[go: up one dir, main page]

JPH059626A - Ferromagnetic copper alloy and manufacturing method thereof - Google Patents

Ferromagnetic copper alloy and manufacturing method thereof

Info

Publication number
JPH059626A
JPH059626A JP3194828A JP19482891A JPH059626A JP H059626 A JPH059626 A JP H059626A JP 3194828 A JP3194828 A JP 3194828A JP 19482891 A JP19482891 A JP 19482891A JP H059626 A JPH059626 A JP H059626A
Authority
JP
Japan
Prior art keywords
weight
eutectic structure
copper alloy
ferromagnetic
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3194828A
Other languages
Japanese (ja)
Inventor
Kiyohito Ishida
清仁 石田
Taiji Nishizawa
泰二 西沢
Ryosuke Kainuma
亮介 貝沼
Masato Asai
真人 浅井
Mamoru Takeda
守 竹田
Kadomasa Sato
矩正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3194828A priority Critical patent/JPH059626A/en
Publication of JPH059626A publication Critical patent/JPH059626A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 優れた強度と加工性を有し、且つ磁気特性を
有する材料を提供する。 【構成】 図に示すCu−Mn−Al三元状態図におい
て、(Mn,Al)成分が(5wt%,10wt%),(5wt
%,15wt%),(15wt%,4wt%),(30wt%,15wt
%),(30wt%,3wt%)の組成で囲まれ、又はこれに
Ni2〜10wt%を含み、残部Cuと不可避的不純物から
なる一方向に凝固した共晶組織を有する強磁性銅合金、
及びこの鋳塊に 230〜 700℃の温度範囲で一方向共晶組
織を保った状態での熱処理と冷間加工を繰り返し行い、
所定の形状に成型した後に、強磁性化処理を行う上記合
金の製造方法。 【効果】 高性能且つ小型化が望まれている産業機械や
ロボット等の位置制御機能をもつ磁気記録材を提供で
き、更には電気電子制御機器と電気電子機器通電部とを
一体化し、電子機器の小型,高性能化を成し遂げる事が
可能となる。
(57) [Abstract] [Purpose] To provide a material having excellent strength and processability and magnetic properties. [Structure] In the Cu-Mn-Al ternary phase diagram shown in the figure, (Mn, Al) components are (5 wt%, 10 wt%), (5 wt%
%, 15wt%), (15wt%, 4wt%), (30wt%, 15wt
%), (30 wt%, 3 wt%), or containing 2 to 10 wt% of Ni, and having a unidirectionally solidified eutectic structure consisting of the balance Cu and unavoidable impurities.
And this ingot was repeatedly subjected to heat treatment and cold working in the temperature range of 230 to 700 ° C while maintaining the unidirectional eutectic structure,
A method for producing the above alloy, which comprises performing ferromagnetization treatment after molding into a predetermined shape. [Effect] It is possible to provide a magnetic recording material having a position control function for industrial machines, robots, etc., which are desired to have high performance and miniaturization. It is possible to achieve smaller size and higher performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた加工性を示すと
共に高い強度を併せ持ち、且つそれ自体が強磁性を有し
ているので、スイッチ,リレー等の電気的スイッチング
装置及び制御機構と通電機構とを一体化させた装置、並
びに精密微細加工や組立等を行うのに適した産業機械や
ロボット等の制御に用いられる磁気記録材料等に利用さ
れる強磁性銅合金とその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention has excellent workability, high strength, and has ferromagnetism by itself, so that it can be electrically connected to an electric switching device such as a switch or a relay, and a control mechanism. A device integrated with a mechanism, a ferromagnetic copper alloy used as a magnetic recording material used for controlling industrial machines, robots, etc. suitable for precision microfabrication and assembly, and a manufacturing method thereof Is.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、機械加工や組立においてはその精度向上や低コスト
化を目指してきているが、近年の微細化技術の要求や高
機能性化への要求に伴い、その精度や低コストへの傾斜
が著しく進んでいる。このような状況に於いて、これら
の要求を成し遂げる手段として、産業機械やロボット等
の位置精度機能の高度化が考えられている。
2. Description of the Related Art Conventionally, in machining and assembling, it has been aimed at improving accuracy and reducing cost, but in recent years, there has been a demand for miniaturization technology and high functionality. With the demand, the accuracy and the tendency toward low cost are remarkably advanced. In such a situation, as a means for achieving these requirements, the sophistication of the position accuracy function of industrial machines and robots is considered.

