[go: up one dir, main page]

JPH06100333A - Surface-modified glass containing metallic ion implanted thereinto - Google Patents

Surface-modified glass containing metallic ion implanted thereinto

Info

Publication number
JPH06100333A
JPH06100333A JP24669292A JP24669292A JPH06100333A JP H06100333 A JPH06100333 A JP H06100333A JP 24669292 A JP24669292 A JP 24669292A JP 24669292 A JP24669292 A JP 24669292A JP H06100333 A JPH06100333 A JP H06100333A
Authority
JP
Japan
Prior art keywords
glass substrate
implanted
glass
ion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24669292A
Other languages
Japanese (ja)
Inventor
Noriyuki Inuishi
典之 犬石
Atsushi Munemasa
淳 宗政
Tadashi Kumakiri
正 熊切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24669292A priority Critical patent/JPH06100333A/en
Publication of JPH06100333A publication Critical patent/JPH06100333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To regulate the light transmittance by implanting a metallic element such as Cu and/or Ag into the surface of a glass substrate and then forming a selective light transmitting layer in the surface layer part of the glass substrate. CONSTITUTION:A metallic element such as Cu and/or Ag in each or the total amount of 1X10<15> to 5X10<15>ions/cm<2> is implanted into the surface of a glass substrate with an implanting energy within the range of 30-250keV to form the objective surface-modified glass. The integrity of the ion-implanted surface layer with the glass substrate is excellent and problems of peeling do not occur. The corrosion resistance essential to the glass substrate is maintained. When the Cu ions are implanted, the resultant glass substrate provides a material for a minus filter capable of selectively absorbing and/or reflecting light at a wavelength within the range of 430-590nm (yellow, green, blue and violet light) without transmitting it. When the Ag ions are implanted, the glass substrate provides a material for a minus filter capable of selectively absorbing and/or reflecting light at a wavelength within the range of 380-490nm (blue and violet light) without transmitting it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特定波長の光を選択的
に吸収および/または反射して透過させないマイナスフ
ィルターと呼ばれる光学素子の素材として、或は建築物
や自動車用の紫外線カットガラスとして有用な、金属イ
オン注入表面改質ガラスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for an optical element called a minus filter, which does not selectively absorb and / or reflect light of a specific wavelength and transmits it, or as an ultraviolet cut glass for buildings and automobiles. It relates to a useful metal ion-implanted surface-modified glass.

【0002】[0002]

【従来の技術】ガラス製品は、例えば画像や文字を表示
するディスプレイ、太陽光を利用するソーラーセルや太
陽電池、建築物や自動車の窓等、様々な分野で利用され
ている。そしてディスプレイにおける表示を正確で美し
いものとする為、またソーラーセルや太陽電池における
効率を良くする為、更には快適な居住空間を形成する為
には、これらに使用されるガラス製品の光吸収や光反射
を適切に調節して光を有効に利用することが重要であ
る。
2. Description of the Related Art Glass products are used in various fields such as displays for displaying images and characters, solar cells and solar cells using sunlight, windows of buildings and automobiles, and the like. And in order to make the display on the display accurate and beautiful, to improve the efficiency in solar cells and solar cells, and to form a comfortable living space, the light absorption and the glass products used for these It is important to properly control the light reflection and effectively use the light.

【0003】近年、ガラス製品に上記の様な機能を付与
する為の方法が、様々な角度から検討されている。その
代表的な方法としては、ガラス基板表面にコーティング
膜を形成する方法が挙げられる。例えば太陽光の熱線を
遮蔽して、夏期における室内の冷房負荷が大きくなるの
を防止する目的で、TiO2 ,CoO等の金属酸化物膜
を熱分解法によってガラス基板表面にコーティングした
ガラスが開発されている。また真空蒸着法やスパッタ法
によって、TiやCrの様な金属膜を、ガラス基板表面
にコーティングしたガラスも知られている。一方、特定
の波長の光を選択的に吸収または透過させる光学フィル
ターにおいても、ガラス基板に屈折率の異なる薄膜をコ
ーティングしたガラスが知られている。
In recent years, methods for imparting the above-mentioned functions to glass products have been studied from various angles. As a typical method thereof, there is a method of forming a coating film on the surface of a glass substrate. For example, a glass coated with a metal oxide film such as TiO 2 or CoO on the surface of a glass substrate by a thermal decomposition method has been developed in order to block the heat rays of sunlight and prevent the indoor cooling load from increasing. Has been done. Further, there is known a glass in which a glass substrate surface is coated with a metal film such as Ti or Cr by a vacuum vapor deposition method or a sputtering method. On the other hand, also in an optical filter that selectively absorbs or transmits light of a specific wavelength, glass in which a glass substrate is coated with thin films having different refractive indexes is known.

