[go: up one dir, main page]

JPH058427U - Photoelectric encoder - Google Patents

Photoelectric encoder

Info

Publication number
JPH058427U
JPH058427U JP9222591U JP9222591U JPH058427U JP H058427 U JPH058427 U JP H058427U JP 9222591 U JP9222591 U JP 9222591U JP 9222591 U JP9222591 U JP 9222591U JP H058427 U JPH058427 U JP H058427U
Authority
JP
Japan
Prior art keywords
grating
lattice
shaped
pitch
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9222591U
Other languages
Japanese (ja)
Other versions
JPH0755457Y2 (en
Inventor
宗次 市川
幹男 鈴木
渡 石橋
真吾 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP1991092225U priority Critical patent/JPH0755457Y2/en
Priority to US07/848,116 priority patent/US5204524A/en
Priority to GB9205410A priority patent/GB2254690B/en
Priority to DE4209149A priority patent/DE4209149C2/en
Publication of JPH058427U publication Critical patent/JPH058427U/en
Application granted granted Critical
Publication of JPH0755457Y2 publication Critical patent/JPH0755457Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

(57)【要約】 【構成】 第一格子26にマトリックス状の島状第一格
子部28を形成し、第二格子30が十字状に相直交する
格子であることを特徴とする光電型エンコーダ。 【効果】 簡易な構成でしかも広範囲のX,Y方向変位
検出を行なうことが可能となる。
(57) [Summary] [Construction] A photoelectric encoder, characterized in that a matrix-shaped island-shaped first grating portion 28 is formed on the first grating 26, and the second grating 30 is a cross-shaped grating orthogonal to each other. . [Effect] It is possible to detect displacement in the X and Y directions over a wide range with a simple configuration.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は光電型エンコーダ、特に2次元方向の変位を検出可能な光電型エンコ ーダの改良に関する。   The present invention is a photoelectric encoder, particularly a photoelectric encoder that can detect displacement in two dimensions. Regarding the improvement of the feeder.

【0002】[0002]

【従来の技術】[Prior art]

各種測定機、工作機械、更に最近は各種情報機械等で、相対移動する二つの部 材の変位量を検出するために各種エンコーダが用いられており、特に非接触で変 位量検出が必要なところから光電型エンコーダが汎用される。 この光電型エンコーダは、相対移動するそれぞれの部材にメインスケール、イ ンデックススケールを設け、例えばインデックススケールに設けられた格子を介 してメインスケールに光を照射し、更にメインスケールの格子を介した光を受光 器にて受光し、その位相変化等から前記部材の相対移動量を検出するものである 。   Two parts that move relative to each other, such as various measuring machines, machine tools, and more recently various information machines. Various encoders are used to detect the displacement amount of the material, especially in the non-contact Photoelectric encoders are widely used because they need to detect the unit quantity.   This photoelectric encoder has a main scale and an Index scale is provided, for example through a grid provided on the index scale. To irradiate the main scale with light and then receive the light through the main scale grating. The light is received by the detector and the relative movement amount of the member is detected from the phase change and the like. .

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら従来の一般的な光電型エンコーダは、直線変位或いは回転変位を 一次元的に測定するのみであり、二次元方向に相対移動する2つの部材間の相対 変位を単一のエンコーダで検出することはできないものであった。   However, the conventional general photoelectric encoder does not perform linear displacement or rotational displacement. Relative between two members that only measure in one dimension and move relative to each other in two dimensions The displacement could not be detected by a single encoder.

【0004】 本考案は前記従来技術の課題に鑑みなされたものであり、その目的は構成が簡 易であり、しかも広範囲の二次元方向変位の検出を行なうことのできる光電型エ ンコーダを提供することにある。[0004]   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to simplify the configuration. It is easy to use, and is a photoelectric sensor that can detect a wide range of two-dimensional displacement. To provide an encoder.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

前記目的を達成するために本出願の請求項1記載の光電型エンコーダは、マト リックス状の島状第一格子が形成されるメインスケールと、前記メインスケール に対し二次元方向に相対移動可能に並列配置され、十字状に相直交する第二格子 が形成されるインデックススケールと、を含むことを特徴とする。   In order to achieve the above object, the photoelectric encoder according to claim 1 of the present application is A main scale on which a ricks-shaped island-shaped first lattice is formed; A second lattice that is arranged in parallel so that it can move in a two-dimensional direction relative to each other and is orthogonal to each other in a cross shape. And an index scale with which is formed.