【0003】その為には、位置精度の高性能化が要求さ
れるが、従来この分野で用いられている位置制御機能付
シリンダは、シリンダ外周の目盛と検知センサの組合せ
によりストローク制御されているものであって、構造が
複雑で小型化や低コスト化に対処する事が難しかった。
これに対して、機械ノッチ式を用いてシリンダ内のピス
トンロッドに磁気記録目盛を設置し、構造の簡素化をは
かったものがあるが、この方式ではピストンロッドとし
ての強度低下や磁気目盛としての磁気特性の不足等が問
題であった。
For that purpose, it is required to improve the position accuracy, but the cylinder with a position control function conventionally used in this field is stroke controlled by a combination of a scale on the outer circumference of the cylinder and a detection sensor. However, the structure is complicated, and it has been difficult to cope with miniaturization and cost reduction.
On the other hand, a mechanical notch type is used to install a magnetic recording scale on the piston rod in the cylinder to simplify the structure.However, this method reduces the strength of the piston rod and reduces the magnetic scale. The lack of magnetic properties was a problem.

【0004】又、電気電子制御機器の一種であるリレー
装置と電気電子機器の通電部分とは個別に電気電子機器
に組込まれて使用されてきているために、近年の小型
化,高性能化の要求に対しては十分に対応できておら
ず、従ってこれらの装置の機能の集約化が望まれていた
が、電流キャパシティや発熱等の種々の問題が山積みし
ており、その実現が難しく成されていないのが現状であ
る。
In addition, since the relay device, which is a type of electric / electronic control device, and the energizing portion of the electric / electronic device have been separately incorporated into the electric / electronic device for use, the size and performance have been improved in recent years. Although it has not been able to sufficiently meet the demands, it was desired to integrate the functions of these devices, but various problems such as current capacity and heat generation are piled up, and it is difficult to realize them. The current situation is that it has not been done.

【0005】本発明は、位置精度の高性能化が求めら
れ、且つ小型化を要求される加工機械や各種ロボット等
の進化に対して十分なクオリティをもたらすのに不可欠
な小型,高性能の位置制御機能を付与すると共に、電気
電子制御機器と電気電子機器通電部とを一体化し、電子
機器の小型,高性能化を成し遂げようとするものであ
る。
The present invention is a small, high-performance position which is indispensable to bring sufficient quality to the evolution of processing machines and various robots, etc. which are required to have high performance in position accuracy and are required to be miniaturized. In addition to providing a control function, the electric / electronic control device and the electric / electronic device current-carrying part are integrated to achieve miniaturization and high performance of the electronic device.

【0006】[0006]

【課題を解決するための手段】本発明はこれに鑑み種々
検討の結果、精密微細加工や組立等を行うのに適した産
業機械やロボット等に小型で高精度の位置制御機能を付
与する磁気記録材料や、電気電子機器の小型,高性能化
に適した強磁性銅合金とその製造方法を開発したもので
ある。
As a result of various studies in view of the above, the present invention provides a magnetic field for providing a compact and highly accurate position control function to an industrial machine, a robot or the like suitable for performing precision microfabrication and assembly. We have developed a ferromagnetic copper alloy and its manufacturing method, which are suitable for recording materials and miniaturization and high performance of electric and electronic equipment.

【0007】即ち本発明銅合金の一つは、図1に示すC
u−Mn−Al三元状態図において、(Mn,Al)成
分が(5wt%,10wt%),(5wt%,15wt%),(15wt
%,4wt%),(30wt%,15wt%),(30wt%,3wt
%)の範囲で囲まれる組成であって残部Cuと不可避的
不純物からなり、一方向に凝固した共晶組織を有するこ
とを特徴とするものである。
That is, one of the copper alloys of the present invention is C shown in FIG.
In the u-Mn-Al ternary phase diagram, the (Mn, Al) components are (5 wt%, 10 wt%), (5 wt%, 15 wt%), (15 wt%
%, 4wt%), (30wt%, 15wt%), (30wt%, 3wt
%) And is composed of the balance Cu and unavoidable impurities, and has a unidirectionally solidified eutectic structure.

