[go: up one dir, main page]

JPH0584880U - Linearizer for temperature compensation - Google Patents

Linearizer for temperature compensation

Info

Publication number
JPH0584880U
JPH0584880U JP2471792U JP2471792U JPH0584880U JP H0584880 U JPH0584880 U JP H0584880U JP 2471792 U JP2471792 U JP 2471792U JP 2471792 U JP2471792 U JP 2471792U JP H0584880 U JPH0584880 U JP H0584880U
Authority
JP
Japan
Prior art keywords
circuit
power
nth
ambient temperature
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2471792U
Other languages
Japanese (ja)
Inventor
源 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2471792U priority Critical patent/JPH0584880U/en
Publication of JPH0584880U publication Critical patent/JPH0584880U/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

(57)【要約】 【目的】 回路構成が簡単で調整も容易な温度補正用リ
ニアライザを提供する。 【構成】 0乗回路(15)は定数信号を発生する。第
1〜第nのべき乗回路(16−1〜16−n)は、1乗
からn乗までの第1〜第nのべき乗信号をそれぞれ出力
する。係数記憶回路(13)は温度センサ(11)によ
り検出される周囲温度毎に前記定数信号、前記第1〜第
nのべき乗信号のうち少なくとも1つにどのような係数
を与えるかをあらかじめ記憶しており、前記温度センサ
により検出された前記周囲温度に応じて係数データを出
力する。D/A変換回路(14)は前記係数データにも
とづいて前記定数信号、前記第1〜第nのべき乗信号の
少なくとも1つに前記係数を付加して第0〜第nの処理
信号の少なくとも1つを出力する。加算回路(17)
は、出力された前記第0〜第nの処理信号を加算して前
記検出された周囲温度に対応する前記補正曲線を作成
し、該補正曲線にもとづいて補正した電圧を出力する。
(57) [Abstract] [Purpose] To provide a linearizer for temperature correction which has a simple circuit configuration and is easy to adjust. [Structure] The 0-th power circuit (15) generates a constant signal. The 1st to n-th power circuits (16-1 to 16-n) respectively output the 1st to n-th power signals from the 1st power to the nth power. The coefficient storage circuit (13) stores in advance what kind of coefficient is given to at least one of the constant signal and the first to nth power signals for each ambient temperature detected by the temperature sensor (11). The coefficient data is output according to the ambient temperature detected by the temperature sensor. A D / A conversion circuit (14) adds the coefficient to at least one of the constant signal and the first to nth power signals based on the coefficient data to add at least one of the 0th to nth processed signals. Output one. Adder circuit (17)
Outputs the corrected curve corresponding to the detected ambient temperature by adding the output signals of the 0th to nth processing signals, and outputs the corrected voltage based on the corrected curve.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は入力電圧を周囲温度に応じて補正して出力するための温度補正用リニ アライザに関し、特にFM−CW(周波数変調連続波)レーダにおいて周波数変 調特性の直線性を周囲温度の変化に応じて補正するためのリニアライザに関する 。 The present invention relates to a temperature compensating linearizer for compensating and outputting an input voltage according to ambient temperature, and particularly in an FM-CW (Frequency Modulated Continuous Wave) radar, the linearity of frequency modulation characteristics is changed to ambient temperature change. For linearizers to compensate accordingly.

【0002】[0002]

【従来の技術】[Prior Art]

FM−CWレーダにおける周波数変調回路は、そこに使用されているVCO( 電圧制御発振器)の周波数特性が周囲温度の影響を受けることから、周波数変調 特性も周囲温度の変化で直線性が損なわれる。そこで、周囲温度に応じて周波数 変調特性の直線性を補正するためにリニアライザが用いられている。これまでの リニアライザは、ある周囲温度あるいはある範囲、すなわち周波数変調特性にそ れほど差が生じない範囲内の周囲温度に対して1つの理想補正曲線を形成するよ うにしており、多種類の理想補正曲線の形成のためにメモリを有している。 In the frequency modulation circuit in the FM-CW radar, since the frequency characteristic of the VCO (voltage controlled oscillator) used therein is affected by the ambient temperature, the frequency modulation characteristic also loses its linearity due to the change in the ambient temperature. Therefore, a linearizer is used to correct the linearity of the frequency modulation characteristic according to the ambient temperature. Conventional linearizers are designed to form one ideal correction curve for a certain ambient temperature or a certain range, that is, the ambient temperature within a range where the frequency modulation characteristics do not differ so much. It has a memory for the formation of the ideal correction curve.