【0004】しかしながらガラス基板にコーティング膜
を形成したものでは、ガラス基板とコーティング膜の密
着性が十分でなく、外部からの衝撃によって疵が付き易
いという欠点がある。また腐食性環境下では、コーティ
ング膜が変質してしまい、光学特性が変化してしまうと
いう欠点もある。こうした不都合を回避する技術とし
て、例えば特開平3-257042号公報の様な技術も提案され
ている。この技術は、Si,Al,Ti,Cr,Co,
Ni等の元素を、イオン注入法によってガラス基板に打
ち込み、該ガラス基板の内部の表面近傍に光の選択的透
過層を形成して、光透過率を調整するものであり、上記
の様な不都合を基本的に含まない新しい技術として注目
されている。
However, the glass substrate having the coating film formed thereon has a drawback that the adhesion between the glass substrate and the coating film is not sufficient, and that a flaw is likely to be formed by an external impact. In addition, in a corrosive environment, there is a drawback that the coating film deteriorates and the optical characteristics change. As a technique for avoiding such an inconvenience, for example, a technique disclosed in Japanese Patent Laid-Open No. 3-257042 has been proposed. This technology uses Si, Al, Ti, Cr, Co,
An element such as Ni is implanted into a glass substrate by an ion implantation method, and a light selectively transmitting layer is formed in the vicinity of the surface inside the glass substrate to adjust the light transmittance. It is attracting attention as a new technology that basically does not include.

【0005】[0005]

【発明が解決しようとする課題】本発明はこうした状況
の基になされたものであって、その目的は、イオン注入
法を適用して特定の金属イオンをガラス基板に注入する
ことによって、これまでにない新しい光学特性を付与し
た金属イオン注入表面改質ガラスを提供することにあ
る。
The present invention has been made based on such a situation, and its purpose is to apply an ion implantation method to implant a specific metal ion into a glass substrate. It is to provide a metal ion-implanted surface-modified glass having new optical characteristics not found in the above.

【0006】[0006]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、ガラス基板表面に、Cuおよび/またはAg
の金属元素をイオン注入し、ガラス基板の表層部に、光
の選択的透過層を形成したものである点に要旨を有する
金属イオン注入表面改質ガラスである。
The present invention, which has achieved the above object, means that Cu and / or Ag are formed on the surface of a glass substrate.
The metal ion-implanted surface-modified glass is characterized in that a light selective transmission layer is formed on the surface layer portion of the glass substrate by ion-implanting the metal element.

【0007】[0007]

【作用】本発明で利用されるイオン注入の手法は、加速
された高エネルギーの金属イオンを目的深さまで打ち込
んでガラス基板の表層部を改質するものであり、半導体
分野における不純物ドーピング手段として利用されてい
る他、鋼を中心とする金属材料の表面改質にもその適用
が進められているが、半導体分野を除けばこれまでのと
ころ実用化はあまり進んでいなかった。
The ion implantation method used in the present invention is to implant accelerated high-energy metal ions to a target depth to modify the surface layer of a glass substrate, and is used as an impurity doping means in the semiconductor field. In addition to this, its application is being advanced for surface modification of metal materials such as steel, but it has not been practically applied so far except in the field of semiconductors.