【0006】 また、請求項2記載の光電型エンコーダは、第一格子が反射式島状格子よりな り、またインデックススケールには透過式十字状第二格子と、第二格子の外周部 に設けられた透過式第三格子が設けられ、前記透過式十字状第二格子の裏面に発 光素子が、また透過式第三格子の裏面に受光素子が設けられたことを特徴とする 。[0006]   Further, in the photoelectric encoder according to claim 2, the first grating is a reflective island grating. The index scale has a transparent cross-shaped second grating and the outer periphery of the second grating. Is provided on the rear surface of the transmissive cross-shaped second grating. An optical element and a light receiving element provided on the back surface of the transmissive third grating. .

【0007】[0007]

【作用】[Action]

本考案にかかる光電型エンコーダは、前述したようにインデックススケールに 十字状格子が設けられており、一方メインスケールにはマトリックス状の島状格 子が設けられている。このため、十字状第二格子の一方向の格子が島状第一格子 のマトリックスの行方向に対応し、その方向への移動量を検出する。また、十字 状第二格子の他方向への格子が島状第一格子のマトリックスの列方向に対応し、 その方向への移動量を検出する。 このように本考案にかかる光電型エンコーダによれば、直交する方向への相対 移動量を一のエンコーダで検出することができる。   The photoelectric encoder according to the present invention has an index scale as described above. A cross lattice is provided, while the main scale has a matrix of islands. There is a child. Therefore, the grid in one direction of the cross-shaped second grid is the island-shaped first grid. Corresponds to the row direction of the matrix of and the amount of movement in that direction is detected. Also, the cross The second lattice in the other direction corresponds to the column direction of the matrix of the island first lattice, The amount of movement in that direction is detected.   As described above, according to the photoelectric encoder of the present invention, The movement amount can be detected by one encoder.

【0008】[0008]

【実施例】【Example】

以下、図面に基づき本考案の好適な実施例を説明する。 図1には本考案の一実施例にかかる光電型エンコーダの基本構成を示す縦断面 図が示されており、また図2には図1II−II線での断面図が示されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.   FIG. 1 is a vertical sectional view showing the basic structure of a photoelectric encoder according to an embodiment of the present invention. The drawing is shown, and FIG. 2 is a sectional view taken along line II-II of FIG.

【0009】 同図において、光電型エンコーダ10は、そのメインスケール12が移動部材 14に設けられ、又インデックススケール16が移動部材18に設けられている 。そして、移動部材14,18の相対移動量を検出するものである。[0009]   In the figure, the main scale 12 of the photoelectric encoder 10 is a moving member. 14 and an index scale 16 is provided on the moving member 18. . Then, the relative movement amount of the moving members 14 and 18 is detected.

【0010】 インデックススケール16の図1中下面には、一個の発光素子20及び八個の 受光素子22a,22b,…22hが配置されている。発光素子20及び各受光 素子22のリード線は、プリント基板24に固定されている。 前記メインスケール12には、図3に示す第一格子26が設けられ、該第一格 子26はマトリックス状の長方形島状反射格子部2811,2812…281n、28 21,2822…282n、…、28m1,28m2,…28mnを含む十字状反射式格子よ りなる。格子部28のX軸(列)方向への並びはY軸に平行なピッチP1の格子 を構成し、格子部28のY軸(行)方向への並びはX軸に平行なピッチP1'の格 子を構成する。[0010]   The lower surface of the index scale 16 in FIG. 1 includes one light emitting element 20 and eight light emitting elements. The light receiving elements 22a, 22b, ... 22h are arranged. Light emitting element 20 and each light receiving The lead wire of the element 22 is fixed to the printed board 24.   The main scale 12 is provided with a first lattice 26 shown in FIG. The child 26 is a matrix-shaped rectangular island-shaped reflection grating portion 28.11, 2812… 281n, 28 21, 28twenty two… 282n, ..., 28m1, 28m2, ... 28mnA cross-shaped reflective grating including Become The arrangement of the lattice portions 28 in the X-axis (row) direction is the pitch P parallel to the Y-axis.1Lattice of And the arrangement of the lattice portions 28 in the Y-axis (row) direction is a pitch P parallel to the X-axis.1'Case Make up a child.