【0003】 補正曲線を作成する方法としては、アナログ的に折れ線で近似する第1の方法 と、ディジタル的に微小差の階段状の曲線で近似する第2の方法がある。いずれ の方法でも補正曲線の形は周囲温度(ある範囲内の周囲温度の場合も含む)毎に 決まっており、あらかじめメモリに記憶されているデータにもとづいて補正曲線 が形成される。As a method of creating a correction curve, there are a first method of analogically approximating with a polygonal line and a second method of digitally approximating with a stepwise curve of a minute difference. In either method, the shape of the correction curve is determined for each ambient temperature (including the case of ambient temperature within a certain range), and the correction curve is formed based on the data stored in the memory in advance.

【0004】 図2は上記第1の方法によるリニアライザの構成図であり、周囲温度を検出す るための温度センサ21、この温度センサ21からの温度検出信号をディジタル 信号に変換するためのA/D変換回路22、周囲温度毎に異なる補正曲線を形成 するための曲線形成用データを記憶しているデータROM23を含む。D/A変 換回路24はデータROM23からの曲線形成用データをD/A変換して検出さ れた周囲温度に対応する補正曲線のオフセット値(補正曲線の始点レベルを示す )を表わす第1の信号を第1〜第nのオフセット回路25−1〜25−nに出力 すると共に、補正曲線の傾斜値(補正曲線の傾きを示す)を表わす第2の信号を 第1〜第nの傾斜回路26−1〜26−nに出力する。FIG. 2 is a block diagram of a linearizer according to the first method, which includes a temperature sensor 21 for detecting an ambient temperature and an A / A for converting a temperature detection signal from the temperature sensor 21 into a digital signal. It includes a D conversion circuit 22 and a data ROM 23 that stores curve forming data for forming a correction curve that differs for each ambient temperature. The D / A conversion circuit 24 represents the offset value (indicating the starting point level of the correction curve) of the correction curve corresponding to the ambient temperature detected by D / A converting the curve forming data from the data ROM 23. Is output to the first to nth offset circuits 25-1 to 25-n, and the second signal representing the slope value of the correction curve (indicating the slope of the correction curve) is output to the first to nth slopes. It outputs to the circuits 26-1 to 26-n.

【0005】 ここでは、作成すべき補正曲線を第1〜第nの領域に等分割し、それぞれの分 割領域を直線で近似するようにしており、第1〜第nの分割領域の直線を第1〜 第nの折れ線回路27−1〜27−nで作成するようにしている。例えば、補正 曲線の第1の分割領域(補正曲線の始端側の領域)について言えば、第1のオフ セット回路25−1がD/A変換回路24からの第1の信号にもとづいて第1の 分割領域のオフセット値、つまり直線の始点レベルを示す信号を出力し、第1の 傾斜回路26−1はD/A変換回路24からの第2の信号にもとづいて第1の分 割領域の直線の傾きを示す信号を出力する。第1の折れ線回路27−1は入力電 圧としてVCOの制御用電圧VINを受け、第1のオフセット回路25−1、第1 の傾斜回路26−1からの信号にもとづいて第1の分割領域の直線を作成してこ れを表わす信号を加算回路28に出力する。同様にして、第2〜第nの折れ線回 路はそれぞれ、第2〜第nの分割領域の直線を作成し、それぞれの直線を表わす 信号を加算回路28に出力する。Here, the correction curve to be created is equally divided into first to n-th regions, and each divided region is approximated by a straight line. The first to the n-th polygonal line circuits 27-1 to 27-n are used. For example, regarding the first divided area of the correction curve (the area on the starting end side of the correction curve), the first offset circuit 25-1 outputs the first signal based on the first signal from the D / A conversion circuit 24. The signal indicating the offset value of the divided area, that is, the level of the starting point of the straight line is output, and the first gradient circuit 26-1 outputs the signal of the first divided area based on the second signal from the D / A conversion circuit 24. A signal indicating the slope of the straight line is output. The first polygonal line circuit 27-1 receives the control voltage V IN of the VCO as an input voltage and receives the first division circuit based on the signals from the first offset circuit 25-1 and the first slope circuit 26-1. A straight line of the area is created and a signal representing this is output to the addition circuit 28. Similarly, each of the second to n-th polygonal line circuits creates a straight line of the second to n-th divided areas and outputs a signal representing each straight line to the adder circuit 28.

