JPH06115942A - Ultrafine particle compound oxide of titanium-iron and its production - Google Patents
Ultrafine particle compound oxide of titanium-iron and its productionInfo
- Publication number
- JPH06115942A JPH06115942A JP29404292A JP29404292A JPH06115942A JP H06115942 A JPH06115942 A JP H06115942A JP 29404292 A JP29404292 A JP 29404292A JP 29404292 A JP29404292 A JP 29404292A JP H06115942 A JPH06115942 A JP H06115942A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- titanium
- raw material
- ultrafine particle
- composite oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011882 ultra-fine particle Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 150000001875 compounds Chemical class 0.000 title abstract description 4
- IXQWNVPHFNLUGD-UHFFFAOYSA-N iron titanium Chemical compound [Ti].[Fe] IXQWNVPHFNLUGD-UHFFFAOYSA-N 0.000 title description 19
- 239000002994 raw material Substances 0.000 claims abstract description 43
- 239000002245 particle Substances 0.000 claims abstract description 21
- 239000000843 powder Substances 0.000 claims abstract description 19
- 238000001704 evaporation Methods 0.000 claims abstract description 5
- 238000002844 melting Methods 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 157
- 229910052742 iron Inorganic materials 0.000 claims description 74
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 69
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 66
- 239000010936 titanium Substances 0.000 claims description 62
- 239000002131 composite material Substances 0.000 claims description 58
- 229910052719 titanium Inorganic materials 0.000 claims description 58
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 27
- 239000011362 coarse particle Substances 0.000 claims description 27
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 21
- 230000006698 induction Effects 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 239000011246 composite particle Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 34
- 230000000694 effects Effects 0.000 abstract description 22
- 239000012159 carrier gas Substances 0.000 abstract description 7
- 239000012808 vapor phase Substances 0.000 abstract 2
- 238000012216 screening Methods 0.000 abstract 1
- 238000002835 absorbance Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000010419 fine particle Substances 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 238000000862 absorption spectrum Methods 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000002537 cosmetic Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- -1 this Chemical compound 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010033546 Pallor Diseases 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 206010014970 Ephelides Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000003351 Melanosis Diseases 0.000 description 1
- 208000012641 Pigmentation disease Diseases 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Cosmetics (AREA)
- Compounds Of Iron (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸化チタンのみでは十
分に遮蔽することができない紫外線A波領域(波長32
0〜400nm)にも優れた遮蔽力を有し、且つ白色状超
微粒子粉末であるチタンと鉄の超微粒子複合化酸化物及
びその製造方法に関する。BACKGROUND OF THE INVENTION The present invention relates to an ultraviolet A wave region (wavelength 32) which cannot be sufficiently shielded by titanium oxide alone.
The present invention relates to an ultrafine particle composite oxide of titanium and iron which is a whiteish ultrafine particle powder having an excellent shielding power even in the range of 0 to 400 nm) and a method for producing the same.
【0002】[0002]
【従来の技術】従来、酸化チタン粉末は、その紫外線遮
蔽力あるいは高屈折率を有する特質により、化粧料基剤
に配合して紫外線遮蔽効果を持つ化粧料の製造や、化学
繊維の原料樹脂に混合して紡糸して紫外線遮蔽効果を有
する衣料の製造や、あるいはプラスチックに配合又はコ
ートして紫外線遮蔽材の製造等に用いられている。しか
し、酸化チタン粒子は、紫外線B波領域(波長280〜
320nm)では優れた遮蔽効果を示すが、可視光に最も
近く且つ紫外線B波の10倍も地表に到達する紫外線A
波領域(320nm〜400nm)に対する遮蔽効果は十分
でないという問題がある。紫外線B波は、透過力は弱い
が急激な炎症を引き起こし、皮膚を火傷状態にするのに
対し、紫外線A波は、皮膚の透過力が高く色素の沈着を
引き起こしてシミやそばかすの原因となると言われてい
る。そのため、近時B波のみでなく、A波に対しても十
分な遮蔽力を有するものが求められている。2. Description of the Related Art Conventionally, titanium oxide powder has been used as a raw material resin for chemical fibers or in the production of cosmetics having an ultraviolet shielding effect by blending it with a cosmetic base due to its characteristics of ultraviolet shielding power or high refractive index. It is used for the production of clothing having an ultraviolet ray shielding effect by mixing and spinning, or for the production of an ultraviolet ray shielding material by blending or coating with plastic. However, the titanium oxide particles are in the ultraviolet B wave region (wavelength 280 to 280).