【0008】また本発明銅合金の他の一つは、図1に示
すCu−Mn−Al三元状態図において、(Mn,A
l)成分が(5wt%,10wt%),(5wt%,15wt%),
(15wt%,4wt%),(30wt%,15wt%),(30wt%,
3wt%)の範囲で囲まれる組成であって更にNi2〜10
wt%を含み、残部Cuと不可避的不純物からなり、一方
向に凝固した共晶組織を有することを特徴とするもので
ある。
Another one of the copper alloys of the present invention is (Mn, A) in the Cu-Mn-Al ternary phase diagram shown in FIG.
l) component is (5 wt%, 10 wt%), (5 wt%, 15 wt%),
(15wt%, 4wt%), (30wt%, 15wt%), (30wt%,
3 wt%) and the composition is surrounded by Ni2-10
It is characterized in that it has a eutectic structure that is solidified in one direction, containing wt% and the balance Cu and unavoidable impurities.

【0009】また本発明製造方法は、図1に示すCu−
Mn−Al三元状態図において、(Mn,Al)成分が
(5wt%,10wt%),(5wt%,15wt%),(15wt%,
4wt%),(30wt%,15wt%),(30wt%,3wt%)の
範囲で囲まれる組成であって、又は更にNi2〜10wt%
を含み、残部Cuと不可避的不純物からなり、一方向に
凝固した共晶組織を有する鋳塊に、 230〜700 ℃の温度
範囲で一方向共晶組織を保った状態での熱処理と冷間加
工を繰り返し行い、所定の形状に成型した後に、強磁性
化調整処理を行なうことを特徴とするもので、強磁性化
調整処理として 750〜 950℃の温度範囲でのβ相化処理
と、それに続く急冷処理を施す。
The manufacturing method of the present invention is the Cu-
In the Mn-Al ternary phase diagram, (Mn, Al) components are (5 wt%, 10 wt%), (5 wt%, 15 wt%), (15 wt%,
4% by weight, (30% by weight, 15% by weight), (30% by weight, 3% by weight), or Ni2-10% by weight
In a unidirectionally solidified eutectic structure containing Cu and the balance Cu and unavoidable impurities, and heat treatment and cold working in the temperature range of 230 to 700 ° C while maintaining the unidirectional eutectic structure. It is characterized by performing the ferromagnetization adjustment process after molding repeatedly into a predetermined shape, and as the ferromagnetization adjustment process, β phase treatment in the temperature range of 750 to 950 ° C, and subsequent Apply a quenching process.

【0010】[0010]

【作用】先ず本発明合金の構成要素の限定理由について
以下に述べる。本発明合金の主体をなすMn,Al両元
素を図1に示すCu−Mn−Al三元状態図において、
(Mn,Al)成分が(5wt%,10wt%),(5wt%,
15wt%),(15wt%,4wt%),(30wt%,15wt%),
(30wt%,3wt%)の範囲で囲まれる組成で共添して含
有させることにより、α相とβ相からラメラ状の共晶組
織を形成し、更にこの組織を一方向組織に制御する事に
より、優れた冷間加工性を示すと同時に高い強度が得ら
れる。しかしその範囲を越えての含有はγ相の生成を招
いて、合金を脆くし、またこの範囲より少ない含有は本
発明の特徴とするところの共晶組織を形成しないために
Mn,Alの組成を上記の如く限定したものである。
First, the reasons for limiting the constituent elements of the alloy of the present invention will be described below. In the Cu-Mn-Al ternary phase diagram shown in FIG.
(Mn, Al) component is (5 wt%, 10 wt%), (5 wt%,
15wt%), (15wt%, 4wt%), (30wt%, 15wt%),
A lamellar eutectic structure is formed from the α phase and β phase by co-adding it with the composition enclosed in the range of (30 wt%, 3 wt%), and further controlling this structure to a unidirectional structure. By this, excellent strength can be obtained while exhibiting excellent cold workability. However, if the content exceeds this range, the γ phase is generated, and the alloy becomes brittle, and if the content is less than this range, the eutectic structure which is the feature of the present invention is not formed. Is limited as described above.

【0011】更に、上記合金へのNi元素の2〜10wt%
の添加は、熱処理等に於ける一方向共晶組織の高温での
相安定性を高める働きをするもので、冷間加工性をより
向上させる効果と共にNi元素自身の含有により強度を
著しく高める働きを持つもので、2wt%未満ではその効
果が無く、10wt%を越えての含有は共晶組織を逆に崩し
易くしてしまう為に、限定したものである。
Further, 2 to 10 wt% of Ni element in the above alloy
Is added to increase the phase stability of the unidirectional eutectic structure at high temperature during heat treatment, etc., and to improve the cold workability, and to increase the strength remarkably by the inclusion of the Ni element itself. However, if it is less than 2% by weight, its effect is not exerted, and if it exceeds 10% by weight, the eutectic structure is liable to be broken on the contrary, so that it is limited.