【0006】 加算回路28では、第1〜第nの折れ線回路27−1〜27−nから供給され る第1〜第nの分割領域の直線を合成して補正曲線を作成し、この補正曲線にも とづいて制御用電圧VINを補正して出力電圧VOUT として出力する。なお、制御 回路29はA/D変換回路22、データROM23、D/A変換回路24にクロ ック信号その他を供給するための回路である。The addition circuit 28 synthesizes the straight lines of the first to n-th divided areas supplied from the first to n-th polygonal line circuits 27-1 to 27-n to create a correction curve, and this correction curve Based on this, the control voltage V IN is corrected and output as the output voltage V OUT . The control circuit 29 is a circuit for supplying a clock signal and the like to the A / D conversion circuit 22, the data ROM 23, and the D / A conversion circuit 24.

【0007】[0007]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、補正曲線を上述したような折れ線で近似する方法では、理想補正曲 線にできるだけ近似させようとすると、オフセット回路、傾斜回路、及び折れ線 回路の組み合わせの数が多数必要となって回路が複雑化し、調整が困難で長時間 を費やしてしまうという問題点がある。一方、階段状の曲線で近似する第2の方 法でも、メモリ容量の大型化が避けられず、ディジタルノイズが軽減されないた めにC/Nが劣化するという問題点がある。 By the way, in the method of approximating the correction curve by the polygonal line as described above, in order to approximate it to the ideal correction curve as much as possible, a large number of combinations of the offset circuit, the gradient circuit, and the polygonal line circuit are required, and the circuit becomes complicated. However, there is a problem that adjustment is difficult and it takes a long time. On the other hand, the second method, which approximates a stepwise curve, also has a problem that the memory capacity is inevitably increased and the digital noise is not reduced, so that the C / N is deteriorated.

【0008】 そこで、本考案の課題は、回路構成が簡単で調整も容易な温度補正用リニアラ イザを提供することにある。Therefore, an object of the present invention is to provide a temperature correction linearizer having a simple circuit configuration and easy adjustment.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

本考案による温度補正用リニアライザは、周囲温度に応じて該周囲温度に対応 した補正曲線を作成し、該補正曲線にもとづいて入力電圧を補正して出力する温 度補正用リニアライザにおいて、周囲温度検出用の温度センサと、定数信号を発 生するための定数発生回路と、前記入力電圧が入力され、1乗からn乗までの第 1〜第nのべき乗信号をそれぞれ出力する第1〜第nのべき乗回路と、前記温度 センサにより検出される前記周囲温度毎に前記定数信号、前記第1〜第nのべき 乗信号のうち少なくとも1つにどのような係数を与えるかをあらかじめ記憶して おり、前記温度センサにより検出された前記周囲温度に応じて係数データを出力 する係数記憶回路と、前記係数データにもとづいて前記定数信号、前記第1〜第 nのべき乗信号の少なくとも1つに前記係数を付加して第0〜第nの処理信号の 少なくとも1つを出力する信号処理回路と、出力された前記第0〜第nの処理信 号を加算して前記検出された周囲温度に対応する前記補正曲線を作成し、該補正 曲線にもとづいて補正した電圧を出力する加算回路とを含むことを特徴とする。 The linearizer for temperature correction according to the present invention creates a correction curve corresponding to the ambient temperature according to the ambient temperature, corrects the input voltage based on the correction curve, and outputs the corrected linear voltage for detecting the ambient temperature. Temperature sensor, a constant generating circuit for generating a constant signal, and the first to nth power signals to which the input voltage is input and which output first to nth power signals, respectively. The power circuit and the coefficient to be applied to at least one of the constant signal and the first to nth power signals for each ambient temperature detected by the temperature sensor are stored in advance. A coefficient storage circuit that outputs coefficient data according to the ambient temperature detected by the temperature sensor; the constant signal based on the coefficient data; and the first to nth power signals. A signal processing circuit for adding the coefficient to at least one and outputting at least one of the 0th to nth processed signals, and the detected 0th to nth processed signals are added. And an adder circuit that creates the correction curve corresponding to the ambient temperature and outputs the corrected voltage based on the correction curve.