【0011】 一方、インデックススケール16は、図4から明らかなように、第二格子30 及び第三格子32a,32b,…32hを備えている。そして、第二格子30は 前記発光素子20に対応する各三角形状の透過格子部34a,34b,…34d を含む十字状透過式格子よりなる。また第三格子32a,32b,…32hはそ れぞれ受光素子22a,22b,…22hに対応する透過格子よりなる。 このため、発光素子20から出光した光Lは第二格子部34a,34b,…3 4dを介して第一格子26に反射され、該反射光は第三格子32a,32b,… 32hを介して受光素子22a,22b,…22hに受光される。[0011]   On the other hand, as is clear from FIG. 4, the index scale 16 has the second grid 30. And third grids 32a, 32b, ... 32h. And the second grating 30 Each of the triangular transmission grating portions 34a, 34b, ... 34d corresponding to the light emitting element 20. It is composed of a cross-shaped transmission grating including. The third lattices 32a, 32b, ... 32h are Each of the light receiving elements 22a, 22b, ...   Therefore, the light L emitted from the light emitting element 20 receives the second grating portions 34a, 34b, ... 3 4d is reflected by the first grating 26, and the reflected light is reflected by the third gratings 32a, 32b, ... The light is received by the light receiving elements 22a, 22b, ... 22h via 32h.

【0012】 以上のように、本実施例にかかる光電型エンコーダは、X方向への相対移動に 対しては第二格子部34a,34b、第一格子部28の列方向への並び、第三格 子部32a,32b,32c,32d、受光素子22a,22b,22c,22 dが、それぞれ三格子型変位検出器として機能する。また、Y方向への相対移動 に対しては第二格子部34c,34d、第一格子部28の行方向への並び、第三 格子部32e,32f,32g,32hがそれぞれ三格子型変位検出器として機 能する。[0012]   As described above, the photoelectric encoder according to the present embodiment is capable of relative movement in the X direction. On the other hand, the second lattice parts 34a, 34b, the first lattice part 28 are arranged in the column direction, and the third case Child parts 32a, 32b, 32c, 32d, light receiving elements 22a, 22b, 22c, 22 d functions as a three-lattice displacement detector. Also, relative movement in the Y direction For the second grid portions 34c, 34d, the first grid portion 28 is arranged in the row direction, The grating portions 32e, 32f, 32g, and 32h serve as three-lattice displacement detectors. To work.

【0013】 すなわち、三格子型変位検出器は図5に示すように3枚の格子の重なり合いの 変化により変位量を検出するものである(Journal of the optical society of A merica, 1965, vol.55, No.4, p373-381)。[0013]   That is, as shown in FIG. 5, the three-lattice type displacement detector has three overlapping grids. The amount of displacement is detected by changes (Journal of the optical society of A America, 1965, vol.55, No.4, p373-381).

【0014】 図5に示す三格子型変位検出器は、平行配置された第二格子30及び第三格子 32と、両格子30,32の間に相対移動可能に平行配置された第一格子26と 、前記第二格子30の図中左側に配置された発光素子20と、前記第三格子32 の図中右側に配置された受光素子22と、を含む。 そして、発光素子20から出射された光は第二格子30、第一格子26、第三 格子32を介して受光素子22に至り、該受光素子22は各格子30,26,3 2で制限された照明光を光電変換し、更にプリアンプ52で増幅して検出信号s を得る。[0014]   The three-lattice displacement detector shown in FIG. 5 includes a second grating 30 and a third grating arranged in parallel. 32, and a first grating 26 arranged in parallel between the two gratings 30, 32 so as to be relatively movable. The light emitting element 20 arranged on the left side of the second grating 30 in the drawing, and the third grating 32. And a light receiving element 22 arranged on the right side in the figure.   Then, the light emitted from the light emitting element 20 is transmitted to the second grating 30, the first grating 26, and the third grating. The light receiving element 22 reaches the light receiving element 22 via the grating 32, and the light receiving element 22 is connected to each of the gratings 30, 26, 3 The illumination light limited by 2 is photoelectrically converted, and further amplified by the preamplifier 52 to detect the detection signal s. To get

【0015】 ここで、第一格子26が、第二格子30及び第三格子32に対して例えばx方 向に相対移動すると、発光素子20からの照明光のうち、格子30,26,32 により遮蔽される光量が徐々に変化し、検出信号sは略正弦波として出力される 。 そして、前記第一格子26のピッチP1と検出信号sの波長Pが対応し、該検 出信号sの波長及びその分割値より前記基準格子26の相対移動量を測定するも のである。Here, when the first grating 26 moves relative to the second grating 30 and the third grating 32 in the x direction, for example, the illumination light from the light emitting element 20 is shielded by the gratings 30, 26, 32. The amount of light emitted gradually changes, and the detection signal s is output as a substantially sine wave. The pitch P 1 of the first grating 26 and the wavelength P of the detection signal s correspond to each other, and the relative movement amount of the reference grating 26 is measured from the wavelength of the detection signal s and its division value.