【0008】本発明者らは、かねてよりイオン注入法に
ついて研究を進めてきており、種々の材料に対するイオ
ン注入による表面改質について検討してきた。そして近
年の状況に鑑み、且つ研究の一環として、種々の金属イ
オンについてのイオン注入実験を重ね、ガラス基板の光
学特性に及ぼす金属イオンの影響について検討した。そ
の結果、ガラス基板にCuやAg等の金属元素をイオン
注入すれば、ガラス基板の表層部に、特定波長の光を選
択的に吸収・反射する改質層が形成され、これによって
ガラス基板に特異な光学特性を付与できることを見出
し、本発明を完成した。即ち本発明者らが、CuやAg
をイオン注入した表面改質ガラスについて、その光透過
率を調査したところ、後記実施例に示す様に、Cuをイ
オン注入した場合は波長580nm 近傍に、Agをイオン注
入した場合は波長420nm 近傍に透過率減少ピークが夫々
形成されることがわかった。
The present inventors have long been conducting research on the ion implantation method, and have studied surface modification by ion implantation on various materials. Then, in view of the recent situation, and as part of the research, ion implantation experiments for various metal ions were repeated to examine the influence of the metal ions on the optical characteristics of the glass substrate. As a result, when a metal element such as Cu or Ag is ion-implanted into the glass substrate, a modified layer that selectively absorbs and reflects light of a specific wavelength is formed on the surface layer portion of the glass substrate, and thereby the glass substrate is provided. The present invention has been completed by finding that specific optical properties can be imparted. That is, the present inventors
The light transmittance of the surface-modified glass in which was ion-implanted was examined. As shown in the examples below, the wavelength was around 580 nm when Cu was ion-implanted, and the wavelength was around 420 nm when Ag was ion-implanted. It was found that the transmittance decreasing peaks were formed respectively.

【0009】この様に、特定波長の光を選択的に透過す
る表面改質ガラスは、その光学特性を利用してマイナス
フィルターの素材としての適用が期待できる。即ち、C
uをイオン注入した場合は、波長が590〜430nm程
度の範囲の光(黄,緑,青,紫色光)を吸収・反射し
て、これらの光を透過させないマイナスフィルターの素
材としての適用が期待できる。またAgをイオン注入し
た場合は、波長が490〜380nm程度の範囲の光
(青,紫色光)を吸収・反射して、これらの光を透過さ
せないマイナスフィルターの素材としての適用が期待で
きる。
As described above, the surface-modified glass which selectively transmits light of a specific wavelength can be expected to be applied as a material of a minus filter by utilizing its optical characteristics. That is, C
When u is ion-implanted, it is expected to be applied as a negative filter material that absorbs / reflects light (yellow, green, blue, violet light) in the wavelength range of 590 to 430 nm and does not transmit these lights. it can. When Ag is ion-implanted, it can be expected to be applied as a material of a minus filter that absorbs and reflects light (blue and violet light) having a wavelength in the range of about 490 to 380 nm and does not transmit these lights.

【0010】またCuまたはAgのいずれをイオン注入
した場合であっても、未処理のガラス基板に比べ、紫外
線領域(波長380nm以下)における光透過率が低下す
るので、本発明のガラスは紫外線カットガラスとしての
適用も考えられる。更に、イオン注入することによっ
て、ガラス基板はピンク色(Cuをイオン注入した場合)
や黄色(Agをイオン注入した場合)等に着色されるの
で本発明の表面改質ガラスは、装飾用ガラスとしての応
用も考えられる。尚これまでの説明では、CuまたはA
gのいずれかを単独でイオン注入する場合について説明
したが、もとより両者を複合的にイオン注入することも
可能であり、この場合は複合的な透過率減少ピークが認
められる。
Further, regardless of whether Cu or Ag is ion-implanted, the light transmittance in the ultraviolet region (wavelength of 380 nm or less) is lower than that of an untreated glass substrate. Application as glass is also conceivable. Furthermore, by ion implantation, the glass substrate is pink (when Cu is ion implanted).
The surface-modified glass of the present invention may be applied as decorative glass because it is colored yellow, yellow (when Ag is ion-implanted), or the like. In the above explanation, Cu or A
Although the case of ion-implanting any one of g is described above, it is possible to ion-implant both of them in combination, and in this case, a composite peak of transmittance decrease is observed.

【0011】本発明の表面改質ガラスは上記作用効果を
奏するものであるが、これらの作用効果を得るには、金
属イオンを夫々または合計で1×1015イオン/cm2 以上
注入するのが良い。またガラス表面の耐摩耗性や耐薬品
性を考慮すると、金属イオンの注入位置はできるだけ深
い方が好ましく、こうした観点からして、注入エネルギ
ーは30KeV以上とするのが良い。一方、過剰にイオン
注入すると、注入エネルギーに応じてスパッタ現象によ
る表面切削現象が顕著になるので、注入エネルギーおよ
び注入量は慎重に決定する必要がある。こうした観点か
らすれば、注入エネルギーは250 KeV以下とし、且つ
注入量は5×1018イオン/cm2 以下に抑えることが望ま
しい。
The surface-modified glass of the present invention has the above-mentioned effects. To obtain these effects, it is necessary to inject metal ions individually or in a total amount of 1 × 10 15 ions / cm 2 or more. good. Further, considering the wear resistance and chemical resistance of the glass surface, it is preferable that the implantation position of the metal ions is as deep as possible. From this viewpoint, the implantation energy is preferably 30 KeV or more. On the other hand, if the ions are excessively implanted, the surface cutting phenomenon due to the sputtering phenomenon becomes prominent depending on the implantation energy. Therefore, it is necessary to carefully determine the implantation energy and the implantation amount. From this viewpoint, it is desirable that the implantation energy is 250 KeV or less and the implantation amount is 5 × 10 18 ions / cm 2 or less.