【0010】[0010]

【作用】[Action]

本考案では、定数発生回路と1乗〜n乗のn個のべき乗回路とで補正曲線を多 項式による曲線で近似させるようにしたものであり、係数記憶回路が周囲温度の 変化に応じて異なる係数を定数発生回路とn個のべき乗回路のそれぞれの出力信 号に付加することで、周囲温度に応じて異なる補正曲線が作成される。 In the present invention, a correction curve is approximated by a polynomial curve by a constant generation circuit and n power circuits from the 1st power to the nth power, and the coefficient storage circuit responds to changes in the ambient temperature. By adding different coefficients to the output signals of the constant generation circuit and the n power circuits, different correction curves are created depending on the ambient temperature.

【0011】[0011]

【実施例】【Example】

以下に、図1を参照して本考案の一実施例について説明する。図1において、 本考案による温度補正用リニアライザは、従来と同様、周囲温度を検出するため の温度センサ11とこの温度センサ11からの検出信号をディジタル信号に変換 するためのA/D変換回路12とを有する。本考案の特徴は、補正曲線を多項式 による曲線で近似させることができるようにするために、ROMによる係数記憶 回路13、D/A変換回路14、0乗回路15、1乗〜n乗回路(べき乗回路) 16−1〜16−n、加算回路17、及び制御回路18を有する点にある。 An embodiment of the present invention will be described below with reference to FIG. Referring to FIG. 1, the temperature compensating linearizer according to the present invention is similar to a conventional one in that a temperature sensor 11 for detecting an ambient temperature and an A / D conversion circuit 12 for converting a detection signal from the temperature sensor 11 into a digital signal. Have and. The feature of the present invention is that a coefficient storage circuit 13 by a ROM, a D / A conversion circuit 14, a 0-th power circuit 15, a 1st to nth power circuit (in order to allow a correction curve to be approximated by a polynomial curve). Exponentiation circuit) 16-1 to 16-n, an addition circuit 17, and a control circuit 18.