【0016】 従って、第一格子26を移動部材14に、第二格子30及び第三格子32を移 動部材18にそれぞれ設置することにより、両移動部材の相対移動量を検出する ことができる。 そして、本実施例においては第一格子26の格子部28のX軸方向への並びは Y軸に平行でピッチP1の格子が構成し、格子部28のY軸方向への並びはX軸 に平行でピッチP1'の格子を構成している。Therefore, by disposing the first grating 26 on the moving member 14 and the second grating 30 and the third grating 32 on the moving member 18, the relative movement amounts of both moving members can be detected. In this embodiment, the grid portions 28 of the first grid 26 are arranged in the X-axis direction so as to be parallel to the Y-axis and have a pitch P 1. The grid portions 28 are arranged in the Y-axis direction in the X-axis direction. To form a grating having a pitch P 1 'parallel to.

【0017】 また、第二格子30の格子部34a,34bにはY軸に平行でピッチP2の格 子が形成され、格子部24c,34dにはX軸に平行でピッチP2'の格子が形成 されている。 更に、第三格子32aにはAx相用の格子、第三格子32bにはAx'相用の 格子、第三格子32cにはBx相用の格子、第三格子32dにはBx'相用の格 子がそれぞれY軸に平行にピッチP3で形成され、第三格子32eにはAy相用 の格子、第三格子32fにはAy'相用の格子、第三格子32gにはBy相用の 格子、第三格子32hにはBy'相用の格子がそれぞれX軸に平行にピッチP3' で形成されている。Further, the grating portions 34a and 34b of the second grating 30 are formed with gratings parallel to the Y axis and having a pitch P 2 and the grating portions 24c and 34d are formed with gratings parallel to the X axis and having a pitch P 2 ′. Has been formed. Furthermore, the third lattice 32a has an Ax phase lattice, the third lattice 32b has an Ax 'phase lattice, the third lattice 32c has a Bx phase lattice, and the third lattice 32d has a Bx' phase lattice. Lattices are formed in parallel with each other at a pitch P 3 in parallel with the Y-axis. The third lattice 32e has an Ay phase lattice, the third lattice 32f has an Ay ′ phase lattice, and the third lattice 32g has a By phase. In the grating and the third grating 32h, By ′ phase gratings are formed in parallel with the X axis at a pitch P 3 ′.

【0018】 従って、Ax=0゜とすると、Axに対し、 Ax'=180゜(1/2P3異なる) Bx=90゜(1/4P3異なる) Bx'=270゜(3/4P3異なる) また、Ay=O゜とすると、Ayに対して Ay'=180゜(1/2P3'異なる) By=90゜(1/4P3'異なる) By'=270゜(3/4P3'異なる) となるように目盛が付けられている。Therefore, when Ax = 0 °, Ax ′ = 180 ° (1 / 2P 3 different) Bx = 90 ° (1 / 4P 3 different) Bx ′ = 270 ° (3 / 4P 3 different) with respect to Ax ) also, when Ay = O °, different Ay '= 180 ° (1 / 2P 3' relative to Ay) By A = 90 ° (1 / 4P 3 'differs) By A' = 270 ° (3 / 4P 3 ' Different) are graduated.