【0012】次に、本発明に係る製造方法に関しては、
上記組成の合金を溶解後、凝固組織が共晶状態で一方向
になるように一方向凝固鋳造法にて鋳造を行い、その後
に変形抵抗の低減と共晶組織内での組織均質化を目的と
して 230〜 700℃の温度範囲での熱処理と冷間加工を繰
り返し行って所定の形状に成型するものである。しかし
てこの温度範囲未満では変形抵抗が低減されず、逆にこ
の範囲を越えると共晶組織が分解し、冷間加工性が損わ
れてしまう。次に所定形状に成型後、強磁性を制御する
為に、 750〜 950℃での熱処理と、その終了後に急冷処
理を行うものであるが、この温度範囲未満ではその制御
が充分でなく、逆にこの範囲を越えると材料そのものが
溶融してしまう場合がある。
Next, regarding the manufacturing method according to the present invention,
After melting the alloy with the above composition, casting is performed by the unidirectional solidification casting method so that the solidification structure is unidirectional in the eutectic state, after that the purpose is to reduce deformation resistance and homogenize the structure in the eutectic structure. As a result, heat treatment in the temperature range of 230 to 700 ° C and cold working are repeatedly performed to mold into a predetermined shape. However, if the temperature is lower than this range, the deformation resistance is not reduced. On the contrary, if the temperature exceeds this range, the eutectic structure is decomposed and the cold workability is impaired. Next, in order to control ferromagnetism after molding into a predetermined shape, heat treatment at 750 to 950 ° C and quenching treatment after that are completed, but below this temperature range the control is not sufficient, If it exceeds this range, the material itself may melt.

【0013】[0013]

【実施例】以下に本発明をその実施例を用いて説明す
る。表1に示す組成の合金を溶解し、合金A〜Jについ
ては鋳型を鋳造合金の融点以上に加熱した状態で連続鋳
造するいわゆる加熱鋳型連続鋳造法(OCC法)、を用
いて表2のように直径8mmの棒材並びに,断面が厚さ3
mm×幅30mmの板材であってともに一方向凝固した共晶組
織の鋳塊を鋳造し、表2に示した条件で熱処理と冷間加
工を行い、また合金Kのものは金型鋳造した後 850℃で
熱間加工を行って本発明例No.1〜No.7及び比較例N
o.8〜No.11とし、これらを表3に記載した特性評価の
供試材とした。
EXAMPLES The present invention will be described below with reference to its examples. As shown in Table 2, using a so-called hot mold continuous casting method (OCC method) in which the alloys having the compositions shown in Table 1 are melted and the alloys A to J are continuously cast in a state in which the mold is heated to the melting point of the casting alloy or higher. 8mm diameter rod and cross section with thickness 3
After casting a unidirectionally solidified eutectic structure ingot of mm × width 30 mm, heat treatment and cold working under the conditions shown in Table 2, and for alloy K after die casting Inventive examples No. 1 to No. 7 and comparative example N were obtained by hot working at 850 ° C.
8 to No. 11, and these were used as test materials for the characteristic evaluation shown in Table 3.