At 320 nm, it shows an excellent shielding effect, but it is the ultraviolet light A that is closest to visible light and reaches the surface of the earth 10 times as much as the ultraviolet B wave.
There is a problem that the shielding effect for the wave region (320 nm to 400 nm) is not sufficient. Ultraviolet B waves have weak penetrating power but cause rapid inflammation and burn the skin. On the other hand, ultraviolet A waves have high penetrating power of the skin and cause pigmentation, causing spots and freckles. It is said. Therefore, it is required to have a sufficient shielding power not only for the B wave but also for the A wave recently.
【0003】この解決策として、例えば、酸化チタンに
紫外線A波領域において比較的遮蔽効果の大きい酸化鉄
を、酸化チタンに対する重量比で0.05〜50の範囲
で配合してなる酸化チタン・酸化鉄複合系ゾルが提案さ
れている(特開平2−178219号)。しかし、この
ようにかなりの量の酸化鉄を酸化チタンに混合すると、
その混合物は、黄色乃至褐色に着色し(酸化鉄の混合割
合が多いほど褐色になる)、この着色粒子を化粧料、繊
維、並びにプラスチックに配合することは最終製品に好
ましくない効果を与えるという問題がある。As a solution to this problem, for example, titanium oxide / oxidized by mixing iron oxide with iron oxide having a relatively large shielding effect in the ultraviolet A wave region in a weight ratio of 0.05 to 50 with respect to titanium oxide. An iron composite sol has been proposed (JP-A-2-178219). However, when a considerable amount of iron oxide is mixed with titanium oxide like this,
The mixture is colored yellow to brown (the more iron oxide is mixed, the browner it is), and compounding these colored particles with cosmetics, fibers, and plastics has an unfavorable effect on the final product. There is.
【0004】また、紫外線A波を遮蔽する方策として、
酸化鉄のような無害の無機化合物を酸化チタンに混合す
る以外に、種々の有機化合物系の紫外線吸収剤を添加す
ることが多く提案されているが、この場合生化学的に有
害をもたらす懸念があり、害の少ない無機化合物系の優
れた紫外線遮蔽材が要望されている。As a measure to shield the ultraviolet A wave,
In addition to mixing titanium oxide with a harmless inorganic compound such as iron oxide, it has been proposed to add various organic compound-based ultraviolet absorbers, but in this case there is a concern that it may cause biochemical harm. Therefore, an excellent ultraviolet shielding material based on an inorganic compound that is less harmful is demanded.
【0005】一方、酸化チタンを主成分とする紫外線遮
蔽剤が上記の各用途において、その効果を発揮するため
には、その粒径が一般に小さい程分散安定性が良く、1
μm以下の超微粒子状であることが望ましい。そのた
め、例えば上記従来例では水和酸化チタン及び水和酸化
鉄を過酸化水素で溶解したものを加水分解してゾルの形
態にすることが提案されているが、その製造方法は複雑
であり加熱冷却を繰り返すので、製造に非常に長時間を
要するという問題があった。On the other hand, in order for the ultraviolet shielding agent containing titanium oxide as the main component to exert its effect in each of the above-mentioned uses, the smaller the particle size is, the better the dispersion stability is.