【0019】 この結果、受光素子22a,22b,22c,22dからは、それぞれπ/2 ずつ位相のずれたAx相、Ax'相、Bx相、Bx'相の信号を得ることができ、 Ax相−Ax'相より差動振幅増幅されたAx相出力を、またBx相−Bx'相よ り差動振幅増幅されたBx相出力を得る。そして、該Ax相出力及びBx相出力 の位相のずれ方向等よりスケールのX方向への相対移動方向の弁別を行なうと共 に、電気的に検出信号の分割を行ない、分解能の高い変位量検出を行なっている 。 一方、受光素子22e,22f,22g,22hからはそれぞれπ/2ずつ位 相のずれたAy相、Ay'相、By相、By'相の信号を得ることができ、前記X 方向と同様にして移動部材14,18のY方向の位相弁別及び相対移動距離を検 出することができる。 以上のように、第一実施例にかかる光電型エンコーダによれば、X方向及びY 方向の移動方向及び移動距離を検出することができる。[0019]   As a result, from the light receiving elements 22a, 22b, 22c and 22d, respectively, π / 2 It is possible to obtain signals of Ax phase, Ax 'phase, Bx phase, and Bx' phase whose phases are shifted from each other, The Ax phase output which is differential amplitude amplified from the Ax phase-Ax 'phase is also referred to as the Bx phase-Bx' phase. A Bx phase output with differential amplitude amplification is obtained. Then, the Ax phase output and the Bx phase output When the discrimination of the relative movement direction of the scale in the X direction is performed based on the phase shift direction of In addition, the detection signal is electrically divided to detect displacement with high resolution. .   On the other hand, from the light receiving elements 22e, 22f, 22g, and 22h, each is π / 2. Signals of Ay phase, Ay ′ phase, By phase and By ′ phase which are out of phase can be obtained, The phase discrimination in the Y direction and the relative movement distance of the moving members 14 and 18 are detected in the same manner as the direction. Can be issued.   As described above, according to the photoelectric encoder according to the first embodiment, the X direction and the Y direction The moving direction and the moving distance of the direction can be detected.

【0020】 また、本実施例ではX方向の移動検出を行なう列方向格子部28と、Y方向の 移動検出を行なう行方向格子部28のピッチが異なって設けられている。すなわ ち、列方向へのピッチは比較的粗いピッチP1が刻まれており、X方向への移動 の高速読取りが可能である。一方、行方向へのピッチは比較的細かいピッチP1' が刻まれており、Y方向への移動の高分解能読取りが可能である。 このように移動部材の移動特性に応じてそれぞれのピッチを決定することが可 能であり、しかもそのピッチに従った格子の形成は従来と同じ製法により極めて 正確に行なうことができる。Further, in the present embodiment, the pitch of the column-direction lattice portion 28 for detecting movement in the X direction and the pitch of the row-direction lattice portion 28 for detecting movement in the Y direction are provided differently. That is, the pitch in the column direction is a relatively coarse pitch P 1 , and high-speed reading of movement in the X direction is possible. On the other hand, the pitch in the row direction is engraved with a relatively fine pitch P 1 ′, which enables high-resolution reading of movement in the Y direction. In this way, it is possible to determine the respective pitches according to the movement characteristics of the moving member, and furthermore, the formation of the grating according to the pitch can be performed extremely accurately by the same manufacturing method as the conventional one.

【0021】 尚、例えば次のようにピッチを構成することが好適である。 P1=40μm(明部長=暗部長=20μm) P2=160μm(明部長=40μm、暗部長=120μm) P3=80μm(明部長=暗部長=40μm) P1'=20μm(明部長=暗部長=10μm) P2'=80μm(明部長=20μm、暗部長=60μm) P3'=40μm(明部長=暗部長=20μm) このように第二格子のピッチを第一格子のピッチより大とすると共に、その光 透過部の長さを第一格子のピッチの長さ以下とすることにより、第二格子を透過 した照明光間の独立性(インコヒーレンシイ)が向上し、検出信号のSN比が高 くなる。このため、信号処理が容易となり、高精度の変位検出が可能となる。It is preferable to configure the pitch as follows, for example. P 1 = 40 μm (light portion length = dark portion length = 20 μm) P 2 = 160 μm (bright portion length = 40 μm, dark portion length = 120 μm) P 3 = 80 μm (bright portion length = dark portion length = 40 μm) P 1 ′ = 20 μm (bright portion length = Dark part length = 10 μm) P 2 '= 80 μm (bright part length = 20 μm, dark part length = 60 μm) P 3 ' = 40 μm (bright part length = dark part length = 20 μm) Thus, the pitch of the second grating is larger than the pitch of the first grating. By increasing the length of the light transmission part to be equal to or less than the pitch of the first grating, the independence (incoherency) between the illumination light transmitted through the second grating is improved, and the detection signal is increased. The SN ratio becomes higher. Therefore, signal processing becomes easy, and highly accurate displacement detection becomes possible.