【0012】本発明においては、CuやAgの高エネル
ギーイオンをガラス基板の表層部に強制的に注入する
が、表面にコーティング膜を形成する場合と異なり、イ
オン注入表面層とガラス基板との一体性は極めて良好で
あり、剥離の問題は生じない。また表面はガラス基板本
来の耐食性を維持したままである。
In the present invention, high energy ions of Cu or Ag are forcibly injected into the surface layer portion of the glass substrate, but unlike the case where a coating film is formed on the surface, the ion implantation surface layer and the glass substrate are integrated. The property is extremely good, and the problem of peeling does not occur. In addition, the surface maintains the original corrosion resistance of the glass substrate.

【0013】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples. The following examples are not intended to limit the present invention, and any change in design can be made without departing from the spirit of the preceding and following claims. It is included in the technical scope.

【0014】[0014]

【実施例】表1に示す各種イオン注入ガラスについて、
光透過率の測定を、可視・紫外領域(波長300 〜900nm
)について行なった。
EXAMPLES Regarding various ion-implanted glasses shown in Table 1,
Light transmittance is measured in the visible / ultraviolet region (wavelength 300-900 nm
).

【0015】[0015]

【表1】 [Table 1]

【0016】その結果を図1〜4に示すが、いずれも特
定波長領域に特異的な透過率減少ピークが認められ、マ
イナスフィルターとして有用なガラスができていること
がわかる。また未注入のガラス基板の透過率と比較して
明らかな様に(図1および図3)、紫外線(波長380nm
以下)の透過率も低下していることから、本発明の表面
改質ガラスは紫外線カットガラスとしての適用も可能で
ある。
The results are shown in FIGS. 1 to 4, and it can be seen that in all cases, a specific transmittance reduction peak is observed in a specific wavelength region, and glass useful as a minus filter is formed. In addition, as is clear from the comparison with the transmittance of the unimplanted glass substrate (Figs. 1 and 3), ultraviolet rays (wavelength 380nm
Since the transmittance of the following) is also reduced, the surface-modified glass of the present invention can be applied as an ultraviolet cut glass.

【0017】[0017]

【発明の効果】本発明は以上の様に構成されており、C
uやAg等の金属元素をイオン注入することによって、
特定波長の光を選択的に吸収・反射して透過させないマ
イナスフィルターの素材として、或は紫外線カットガラ
スとして有用な表面改質ガラスが得られた。
The present invention is constructed as described above, and C
By implanting metal elements such as u and Ag,
A surface-modified glass useful as a material for a minus filter that does not selectively absorb, reflect, and transmit light of a specific wavelength or as a UV-cut glass was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】パイレックスガラス基板にCuをイオン注入し
たガラスの分光曲線である。
FIG. 1 is a spectral curve of glass in which Cu is ion-implanted into a Pyrex glass substrate.

【図2】スライドガラス基板にCuをイオン注入したガ
ラスの分光曲線である。
FIG. 2 is a spectral curve of glass in which Cu is ion-implanted into a slide glass substrate.

【図3】パイレックスガラス基板にAgをイオン注入し
たガラスの分光曲線である。
FIG. 3 is a spectral curve of glass in which Ag is ion-implanted into a Pyrex glass substrate.