【0012】 係数記憶回路13は、周囲温度毎に0乗回路15、1乗〜n乗回路16−1〜 16−nの出力信号に与えるべき係数をあらかじめ記憶している。この係数は0 乗回路15、1乗〜n乗回路16−1〜16−nの各回路別に異なるのは勿論、 周囲温度によっても異なる。また、補正曲線は周囲温度によって何次の多項式で 表わすかがあらかじめ決められており、このため係数記憶回路13では、例えば ある周囲温度の補正曲線を3次式で表わすことが決められている場合には、その 周囲温度に対応する係数データとして0乗回路15、1乗〜3乗回路用の各係数 を記憶している。同様に、別の周囲温度の補正曲線を2次式で表わすことが決め られている場合には、その周囲温度に対応する係数データとして0乗回路15、 1乗回路16−1、2乗回路16−2用の各係数を記憶している。なお、係数デ ータは周囲温度毎に決められて記憶されるが、この周囲温度の種類は、例えば1 度毎に補正曲線を設定するようにしても良いが、温度変化による直線性への影響 が大きい領域では、例えば0.5度毎に補正曲線を設定し、温度変化があっても それほど影響が無い領域では、例えば3〜5度の変化範囲内で1つの補正曲線を 使用するようにしても良い。0乗回路15は定数を発生するための回路であり、 定数発生回路と呼ばれても良い。1乗〜n乗回路16−1〜16−nはそれぞれ 、多項式を構成するための1乗〜n乗の関数を発生するためのものであり、本例 では1乗〜n乗回路16−1〜16−nを縦続接続することで、2乗回路16− 2以降の各回路が前段の回路の関数を利用してそれぞれの関数を発生することが できるようにして各回路の簡略化を図っている。D/A変換回路14は、係数記 憶回路13から供給される一連の係数を0乗回路15、1乗〜n乗回路16−1 〜16−nからの各関数に付与するものであり、信号処理回路と呼ばれても良い 。制御回路18は、従来同様、A/D変換回路12、係数記憶回路13、D/A 変換回路14に対してクロック等を供給するものである。The coefficient storage circuit 13 stores in advance the coefficients to be given to the output signals of the 0th power circuit 15 and the 1st to nth power circuits 16-1 to 16-n for each ambient temperature. This coefficient differs not only for each circuit of the 0th power circuit 15 and the 1st to nth power circuits 16-1 to 16-n, but also for the ambient temperature. In addition, when the correction curve is represented by a polynomial of degree depending on the ambient temperature, the coefficient storage circuit 13 determines that the correction curve for a certain ambient temperature is expressed by a cubic expression, for example. In the table, coefficients for the 0th power circuit 15 and the 1st to 3rd power circuits are stored as coefficient data corresponding to the ambient temperature. Similarly, when it is decided to express another ambient temperature correction curve by a quadratic equation, the 0th power circuit 15, the 1st power circuit 16-1, and the 2nd power circuit are used as coefficient data corresponding to the ambient temperature. Each coefficient for 16-2 is stored. The coefficient data is determined and stored for each ambient temperature. The type of the ambient temperature may be set, for example, by setting a correction curve every 1 degree, but the linearity due to temperature change may be set. In areas where the influence is large, a correction curve is set, for example, every 0.5 degrees, and in areas where there is not much influence even if the temperature changes, for example, one correction curve is used within a change range of 3 to 5 degrees. You can The 0-th power circuit 15 is a circuit for generating a constant, and may be called a constant generation circuit. The 1st to nth power circuits 16-1 to 16-n are for generating the 1st to nth power functions for forming a polynomial, respectively, and in this example, the 1st to nth power circuits 16-1 By cascading 16 to 16-n, each circuit after the squaring circuit 16-2 can generate each function by utilizing the function of the circuit in the preceding stage, thereby simplifying each circuit. ing. The D / A conversion circuit 14 gives a series of coefficients supplied from the coefficient storage circuit 13 to each function from the 0-th power circuit 15, the 1st to nth power circuits 16-1 to 16-n, It may be called a signal processing circuit. The control circuit 18 supplies a clock or the like to the A / D conversion circuit 12, the coefficient storage circuit 13, and the D / A conversion circuit 14 as in the conventional case.

【0013】 次に、動作について説明すると、A/D変換回路12でA/D変換された温度 検出信号が係数記憶回路13に与えられると、係数記憶回路13は検出された周 囲温度に対応する0乗回路15、1乗回路〜n乗回路16−1〜16−nのため の一連の係数データをシリアルにD/A変換回路14に出力する。一方、0乗回 路15は常時、定数を示す信号を出力しており、1乗回路16−1は制御用電圧 VINを受けて1乗の関数を示す信号を、2乗回路16−2は1乗回路16−1か らの出力にもとづいて2乗の関数を示す信号をそれぞれ出力する。以下同様にし て、3乗〜n乗回路はそれぞれ前段の出力にもとづいて3乗〜n乗の関数を示す 信号を出力する。Next, the operation will be described. When the temperature detection signal A / D converted by the A / D conversion circuit 12 is applied to the coefficient storage circuit 13, the coefficient storage circuit 13 responds to the detected ambient temperature. A series of coefficient data for the 0th power circuit 15 and the 1st power circuit to the nth power circuit 16-1 to 16-n are serially output to the D / A conversion circuit 14. On the other hand, the 0th power circuit 15 constantly outputs a signal indicating a constant, and the 1st power circuit 16-1 receives a control voltage V IN and outputs a signal indicating a function of the 1st power to the squaring circuit 16-2. Outputs a signal indicating a square function based on the output from the square circuit 16-1. Similarly, the third to nth power circuits output signals indicating the third to nth power functions based on the outputs of the preceding stages.