It is desirable that the particles are in the form of ultrafine particles having a size of μm or less. Therefore, for example, in the above-mentioned conventional example, it has been proposed to hydrolyze a hydrated titanium oxide and a hydrated iron oxide dissolved in hydrogen peroxide to form a sol, but the manufacturing method thereof is complicated and Since the cooling is repeated, there is a problem that the manufacturing takes a very long time.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記に記載
した従来の紫外線遮蔽剤の有する各種の問題を一挙に解
決しようとするものであり、紫外線A波領域に対しても
優れた遮蔽効果を有し、且つ極めて微量の鉄を含有して
従来と比較して顕著に白色状に近くて酸化鉄による着色
の問題がなく、しかも超微粒子状であり、さらにその製
造工程も単純で短時間に容易にできるチタン・鉄複合化
酸化物及びその製造方法を提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention is intended to solve various problems of the above-mentioned conventional ultraviolet shielding agents all at once, and has an excellent shielding effect also in the ultraviolet A wave region. It has an extremely small amount of iron and is remarkably whiter than conventional ones, and there is no problem of coloring due to iron oxide, and it is in the form of ultrafine particles. An object of the present invention is to provide a titanium-iron composite oxide that can be easily manufactured and a method for producing the same.
【0007】[0007]
【課題を解決するための手段】本発明者は、超微粒子を
研究する過程で、熱プラズマの高温下でチタンと鉄を同
時に溶融さらに蒸発させて気相化させることことによ
り、チタンと鉄が複合化した超微粒子の従来にない複合
化酸化物が得られ、且つ該超微粒子複合化酸化物は極微
量の鉄で紫外線A波の遮蔽にも優れた効果を有すること
を見出し、本発明に到達したものである。即ち、本発明
は、鉄/チタン(重量比)が0.00003〜0.03
であるチタン・鉄の超微粒子複合化酸化物によって、前
記問題点を解決することができたものである。本発明の
超微粒子複合化酸化物は、粒径が0.01μm〜0.3
μmの範囲にある超微粒子であることが望ましい。Means for Solving the Problems In the process of studying ultrafine particles, the inventor of the present invention melts titanium and iron simultaneously under high temperature of thermal plasma and vaporizes them by vaporizing them to form titanium and iron. It has been found that a composite oxide of composite ultrafine particles which has not been obtained in the past can be obtained, and that the ultrafine particle composite oxide has an excellent effect of shielding an ultraviolet A wave with a very small amount of iron, and the present invention has been made. It has arrived. That is, in the present invention, the iron / titanium (weight ratio) is 0.00003 to 0.03.
The above problem can be solved by the titanium-iron ultrafine particle composite oxide. The ultrafine particle composite oxide of the present invention has a particle size of 0.01 μm to 0.3.
Ultrafine particles in the range of μm are desirable.
【0008】本発明のチタン・鉄の超微粒子複合化酸化
物は、鉄/チタン(重量比)が0.00003〜0.03
であるチタン・鉄系原料粗粒子を高温下で溶融蒸発させ
て気相化させることにより、チタン・鉄の超微粒子複合
化酸化物を生成させて捕集することにより、製造するこ
とができる。The titanium / iron ultrafine particle composite oxide of the present invention has an iron / titanium (weight ratio) of 0.00003 to 0.03.
It can be produced by melting and evaporating the titanium / iron-based raw material coarse particles as described above at a high temperature to form a gas phase, thereby generating and collecting ultrafine particle composite oxides of titanium / iron.