【0022】 また、ピッチ構成は次のようにすることも好適である。 P1=100μm(明部長=暗部長=50μm) P2=400μm(明部長=100μm、暗部長=300μm) P3=200μm(明部長=暗部長=100μm) P1'=40μm(明部長=暗部長=20μm) P2'=160μm(明部長=40μm、暗部長=120μm) P3'=80μm(明部長=暗部長=40μm)It is also preferable that the pitch structure be as follows. P 1 = 100 μm (light portion length = dark portion length = 50 μm) P 2 = 400 μm (bright portion length = 100 μm, dark portion length = 300 μm) P 3 = 200 μm (bright portion length = dark portion length = 100 μm) P 1 ′ = 40 μm (bright portion length = Dark part length = 20 μm) P 2 '= 160 μm (bright part length = 40 μm, dark part length = 120 μm) P 3 ' = 80 μm (bright part length = dark part length = 40 μm)

【0023】 さらに、例えば次のようにピッチを構成することが好適である。 P1=20μm(明部長=暗部長=10μm) P2=20μm(明部長=暗部長=10μm) P3=20μm(明部長=暗部長=10μm) P1'=10μm(明部長=暗部長=5μm) P2'=10μm(明部長=暗部長=5μm) P3'=10μm(明部長=暗部長=5μm) このように第一格子、第二格子、第三格子のピッチを等しくし、さらに可動ス ケール26とインデックススケール16の格子間隔をdとすると、この例では P1=20μm>P1'=10μm であるから、可動スケール26とインデックススケール16の格子間隔dを、 d≧P1 2/2λ に設定すれば、格子間隔dの変動に対して出力がほとんど変動しないXYエンコ ーダが実現できる。 なお、P1=P1'のときは、どちらを採用してもよい。 この構成の特徴として、 (1)X方向へ1ピッチP1送ると、出力信号は2ピッチP1出力され、光学的な 2分割信号が得られるため、電気分割回路が容易に構成される。 (2)格子間隔dの変動に対して寛容なため、例えばP1又はP1'が40μm以下 の細かいピッチのシステムに適する。Further, it is preferable to configure the pitch as follows, for example. P 1 = 20 μm (light portion length = dark portion length = 10 μm) P 2 = 20 μm (bright portion length = dark portion length = 10 μm) P 3 = 20 μm (bright portion length = dark portion length = 10 μm) P 1 ′ = 10 μm (bright portion length = dark portion length) = 5 μm) P 2 '= 10 μm (light portion length = dark portion length = 5 μm) P 3 ' = 10 μm (bright portion length = dark portion length = 5 μm) In this way, the pitches of the first grating, the second grating, and the third grating are made equal. Further, assuming that the lattice spacing between the movable scale 26 and the index scale 16 is d, in this example, P 1 = 20 μm> P 1 '= 10 μm. Therefore, the lattice spacing d between the movable scale 26 and the index scale 16 is d ≧ P By setting 1 2 / 2λ, it is possible to realize an XY encoder whose output hardly fluctuates in response to fluctuations in the lattice spacing d. When P 1 = P 1 ′, either one may be adopted. The features of this configuration are: (1) When 1 pitch P 1 is sent in the X direction, the output signal is output by 2 pitches P 1 and an optical split signal is obtained, so that an electrical split circuit is easily constructed. (2) Since it is tolerant of fluctuations in the lattice spacing d, it is suitable for a fine pitch system in which P 1 or P 1 ′ is 40 μm or less, for example.

【0024】 また、ピッチ構成は同様に次のようにすることも好適である。 P1=40μm(明部長=暗部長=20μm) P2=80μm(明部長=暗部長=40μm) P3=80μm(明部長=暗部長=40μm) P1'=10μm(明部長=暗部長=5μm) P2'=10μm(明部長=暗部長=5μm) P3'=10μm(明部長=暗部長=5μm) このように構成すると、X軸方向に1ピッチ送った場合、1ピッチP1の出力 信号が得られる。Y軸方向に1ピッチP1'送ると、2ピッチP1'の出力信号が得 られる。従って、X軸方向は分解能が粗く、高速度の検出、Y軸方向は分解能が 高く低速度の検出に適する。In addition, it is also preferable that the pitch configuration is as follows. P 1 = 40 μm (light portion length = dark portion length = 20 μm) P 2 = 80 μm (bright portion length = dark portion length = 40 μm) P 3 = 80 μm (bright portion length = dark portion length = 40 μm) P 1 ′ = 10 μm (bright portion length = dark portion length) = 5 μm) P 2 '= 10 μm (bright part length = dark part length = 5 μm) P 3 ' = 10 μm (bright part length = dark part length = 5 μm) With this configuration, when one pitch is sent in the X-axis direction, 1 pitch P An output signal of 1 is obtained. By sending 1 pitch P 1 'in the Y-axis direction, an output signal of 2 pitches P 1 ' is obtained. Therefore, the X-axis direction has a low resolution and is suitable for high-speed detection, and the Y-axis direction has a high resolution and is suitable for low-speed detection.