【0014】特性評価としては、先ず JIS-Z2241に基づ
き引張試験を行い、強度,伸びを測定した。冷間加工性
については、供試材に冷間加工を行い割れを生じない最
大の冷間加工率即ち限界冷間加工率を記録した。更に、
板材では、 JIS-Z2248 Vブロック法に準拠して曲げ試
験を行った。曲げ角度は90度を採用し、曲げの内側半径
と板厚との比が 2.0の所で曲げの外側表面の状態を観察
し、平滑なものを「○」,シワが見られるものを
「△」,割れているものを「×」と判定した。また強磁
性調整処理を施された棒材は、磁気センサーを用いて磁
気特性を測定し、純銅の特性との出力差を測定した。
As a characteristic evaluation, first, a tensile test was conducted based on JIS-Z2241 to measure strength and elongation. Regarding the cold workability, the maximum cold work rate without causing cracking, that is, the limit cold work rate was recorded by cold working the test material. Furthermore,
The plate material was subjected to a bending test in accordance with JIS-Z2248 V block method. A bending angle of 90 degrees was adopted, and when the ratio of the inner radius of bending to the plate thickness was 2.0, the condition of the outer surface of the bending was observed. "○" indicates smooth surface, "△" indicates wrinkle. "," It was judged as "x". The magnetic property of the bar material subjected to the ferromagnetic adjustment treatment was measured using a magnetic sensor, and the output difference from the property of pure copper was measured.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】表1,表2,表3から明らかなように、本
発明例No.1〜No.7は何れも高い優れた強度と冷間加
工性を持ち、且つ磁気特性や曲げ性も良好である事が判
る。然るに、本発明の範囲を外れると、その特性が著し
く損われしまう。また比較例No.11は合金組成は本発明
例No.5と同等であるが非共晶組織であるために、引張
強さ,冷間加工性共に劣っている。
As is clear from Table 1, Table 2 and Table 3, the invention samples No. 1 to No. 7 all have high strength and cold workability, and also have good magnetic properties and bendability. It turns out that However, if it deviates from the scope of the present invention, its characteristics are significantly impaired. Further, Comparative Example No. 11 has an alloy composition equivalent to that of Inventive Example No. 5, but since it has a non-eutectic structure, it has poor tensile strength and cold workability.

【0019】[0019]

【発明の効果】このように本発明によれば、優れた強度
と加工性を有し、且つ磁気特性を有する材料を容易に得
る事が可能で、高性能且つ小型化が望まれている産業機
械やロボット等の位置制御機能をもつ磁気記録材を提供
する事が出来、更には、電気電子制御機器と電気電子機
器通電部とを一体化し、電子機器の小型,高性能化を成
し遂げる事が可能な材料を提供するものであり、工業上
顕著な効果を奏するものである。
Industrial Applicability As described above, according to the present invention, it is possible to easily obtain a material having excellent strength and workability and magnetic properties, and to achieve high performance and miniaturization in an industry. We can provide magnetic recording materials with position control functions for machines, robots, etc. Furthermore, by integrating electric and electronic control equipment and electric and electronic equipment energization parts, we can achieve miniaturization and high performance of electronic equipment. It provides a possible material and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu−Mn−Al三元状態図である。1 is a Cu-Mn-Al ternary phase diagram.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 真人 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 竹田 守 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 佐藤 矩正 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masato Asai             2-6-1, Marunouchi, Chiyoda-ku, Tokyo             Kawa Electric Industry Co., Ltd. (72) Inventor Mamoru Takeda             2-6-1, Marunouchi, Chiyoda-ku, Tokyo             Kawa Electric Industry Co., Ltd. (72) Inventor Norimasa Sato             2-6-1, Marunouchi, Chiyoda-ku, Tokyo             Kawa Electric Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 図1に示すCu−Mn−Al三元状態図
において、(Mn,Al)成分が(5wt%,10wt%),
(5wt%,15wt%),(15wt%,4wt%),(30wt%,
15wt%),(30wt%,3wt%)の範囲で囲まれる組成で
あって残部Cuと不可避的不純物からなり、一方向に凝
固した共晶組織を有することを特徴とする強磁性銅合
金。
1. In the Cu-Mn-Al ternary phase diagram shown in FIG. 1, the (Mn, Al) component is (5 wt%, 10 wt%),
(5wt%, 15wt%), (15wt%, 4wt%), (30wt%,
15% by weight), (30% by weight, 3% by weight), a ferromagnetic copper alloy characterized by having a unidirectionally solidified eutectic structure composed of the balance Cu and unavoidable impurities.
【請求項2】 図1に示すCu−Mn−Al三元状態図
において、(Mn,Al)成分が(5wt%,10wt%),
(5wt%,15wt%),(15wt%,4wt%),(30wt%,
15wt%),(30wt%,3wt%)の範囲で囲まれる組成で
あって更にNi2〜10wt%を含み、残部Cuと不可避的
不純物からなり、一方向に凝固した共晶組織を有するこ
とを特徴とする強磁性銅合金。
2. In the Cu-Mn-Al ternary phase diagram shown in FIG. 1, the (Mn, Al) component is (5 wt%, 10 wt%),
(5wt%, 15wt%), (15wt%, 4wt%), (30wt%,
15% by weight), (30% by weight, 3% by weight), Ni2 to 10% by weight, the balance Cu and unavoidable impurities, and a unidirectionally solidified eutectic structure. A ferromagnetic copper alloy.
【請求項3】 図1に示すCu−Mn−Al三元状態図
において、(Mn,Al)成分が(5wt%,10wt%),
(5wt%,15wt%),(15wt%,4wt%),(30wt%,
15wt%),(30wt%,3wt%)の範囲で囲まれる組成で
あり、又は更にNi2〜10wt%を含み、残部Cuと不可
避的不純物からなり、一方向に凝固した共晶組織を有す
る鋳塊に、 230〜 700 ℃の温度範囲で一方向共晶組織
を保った状態での熱処理と冷間加工を繰り返し行い、所
定の形状に成型した後に、強磁性化調整処理を行うこと
を特徴とする強磁性銅合金の製造方法。
3. In the Cu-Mn-Al ternary phase diagram shown in FIG. 1, the (Mn, Al) component is (5 wt%, 10 wt%),
(5wt%, 15wt%), (15wt%, 4wt%), (30wt%,
15 wt%), (30 wt%, 3 wt%), or a composition containing Ni2-10 wt%, the balance Cu and unavoidable impurities, and a unidirectionally solidified eutectic structure. In addition, the heat treatment and the cold working are repeatedly performed in the temperature range of 230 to 700 ℃ while maintaining the unidirectional eutectic structure, and the ferromagnetization adjustment process is performed after forming into a predetermined shape. Manufacturing method of ferromagnetic copper alloy.
【請求項4】 所定の形状に成型した後の強磁性調整と
して、 750〜950℃の温度範囲でのβ相化処理と、それ
に続く急冷処理を施す請求項3記載の強磁性銅合金の製
造方法。
4. The production of a ferromagnetic copper alloy according to claim 3, wherein the β-phase treatment in the temperature range of 750 to 950 ° C. and the subsequent quenching treatment are performed as a ferromagnetic adjustment after molding into a predetermined shape. Method.
JP3194828A 1991-07-09 1991-07-09 Ferromagnetic copper alloy and manufacturing method thereof Pending JPH059626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3194828A JPH059626A (en) 1991-07-09 1991-07-09 Ferromagnetic copper alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3194828A JPH059626A (en) 1991-07-09 1991-07-09 Ferromagnetic copper alloy and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH059626A true JPH059626A (en) 1993-01-19