【0009】出発原料としての前記チタン・鉄系原料粗
粒子としては、金属鉄を含有する金属チタン粉末、金属
チタン粉末と酸化鉄粉末の混合物、酸化チタン粉末と金
属鉄粉末の混合物、酸化チタン粉末と酸化鉄粉末の混合
物、又は金属チタン粉末と金属鉄粉末の混合物等何れの
形態でも採用することができる。これらの出発原料は、
高周波誘導熱プラズマや直流熱プラズマ又は高温燃焼炎
の摂氏3000℃以上の高温部にキャリアガスにより供
給することにより、瞬時にして溶融蒸発して気相化す
る。気相化して酸化され高温域での冷却過程による液相
反応により新しいチタン・鉄複合化酸化物超微粒子を形
成する。チタン・鉄複合化超微粒子酸化物は、出発原料
が酸化チタン又は酸化鉄等酸化物粗粒子であれば出発原
料自身を溶融蒸発させることにより、または出発原料が
金属チタンや金属鉄であれば酸素ガス中で溶融蒸発させ
ることにより得られる。The titanium / iron-based raw material coarse particles as a starting material include metallic titanium powder containing metallic iron, a mixture of metallic titanium powder and iron oxide powder, a mixture of titanium oxide powder and metallic iron powder, and titanium oxide powder. And a mixture of iron oxide powder and a mixture of metallic titanium powder and metallic iron powder can be used. These starting materials are
By supplying the high temperature induction heat plasma, the direct current heat plasma, or the high temperature combustion flame at a high temperature of 3000 ° C. or higher with a carrier gas, the carrier gas is instantly melted and vaporized to form a gas phase. New titanium-iron composite oxide ultrafine particles are formed by liquid phase reaction in the cooling process in the high temperature region after being vaporized and oxidized. The titanium-iron composite ultrafine particle oxide is obtained by melting and evaporating the starting material itself if the starting material is titanium oxide or iron oxide coarse particles such as iron oxide, or oxygen if the starting material is metallic titanium or metallic iron. Obtained by melt evaporation in gas.
【0010】このようにして得られたチタン・鉄複合化
酸化物は、粒径が0.01μm〜0.3μmの範囲で平均
粒径が0.1μm程度の白色状ないしは肌色状超微粒子
粉末を呈している。そして、チタンに対して重量比0.
00003〜0.03の極微量の鉄が含まれているに過
ぎないが、紫外線のB波領域のみならずA波領域におい
ても、鉄/チタン(重量比)が0.67以上の酸化鉄超
微粒子と酸化チタン超微粒子の混合物と同等以上の優れ
た遮蔽力を有する。上記方法によって得られるチタン・
鉄の超微粒子複合化酸化物は、鉄/チタン(重量比)が
0.00003〜0.01の範囲のものが紫外線の遮蔽
力に優れ、ほとんど着色もない。鉄/チタン(重量比)
が、0.00003未満では紫外線A波の遮蔽に顕著な
効果を著わさず、且つ0.03以上では次第に茶褐色状
に着色し好ましくない。The titanium / iron composite oxide thus obtained is a white or flesh-colored ultrafine particle powder having an average particle size of about 0.1 μm in a particle size range of 0.01 μm to 0.3 μm. Presents. And, the weight ratio to titanium is 0.
Although it contains a very small amount of iron in the range of 00003 to 0.03, the iron / titanium (weight ratio) of iron oxide is 0.67 or more in the A wave region as well as the B wave region of ultraviolet light. It has an excellent shielding power equal to or more than that of a mixture of fine particles and titanium oxide ultrafine particles. Titanium obtained by the above method
The ultrafine particle composite oxide of iron having an iron / titanium (weight ratio) in the range of 0.00003 to 0.01 is excellent in ultraviolet ray shielding power and is hardly colored. Iron / Titanium (weight ratio)
However, when it is less than 0.00003, the effect of shielding A-wave of ultraviolet rays is not remarkable, and when it is 0.03 or more, it is gradually colored in dark brown, which is not preferable.
【0011】また、超微粒子複合化酸化物の粒径は、吸
光度特性にはあまり大きな影響を与えないが、分散性・
沈降安定性に大きな効果を持つので、0.01μm〜
0.3μmの範囲、好ましくは0.1μm以下程度が望ま
しい。粒径は、高周波誘導加熱出力等高温発生源のエネ
ルギー出力、原料粗粒子の供給速度、ガス供給速度によ
って制御することができ、一般に原料供給速度/ガス供
給速度が小さい程、粒子が小さくなる。本発明に係る超
微粒子複合化酸化物は、以上のように紫外線A波領域及
びB波領域にも優れた遮蔽効果を有し、しかも白色ない
し淡肌色状であり、且つ超微粒子であるので、紫外線遮
蔽材として、化粧料、繊維、衣料、プラスチック等の紫
外線遮蔽材や塗料等に適用することができる。The particle size of the ultrafine particle composite oxide does not have a great influence on the absorbance characteristics, but the dispersibility
Since it has a great effect on sedimentation stability, 0.01 μm ~
The range is 0.3 μm, preferably about 0.1 μm or less. The particle size can be controlled by the energy output of a high temperature source such as high frequency induction heating output, the feed rate of raw material coarse particles, and the gas feed rate. Generally, the smaller the feed material feed rate / gas feed rate, the smaller the particles. As described above, the ultrafine particle composite oxide according to the present invention has an excellent shielding effect also in the ultraviolet A wave region and the B wave region, and has a white or pale skin color and is an ultrafine particle. As an ultraviolet shielding material, it can be applied to an ultraviolet shielding material such as cosmetics, fibers, clothes, plastics, paints, and the like.