【0025】 更に本考案においては、第一格子26を広範囲にわたって形成することができ 、検出の広範囲化も可能である。 また、第一格子26の形状は、メインスケール及びインデックススケールの相 対移動距離等を考慮して任意に決定することができる。 また、メインスケールに設けられたマトリックス状の島状格子28を透過部と し、島状格子でない部分29を反射部として構成することも可能である。[0025]   Further, in the present invention, the first grating 26 can be formed over a wide range. It is also possible to broaden the detection.   Further, the shape of the first lattice 26 is the phase of the main scale and the index scale. It can be arbitrarily determined in consideration of the moving distance and the like.   In addition, the matrix-shaped island-shaped grating 28 provided on the main scale is used as a transmission part. However, it is also possible to configure the portion 29 that is not the island lattice as the reflecting portion.

【0026】[0026]

【考案の効果】[Effect of device]

以上説明したように本考案にかかる光電型エンコーダによれば、メインスケー ルにマトリックス状の島状第一格子を、またインデックススケールに直交する格 子を十字状に設けたので、簡易な構成でしかも広範囲のX,Y方向変位検出を行 なうことが可能となる。   As described above, according to the photoelectric encoder of the present invention, the main scale Matrix with island-shaped first lattice, and a grid orthogonal to the index scale. Since the child is provided in a cross shape, it is possible to detect displacement in X and Y directions in a wide range with a simple configuration. It becomes possible to trace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例にかかる光電型エンコーダの
概略構成の説明図である。
FIG. 1 is an explanatory diagram of a schematic configuration of a photoelectric encoder according to an embodiment of the present invention.

【図2】前記実施例にかかる光電型エンコーダの発光素
子及び受光素子の配置の説明図である。
FIG. 2 is an explanatory diagram of an arrangement of light emitting elements and light receiving elements of the photoelectric encoder according to the embodiment.

【図3】前記実施例にかかる光電型エンコーダのメイン
スケール(第一格子)の説明図である。
FIG. 3 is an explanatory diagram of a main scale (first grating) of the photoelectric encoder according to the embodiment.

【図4】前記実施例にかかる光電型エンコーダのインデ
ックススケール(第二格子及び第三格子)の説明図であ
る。
FIG. 4 is an explanatory diagram of index scales (second grating and third grating) of the photoelectric encoder according to the embodiment.

【図5】前記実施例にかかる光電型エンコーダの移動検
出原理の説明図である。
FIG. 5 is an explanatory diagram of a movement detection principle of the photoelectric encoder according to the embodiment.

【符号の説明】[Explanation of symbols]

10 光電型エンコーダ 12 メインスケール 16 インデックススケール 20 発光素子 22 受光素子 26,126 第一格子 30 第二格子 32 第三格子 10 Photoelectric encoder 12 Main scale 16 Index scale 20 light emitting element 22 Light receiving element 26,126 First grid 30 second grid 32 Third grid

───────────────────────────────────────────────────── フロントページの続き (72)考案者 黒木 真吾 神奈川県川崎市高津区坂戸165番地 株式 会社ミツトヨ開発研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Creator Shingo Kuroki             165 Sakado, Takatsu-ku, Kawasaki City, Kanagawa Stock             Company Mitutoyo Development Laboratory