【0014】 D/A変換回路14では、係数記憶回路13から供給された一連の係数データ をそれぞれ、0乗回路15、1乗〜n乗回路16−1〜16−nからの対応する 関数に係数として付加し、これらの係数を付加された0乗〜n乗の関数を加算回 路17に出力する。例えば、検出された周囲温度に対応する補正曲線が2次式で 表わされるものであれば、前述したように、係数記憶回路13からは0乗回路1 5、1乗回路16−1、2乗回路16−2のための係数が出力されるので、D/ A変換回路14からも0乗、1乗、2乗の関数に係数が付加された3種類の信号 が出力される。加算回路17では入力された0乗〜n乗の関数を合成して多項式 による補正曲線を作成し、制御電圧VINをこの補正曲線にもとづいて補正して出 力電圧VOUT として出力する。出力電圧VOUT は周波数変調回路におけるVCO にチューニング電圧として供給される。In the D / A conversion circuit 14, the series of coefficient data supplied from the coefficient storage circuit 13 are converted into corresponding functions from the 0th power circuit 15 and the 1st to nth power circuits 16-1 to 16-n, respectively. The coefficients are added as coefficients, and the added functions of 0th power to nth power are output to the addition circuit 17. For example, if the correction curve corresponding to the detected ambient temperature is expressed by a quadratic equation, as described above, the coefficient storage circuit 13 outputs the 0th power circuit 15, the 1st power circuit 16-1, and the 2nd power circuit. Since the coefficients for the circuit 16-2 are output, the D / A conversion circuit 14 also outputs three types of signals with coefficients added to the functions of 0, 1, and 2. The adder circuit 17 synthesizes the inputted 0th to nth power functions to create a correction curve by a polynomial, and corrects the control voltage V IN based on this correction curve and outputs it as the output voltage V OUT . The output voltage V OUT is supplied to VCO in the frequency modulation circuit as a tuning voltage.

【0015】 以上の説明で明らかなように、本考案による温度補正用リニアライザは、補正 曲線を多項式によって作成する構成としたことにより、折れ線による近似方式と 比べて回路構成が簡単となり、理想の補正曲線に限り無く近似させることができ るので周波数変調特性の直線性を改善できる。例えば、2次曲線を折れ線近似方 式でできるだけ近似させようとすると、図2における折れ線回路とオフセット回 路及び傾斜回路の組み合わせが数十組以上必要となるのに対し、本考案では0乗 回路、1乗回路、2乗回路で済むことになる。本考案における整数nは3〜4で 十分であり、補正曲線が単純であるほど回路構成が簡単になる。As is clear from the above description, the linearizer for temperature correction according to the present invention has a configuration in which the correction curve is created by a polynomial, so that the circuit configuration is simpler than the approximation method using the polygonal line, and the ideal correction is performed. Since the curve can be approximated as much as possible, the linearity of the frequency modulation characteristic can be improved. For example, if the quadratic curve is to be approximated by the polygonal line approximation method as much as possible, several dozen or more combinations of the polygonal line circuit, the offset circuit and the gradient circuit in FIG. One square circuit and two square circuits are sufficient. It is sufficient that the integer n in the present invention is 3 to 4, and the simpler the correction curve, the simpler the circuit configuration.

【0016】 本考案によれば更に、制御回路18によるA/D変換回路12及びD/A変換 回路14のデータ更新周期を周波数変調周期に同期させることにより、ディジタ ル的ノイズを受信信号の切れ目に追い込むことで純アナログ近似と等価となり、 これによって変調電圧のノイズ特性に係るVCOのC/Nを極力抑えることがで きる。According to the present invention, further, by synchronizing the data update period of the A / D conversion circuit 12 and the D / A conversion circuit 14 by the control circuit 18 with the frequency modulation period, digital noise is generated as a break in the received signal. It becomes equivalent to the pure analog approximation by driving to, and thereby the C / N of the VCO related to the noise characteristic of the modulation voltage can be suppressed as much as possible.