【0012】[0012]
【実施例】以下、本発明に係るチタン・鉄超微粒子複合
化酸化物及びその製造方法の実施例について説明する。
図1は、その製造装置の実施例を示している。図におい
て、1は反応容器、2は該反応容器の開口上部に取付け
られた高周波プラズマトーチ、3はその高周波電源、4
は該高周波電源に接続された加熱コイル、5は反応容器
1とプラズマトーチ開端面との間の原料供給部6に原料
粉末を供給する原料フィーダ、7は捕集器、8は該捕集
器の捕集筒、9は該捕集筒内に設けられたフィルター、
10は前記反応容器と前記捕集筒間に設けられた導管、
11はガスポンプである。前記高周波プラズマトーチ2
にアルゴンガス、窒素ガスや酸素ガス、又はこれらの混
合ガスがコアガス源12より供給されると、加熱コイル
4により付与される高周波エネルギーにより、高温で熱
プラズマ化されてプラズマフレームPFが生成される。
原料フィーダ5に収容された原料粗粒子は、キャリアガ
ス源から供給されるArガス等のキャリアガスにのせら
れて原料フィーダから原料供給部6に供給されて高温プ
ラズマフレームと接触する。EXAMPLES Examples of the titanium-iron ultrafine particle composite oxide and the method for producing the same according to the present invention will be described below.
FIG. 1 shows an embodiment of the manufacturing apparatus. In the figure, 1 is a reaction vessel, 2 is a high-frequency plasma torch attached to the upper opening of the reaction vessel, 3 is its high-frequency power source, 4
Is a heating coil connected to the high frequency power source, 5 is a raw material feeder for supplying raw material powder to a raw material supply section 6 between the reaction vessel 1 and the open end surface of the plasma torch, 7 is a collector, 8 is the collector Collecting cylinder, 9 is a filter provided in the collecting cylinder,
10 is a conduit provided between the reaction container and the collection cylinder,
Reference numeral 11 is a gas pump. The high frequency plasma torch 2
When an argon gas, a nitrogen gas, an oxygen gas, or a mixed gas thereof is supplied from the core gas source 12, the high frequency energy applied by the heating coil 4 causes the plasma flame PF to generate thermal plasma at high temperature. .
The raw material coarse particles accommodated in the raw material feeder 5 are placed on a carrier gas such as Ar gas supplied from a carrier gas source, supplied from the raw material feeder to the raw material supply unit 6, and contact with the high temperature plasma flame.
【0013】原料粗粒子は、高温プラズマフレームに接
することによって瞬時に溶解蒸発して気相化し、反応容
器1内の雰囲気ガスと反応して雰囲気ガス中で凝縮して
高純度の超微粉末となって雰囲気ガスともども煙霧状と
なって捕集筒内に移動され、フィルター9に捕捉されて
捕集筒8の下部に集積させるようになっている。なお、
捕集筒のフィルター内部に連通して雰囲気ガスを排出す
るエアーポンプ11の吐出側の管路は分岐し、一方は管
路P2を介して排出口へ接続され、他方は管路P3を介
して反応容器1に導通され、リサイクルガスを反応容器
内に供給するようになっている。The raw material coarse particles are instantly dissolved and vaporized by contacting with a high temperature plasma flame to form a gas phase, and react with the atmospheric gas in the reaction vessel 1 to condense in the atmospheric gas to form a high-purity ultrafine powder. Then, the atmospheric gas is converted into a smoke-like form and is moved into the collection cylinder, and is captured by the filter 9 and accumulated in the lower part of the collection cylinder 8. In addition,
The discharge side pipe of the air pump 11 that discharges the atmospheric gas by communicating with the inside of the filter of the collection cylinder is branched, one is connected to the discharge port through the pipe P2, and the other is connected through the pipe P3. It is connected to the reaction vessel 1 to supply the recycled gas into the reaction vessel.