【図4】スライドガラス基板にAgをイオン注入したガ
ラスの分光曲線である。
FIG. 4 is a spectral curve of glass in which Ag is ion-implanted into a slide glass substrate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板表面に、Cuおよび/または
Agの金属元素をイオン注入し、ガラス基板の表層部
に、光の選択的透過層を形成したものであることを特徴
とする金属イオン注入表面改質ガラス。
1. A metal ion implantation characterized in that a metal element of Cu and / or Ag is ion-implanted on the surface of a glass substrate, and a light selectively transmitting layer is formed on a surface layer portion of the glass substrate. Surface modified glass.
JP24669292A 1992-09-16 1992-09-16 Surface-modified glass containing metallic ion implanted thereinto Pending JPH06100333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24669292A JPH06100333A (en) 1992-09-16 1992-09-16 Surface-modified glass containing metallic ion implanted thereinto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24669292A JPH06100333A (en) 1992-09-16 1992-09-16 Surface-modified glass containing metallic ion implanted thereinto

Publications (1)

Publication Number Publication Date
JPH06100333A true JPH06100333A (en) 1994-04-12

Family

ID=17152211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24669292A Pending JPH06100333A (en) 1992-09-16 1992-09-16 Surface-modified glass containing metallic ion implanted thereinto

Country Status (1)

Country Link
JP (1) JPH06100333A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205662B2 (en) 2003-02-27 2007-04-17 Symmorphix, Inc. Dielectric barrier layer films
US7238628B2 (en) 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US7404877B2 (en) 2001-11-09 2008-07-29 Springworks, Llc Low temperature zirconia based thermal barrier layer by PVD
US7413998B2 (en) 2002-03-16 2008-08-19 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US7469558B2 (en) 2001-07-10 2008-12-30 Springworks, Llc As-deposited planar optical waveguides with low scattering loss and methods for their manufacture
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
CN107531562A (en) * 2015-04-30 2018-01-02 康宁股份有限公司 Conductive article having discrete metallic silver layers and method of manufacture
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469558B2 (en) 2001-07-10 2008-12-30 Springworks, Llc As-deposited planar optical waveguides with low scattering loss and methods for their manufacture
US7404877B2 (en) 2001-11-09 2008-07-29 Springworks, Llc Low temperature zirconia based thermal barrier layer by PVD
US7544276B2 (en) 2002-03-16 2009-06-09 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US7413998B2 (en) 2002-03-16 2008-08-19 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US7262131B2 (en) 2003-02-27 2007-08-28 Symmorphix, Inc. Dielectric barrier layer films
US7205662B2 (en) 2003-02-27 2007-04-17 Symmorphix, Inc. Dielectric barrier layer films
US7238628B2 (en) 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
CN107531562A (en) * 2015-04-30 2018-01-02 康宁股份有限公司 Conductive article having discrete metallic silver layers and method of manufacture
CN107531562B (en) * 2015-04-30 2021-05-28 康宁股份有限公司 Conductive article with discrete metallic silver layer and method of making the same

Similar Documents

Publication Publication Date Title
CN108828695B (en) Spectrally selective emission material for infrared stealth and preparation method thereof
CN112130233B (en) Hard anti-reflective coating and its manufacture and use
JP2625079B2 (en) Solar controlled durable thin film coating with low emissivity
EP3124450B1 (en) Solar control coatings with discontinuous metal layer
ES2770251T3 (en) Coated glass surfaces and procedure for coating a glass substrate
MXPA04010882A (en) Substrate having thermal management coating for an insulating glass unit.
EA023911B1 (en) Glazing provided with a stack of thin layers
JP3139031B2 (en) Heat shielding glass
EP2679555B1 (en) Thermochromic window doped with dopant and method of manufacturing the same
TWI875713B (en) Articles coated with coatings containing light absorption materials
CN105473328A (en) Coating systems, methods and apparatus for producing low-e glass including ternary alloys
EP2939988A1 (en) Reduced pressure double glazed glass panel
JPH06100333A (en) Surface-modified glass containing metallic ion implanted thereinto
JPH063523A (en) Durable low emissivity solar control thin film coating
JPS61151045A (en) Product for reflection of solar energy and manufacture
CN102844281B (en) First surface and contrary second surface have the mirror of reflectance coating
US20060077549A1 (en) Anti-fog mirror
EP2610368A2 (en) Reflective substrate and method of manufacturing the same
CN110596981B (en) A kind of electrochromic glass with more neutral color tone and preparation method and application thereof
Andreev et al. An experimental study of millimeter wave absorption in thin metal films
EP0913367A1 (en) Light-absorbing antireflective body and process for the production thereof
CN112533882A (en) Reducing reflectivity of substrate for transmitting infrared light
TW200533619A (en) Glass coating
JPS6064843A (en) Heat ray shielding laminate
WO2023192460A1 (en) Article coated by a multi-layer coating stack

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011211