【0017】[0017]

【考案の効果】[Effect of the device]

以上説明してきたように、本考案による温度補正用リニアライザは補正曲線を 多項式で作成する構成としたことにより、補正曲線が理想の補正曲線に限り無く 近似して周波数変調特性の直線性が改善されるうえにディジタルノイズの低減に よりC/N特性の向上を図れる。 As described above, the temperature correction linearizer according to the present invention has a configuration in which the correction curve is created by a polynomial equation, so that the correction curve is infinitely approximated to the ideal correction curve and the linearity of the frequency modulation characteristic is improved. In addition, C / N characteristics can be improved by reducing digital noise.

【0018】 加えて、簡単な回路構成でしかも調整作業も容易かつ短時間で行うことができ る。また、係数記憶回路の記憶容量も周囲温度毎の多項式の係数を記憶すれば良 いので小さくて済む。In addition, the adjustment work can be performed easily and in a short time with a simple circuit configuration. Further, the storage capacity of the coefficient storage circuit can be small because it is sufficient to store the coefficient of the polynomial for each ambient temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例のブロック構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】従来例のブロック構成図である。FIG. 2 is a block diagram of a conventional example.

【符号の説明】[Explanation of symbols]

IN 制御用電圧 VOUT 出力電圧V IN control voltage V OUT output voltage

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 周囲温度に応じて該周囲温度に対応した
補正曲線を作成し、該補正曲線にもとづいて入力電圧を
補正して出力する温度補正用リニアライザにおいて、周
囲温度検出用の温度センサと、定数信号を発生するため
の定数発生回路と、前記入力電圧が入力され、1乗から
n乗までの第1〜第nのべき乗信号をそれぞれ出力する
第1〜第nのべき乗回路と、前記温度センサにより検出
される前記周囲温度毎に前記定数信号、前記第1〜第n
のべき乗信号のうち少なくとも1つにどのような係数を
与えるかをあらかじめ記憶しており、前記温度センサに
より検出された前記周囲温度に応じて係数データを出力
する係数記憶回路と、前記係数データにもとづいて前記
定数信号、前記第1〜第nのべき乗信号の少なくとも1
つに前記係数を付加して第0〜第nの処理信号の少なく
とも1つを出力する信号処理回路と、出力された前記第
0〜第nの処理信号を加算して前記検出された周囲温度
に対応する前記補正曲線を作成し、該補正曲線にもとづ
いて補正した電圧を出力する加算回路とを含むことを特
徴とする温度補正用リニアライザ。
1. A temperature-correcting linearizer that creates a correction curve corresponding to the ambient temperature according to the ambient temperature and corrects and outputs an input voltage based on the correction curve, and a temperature sensor for detecting the ambient temperature. A constant generation circuit for generating a constant signal; first to nth power circuits which receive the input voltage and output first to nth power signals from the first power to the nth power, respectively; The constant signal for each of the ambient temperatures detected by a temperature sensor, the first to nth
A coefficient storage circuit that stores in advance what coefficient is to be applied to at least one of the power signals, and a coefficient storage circuit that outputs coefficient data according to the ambient temperature detected by the temperature sensor; Based on the above, at least one of the constant signal and the first to nth power signals is used.
Signal processing circuit for adding at least one of the 0th to nth processed signals by adding the coefficient to one, and the detected ambient temperature by adding the output 0th to nth processed signals And a summing circuit that creates the correction curve corresponding to the above and outputs a voltage corrected based on the correction curve.
【請求項2】 請求項1記載の温度補正用リニアライザ
において、前記第1〜第nのべき乗回路は、各べき乗回
路が縦続接続されたものであり、前記入力電圧は前記第
1のべき乗回路に入力されることを特徴とする温度補正
用リニアライザ。
2. The temperature-correcting linearizer according to claim 1, wherein each of the first to n-th power circuits is a cascade connection of power circuits, and the input voltage is applied to the first power circuit. A linearizer for temperature correction characterized by being input.
JP2471792U 1992-04-17 1992-04-17 Linearizer for temperature compensation Pending JPH0584880U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2471792U JPH0584880U (en) 1992-04-17 1992-04-17 Linearizer for temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2471792U JPH0584880U (en) 1992-04-17 1992-04-17 Linearizer for temperature compensation