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 マトリックス状に島状第一格子が形成さ
れるメインスケールと前記メインスケールに対し二次元
方向に相対移動可能に並列配置され、十字状に相直交す
る第二格子が形成されるインデックススケールと、 を含むことを特徴とする光電型エンコーダ。
1. A main scale having island-shaped first lattices formed in a matrix and a second lattice arranged in parallel so as to be movable relative to the main scale in a two-dimensional direction, and forming a cross-shaped orthogonal lattice. An optoelectronic encoder including: an index scale.
【請求項2】 請求項1記載のエンコーダにおいて、 第一格子は反射式島状格子よりなり、 またインデックススケールには透過式十字状第二格子
と、第二格子の外周部に設けられた透過式第三格子が設
けられ、 前記透過式十字状第二格子の裏面に発光素子が、また透
過式第三格子の裏面に受光素子が設けられたことを特徴
とする光電型エンコーダ。
2. The encoder according to claim 1, wherein the first grating comprises a reflective island grating, the index scale has a transmissive cross-shaped second grating, and a transmissive element provided on the outer periphery of the second grating. An optoelectronic encoder characterized in that an expression third grating is provided, a light emitting element is provided on a back surface of the transmission type cross-shaped second grating, and a light receiving element is provided on a back surface of the transmission type third grating.
JP1991092225U 1991-03-22 1991-10-14 Photoelectric encoder Expired - Fee Related JPH0755457Y2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1991092225U JPH0755457Y2 (en) 1991-05-13 1991-10-14 Photoelectric encoder
US07/848,116 US5204524A (en) 1991-03-22 1992-03-09 Two-dimensional optical encoder with three gratings in each dimension
GB9205410A GB2254690B (en) 1991-03-22 1992-03-12 Two-dimensional optical encoder
DE4209149A DE4209149C2 (en) 1991-03-22 1992-03-20 Displacement detectors for detecting two-dimensional displacements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-43266 1991-05-13
JP4326691 1991-05-13
JP1991092225U JPH0755457Y2 (en) 1991-05-13 1991-10-14 Photoelectric encoder

Publications (2)

Publication Number Publication Date
JPH058427U true JPH058427U (en) 1993-02-05
JPH0755457Y2 JPH0755457Y2 (en) 1995-12-20

Family

ID=26383014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991092225U Expired - Fee Related JPH0755457Y2 (en) 1991-03-22 1991-10-14 Photoelectric encoder

Country Status (1)

Country Link
JP (1) JPH0755457Y2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791699B2 (en) 2000-08-07 2004-09-14 Mitutoyo Corporation Optical displacement-measuring apparatus
JP2017003447A (en) * 2015-06-11 2017-01-05 株式会社ミツトヨ Optical encoder
JP2021018235A (en) * 2019-07-17 2021-02-15 Dmg森精機株式会社 Detection device
JP2021193354A (en) * 2020-06-08 2021-12-23 キヤノン株式会社 Optical encoder and control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272917A (en) * 1988-04-25 1989-10-31 Mitsutoyo Corp Reflection type xy encoder
JPH0298630A (en) * 1988-10-05 1990-04-11 Mitsutoyo Corp Photoelectric encoder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272917A (en) * 1988-04-25 1989-10-31 Mitsutoyo Corp Reflection type xy encoder
JPH0298630A (en) * 1988-10-05 1990-04-11 Mitsutoyo Corp Photoelectric encoder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791699B2 (en) 2000-08-07 2004-09-14 Mitutoyo Corporation Optical displacement-measuring apparatus
JP2017003447A (en) * 2015-06-11 2017-01-05 株式会社ミツトヨ Optical encoder
JP2021018235A (en) * 2019-07-17 2021-02-15 Dmg森精機株式会社 Detection device
JP2021193354A (en) * 2020-06-08 2021-12-23 キヤノン株式会社 Optical encoder and control device

Also Published As

Publication number Publication date
JPH0755457Y2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US5204524A (en) Two-dimensional optical encoder with three gratings in each dimension
US5576537A (en) Photoelectric position measuring system using gratings having specified dimensions to suppress harmonics
US4677293A (en) Photoelectric measuring system
EP1980824A1 (en) Absolute position length-measurement type encoder
JPS6333604A (en) Relative-displacement measuring device
EP1477776B1 (en) Photoelectric encoder
JPS5994012A (en) Method and device for measuring position
CN102645167A (en) Absolute displacement measuring device
JPH05248895A (en) Light-electron type graticule reader
US3578979A (en) Electrical signal generating apparatus having a scale grid
CN101300462A (en) Opto-electrical angle measuring apparatus
CN101201548B (en) Measuring system and method for focusing and leveling
JPH058427U (en) Photoelectric encoder
US4988864A (en) Photoelectric angle measuring device with adjacent order interference
WO1993021639A1 (en) X-y table apparatus
JP2003166856A (en) Optical encoder
CN106949837A (en) A kind of highly sensitive grating scale of stairstepping photosensor arrays
JP2562479B2 (en) Reflective XY encoder
US5184014A (en) Opto-electronic scale reading apparatus
JP2575935B2 (en) Position detection device
JPS61182522A (en) Linear scale measuring device
JPS5822914A (en) Zero point detecting device of photoelectric encoder
JPH0747694Y2 (en) Photoelectric encoder
JPS6243485B2 (en)
JPH0650754A (en) Inclination-angle and vibration sensor and inclination-angle measuring method using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees