK変調方式のブロック図である。FIG. 4 is a block diagram of a conventional MSK modulation method.

【図5】従来の波形説明図である。FIG. 5 is a conventional waveform explanatory diagram.

【図6】従来のMSK変調回路のブロック図である。FIG. 6 is a block diagram of a conventional MSK modulation circuit.

【符号の説明】[Explanation of symbols]

1,2 サンプルデータ発生器 3 分周器 4,13 90度シフタ 5,6 ディジタル乗算器 7,8 D/A変換器 9,10 ロウパスフィルタ(LPF) 11,12 乗算器 14 合成器 1, 2 Sample data generator 3 Frequency divider 4, 13 90 degree shifter 5, 6 Digital multiplier 7, 8 D / A converter 9, 10 Low pass filter (LPF) 11, 12 Multiplier 14 Combiner

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ボーレートが周波数Fs/2で位相が1
/2ビットずれたIチャネル,Qチャネルの正弦波デー
タ信号の振幅をそれぞれ所定のサンプル数でサンプリン
グしディジタル信号に変換するIチャネルおよびQチャ
ネル用のサンプルデータ発生器と、周波数Fs/2のク
ロックを1/2分周する分周器と、この分周器の出力ク
ロックを2分岐した一方のクロックを前記Iチャネルサ
ンプルデータ発生器の出力ディジタル信号とディジタル
乗算する第1のディジタル乗算器と、前記分周器の出力
クロックを2分岐した他方のクロックを90度移相して
前記Qチャネルサンプルデータ発生器の出力ディジタル
信号とディジタル乗算する第2のディジタル乗算器とを
含んでいることを特徴とするMSK変調回路。
1. A baud rate of frequency Fs / 2 and a phase of 1
Sample data generators for I and Q channels that sample the amplitudes of the I and Q sine wave data signals that are shifted by / 2 bits by a predetermined number of samples, respectively, and a clock of frequency Fs / 2 And a first digital multiplier for digitally multiplying the output digital signal of the I-channel sample data generator by one of the two branched clocks of the output clock of the frequency divider. A second digital multiplier for digitally multiplying the output digital signal of the Q-channel sample data generator by digitally multiplying the other clock obtained by branching the output clock of the divider by 90 degrees. MSK modulation circuit.
【請求項2】 前記サンプルデータ発生器に入力される
周波数Fs/4のIチャネル又はQチャネルの正弦波デ
ータ信号を2つの2Ts(Ts=1/Fs)の時間周期
に分け、この時間周期の間に前記正弦波データ信号が正
の振幅又は負の振幅ごとにサンプリングデータを記憶し
てディジタル化することを特徴とする請求項1記載のM
SK変調回路。
2. The I-channel or Q-channel sine wave data signal of frequency Fs / 4 input to the sample data generator is divided into two 2Ts (Ts = 1 / Fs) time periods, and this time period 2. The M according to claim 1, wherein sampling data is stored for each positive amplitude or negative amplitude of the sine wave data signal and digitized during this period.
SK modulation circuit.
JP24226391A 1991-09-24 1991-09-24 Msk modulation circuit Pending JPH0583305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24226391A JPH0583305A (en) 1991-09-24 1991-09-24 Msk modulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24226391A JPH0583305A (en) 1991-09-24 1991-09-24 Msk modulation circuit

Publications (1)

Publication Number Publication Date
JPH0583305A true JPH0583305A (en) 1993-04-02

Family

ID=17086667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24226391A Pending JPH0583305A (en) 1991-09-24 1991-09-24 Msk modulation circuit

Country Status (1)

Country Link
JP (1) JPH0583305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422394B1 (en) * 2001-12-22 2004-03-11 한국전자통신연구원 Wide-band direct digital frequency synthesizer using even harmonic frequency doubler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422394B1 (en) * 2001-12-22 2004-03-11 한국전자통신연구원 Wide-band direct digital frequency synthesizer using even harmonic frequency doubler

Similar Documents

Publication Publication Date Title
JP3419484B2 (en) Modulator, transmitter
JPS60112344A (en) Radio wave receiver and demodulating method
JPH05252212A (en) Digital radio modulator
JPS6139754A (en) Angular modulation signal generator and amplitude and phase modulation signal generator relative thereto
US4674105A (en) Digital signal processor
US4130802A (en) Unidirectional phase shift keyed communication system
US5652552A (en) Phase modulator
US5942955A (en) Quasi-GMSK modulator
US4034305A (en) Demodulator for signals hybrid modulated by more and less significant digit signals in succession in each clock interval
WO1996015585A1 (en) Rf transmitter
US7019599B2 (en) Apparatus for continuous phase quadrature amplitude modulation and demodulation
US5198779A (en) Digital oscillator
JPH0583305A (en) Msk modulation circuit
US5751198A (en) Angular modulator with a phase variation divided and integrated
US5838208A (en) Modulation of transmission data signal in sychronous with transmission clock signal
US5905413A (en) Angular modulator with a phase variation divided and integrated
JPS5890856A (en) Sampling phase locked circuit
JPH08256185A (en) Modulator
AU642373B2 (en) A digital quadrature phase detector for angle modulated signals
US20050157816A1 (en) Circuit and method for binary modulation
JPH10304000A (en) Quadrature amplitude modulating device
JPH06104943A (en) Four-phase modulator
JPH0758796A (en) Quadrature amplitude modulator
KR940004196B1 (en) Gmsk digital modulate apparatus and method
EP2797225B1 (en) Method of and apparatus for demodulating an amplitude modulated signal

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010321