Publications (1)

Publication Number Publication Date
JPH0584880U true JPH0584880U (en) 1993-11-16

Family

ID=12145920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2471792U Pending JPH0584880U (en) 1992-04-17 1992-04-17 Linearizer for temperature compensation

Country Status (1)

Country Link
JP (1) JPH0584880U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052343A1 (en) * 2005-11-02 2007-05-10 Hitachi, Ltd. Voltage-controlled oscillator, and radar system using the same
JP2014163825A (en) * 2013-02-26 2014-09-08 Asahi Kasei Electronics Co Ltd Temperature characteristic correction circuit and method for magnetic sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869451A (en) * 1971-12-22 1973-09-20
JPS5461442A (en) * 1977-10-26 1979-05-17 Chino Works Ltd Linealizer using divider
JPS58184809A (en) * 1982-04-22 1983-10-28 Nippon Telegr & Teleph Corp <Ntt> Frequency controlling method of digital control type temperature compensated crystal oscillator
JPS62177467A (en) * 1986-01-31 1987-08-04 Kobe Steel Ltd Microwave distance measuring instrument
JPH0314318A (en) * 1989-06-13 1991-01-23 Japan Radio Co Ltd linearizer circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869451A (en) * 1971-12-22 1973-09-20
JPS5461442A (en) * 1977-10-26 1979-05-17 Chino Works Ltd Linealizer using divider
JPS58184809A (en) * 1982-04-22 1983-10-28 Nippon Telegr & Teleph Corp <Ntt> Frequency controlling method of digital control type temperature compensated crystal oscillator
JPS62177467A (en) * 1986-01-31 1987-08-04 Kobe Steel Ltd Microwave distance measuring instrument
JPH0314318A (en) * 1989-06-13 1991-01-23 Japan Radio Co Ltd linearizer circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052343A1 (en) * 2005-11-02 2007-05-10 Hitachi, Ltd. Voltage-controlled oscillator, and radar system using the same
JP2014163825A (en) * 2013-02-26 2014-09-08 Asahi Kasei Electronics Co Ltd Temperature characteristic correction circuit and method for magnetic sensor

Similar Documents

Publication Publication Date Title
US8042383B2 (en) Digital Q control for enhanced measurement capability in cantilever-based instruments
US4646035A (en) High precision tunable oscillator and radar equipped with same
KR20020028784A (en) Liquid crystal display
US7642875B2 (en) Temperature correcting apparatus and voltage-controlled oscillation apparatus
US8532223B2 (en) Power amplifying device and power amplifying method
EP1164353B1 (en) Device for driving and detecting an oscillator in a vibratory gyroscope
JP2001111438A (en) Transmitter and distortion compensation method to be used for the transmitter
JPH0584880U (en) Linearizer for temperature compensation
EP0527660B1 (en) Digital FM modulator
US7161437B2 (en) Voltage-controlled oscillator and quadrature modulator
JPS58223778A (en) Electronic timepiece with temperature compensating function
JP3189386B2 (en) Temperature compensated crystal oscillator
JP4626498B2 (en) Microcomputer
JP2002319821A (en) Quartz oscillator with frequency correction function
KR102594456B1 (en) Amplitude Modulation Transmission Device
JP4771280B2 (en) Temperature compensation method, correction value determination circuit, and temperature compensation oscillation circuit
JPH08101749A (en) Waveform storage device
Ward A novel approach to improving the stability of TCVCXO temperature performance
EP1207445A3 (en) Synchronous clock generator
JP3225881B2 (en) Wave shaping circuit
JPH1084223A (en) Noise FM signal generation circuit
JPS5829912B2 (en) Gain control circuit
JPH06303042A (en) Linear modulation wave envelope control method and linear transmitter
JP2023077933A (en) sawtooth voltage generator
JPH0629737A (en) Clock frequency correcting system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980204