Family

ID=16330939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3194828A Pending JPH059626A (en) 1991-07-09 1991-07-09 Ferromagnetic copper alloy and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH059626A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094884A (en) * 2004-09-28 2006-04-13 Sri Sports Ltd Golf ball
EP3241919A1 (en) 2016-05-04 2017-11-08 Wieland-Werke AG Copper aluminium manganese alloy and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094884A (en) * 2004-09-28 2006-04-13 Sri Sports Ltd Golf ball
EP3241919A1 (en) 2016-05-04 2017-11-08 Wieland-Werke AG Copper aluminium manganese alloy and its use

Similar Documents

Publication Publication Date Title
JP4950584B2 (en) Copper alloy with high strength and heat resistance
JP5170864B2 (en) Copper-based precipitation type alloy sheet for contact material and method for producing the same
CN101270423B (en) Cu-Ni-Si based copper alloy for electronic material
JP2002180165A (en) Copper base alloy excellent in press punching property and method for producing the same
US3841846A (en) Liquid phase sintered molybdenum base alloys having additives and shaping members made therefrom
JPH059619A (en) High-strength copper alloy manufacturing method
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JPH059626A (en) Ferromagnetic copper alloy and manufacturing method thereof
JP2005113180A (en) Copper alloy for electronic equipment and its manufacturing method
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JPH0718355A (en) Copper alloy for electronic equipment and manufacturing method thereof
JP3222550B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility
JP3353834B2 (en) Easy-working high-strength copper alloy and its manufacturing method
JPH06235034A (en) Silver-based low resistance temperature coefficient alloy and its manufacturing method
JPH0469217B2 (en)
JP3137779B2 (en) Continuous casting method of Cu-Ni-Sn alloy
US3958316A (en) Liquid phase-sintered molybdenum base alloys having additives and shaping members made therefrom
JPH05311287A (en) Ferromagnetic cu type shape memory material and its production
JP3779830B2 (en) Copper alloy for semiconductor lead frames
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP2010106332A (en) Copper alloy material for structural member of resistance welding machine
JP2991319B2 (en) High strength and high conductivity copper alloy and manufacturing method (2)
JP2885264B2 (en) Manufacturing method of high strength and high conductivity copper alloy
KR100205698B1 (en) Method of cu-cr-xi micro composite material