【0014】図2は、直流熱プラズマを用いた本発明に
係るチタン・鉄超微粒子複合化酸化物の製造装置の他の
実施例であり、熱プラズマ発生装置が直流熱プラズマ発
生装置である点を除いて、他の構成は図1の前記装置と
ほぼ同様である。従って、同様な部分は前記実施例と同
一符号を用い、相違する構成のみを説明する。図中、2
1は反応容器であり、該反応容器の上部開口部に一対の
直流プラズマトーチ22、23が設けられている。各直
流プラズマトーチ22、23には、それぞれDC電源2
4、25が接続されていると共に、プラズマ形成ガス源
26が連結されている。プラズマ形成ガスとしては、ア
ルゴンガスと窒素ガス又は酸素ガス等の混合ガスが使用
ができ、原料粗粒子の種類により選定される。前記プラ
ズマトーチ22、23に原料フィーダ27、28が直接
連結され、生成される直流熱プラズマに原料粗粒子29
を供給するようになっている。原料粗粒子のキャリアガ
スとして、本実施例ではキャリアガス源30から供給さ
れるアルゴンガスを用いているが、それに限るものでは
ない。また、本実施例では、直流プラズマトーチが2つ
設けられているが、勿論一つでも可能である。なお、3
1、32はガスポンプである。FIG. 2 shows another embodiment of the apparatus for producing titanium-iron ultrafine particle composite oxide according to the present invention using direct current thermal plasma, in which the thermal plasma generator is a direct current thermal plasma generator. Except for the above, the other structure is almost the same as that of the apparatus shown in FIG. Therefore, the same parts are denoted by the same reference numerals as those in the above-described embodiment, and only different configurations will be described. 2 in the figure
Reference numeral 1 is a reaction vessel, and a pair of DC plasma torches 22 and 23 are provided at the upper opening of the reaction vessel. Each DC plasma torch 22, 23 has a DC power source 2
The plasma forming gas source 26 is connected together with the connection of Nos. 4 and 25. As the plasma forming gas, a mixed gas of argon gas and nitrogen gas or oxygen gas can be used, and is selected depending on the type of raw material coarse particles. Raw material feeders 27 and 28 are directly connected to the plasma torches 22 and 23, and raw material coarse particles 29 are added to the generated DC thermal plasma.
Are to be supplied. In this embodiment, argon gas supplied from the carrier gas source 30 is used as the carrier gas for the raw material coarse particles, but the present invention is not limited to this. Further, in this embodiment, two DC plasma torches are provided, but of course, one may be provided. 3
Reference numerals 1 and 32 are gas pumps.
【0015】次に上記図1の装置によって本発明に係る
チタン・鉄超微粒子複合化酸化物及びその製造方法の実
施例について説明する。実施例1 ArガスとO2ガスの混合ガス流(50×103cc/min)が
コアガス源12からプラズマトーチ2に供給され、高周
波誘導コイル4により与えられた出力(周波数3.68M
Hz、出力20KW)によって常圧で中心温度が10,00
0℃を超す熱プラズマが形成される。Fe/Ti(重量比)
が0.00005に相当する鉄を含有する金属チタンを
粗砕し、300メッシュ以下の粉末を原料粗粒子とす
る。このチタン・鉄系原料粗粒子をArガスで流動化
し、原料フィーダ5から連続的に10g/minを原料供
給部6に送り、高周波誘導熱プラズマフレームの300
0℃以上の高温部へ供給する。供給された原料粗粒子は
高温熱プラズマで瞬時にして溶融・蒸発して気相化し、
雰囲気ガスにより酸化されると共に高温で液相反応によ
り新しいチタン・鉄複合化酸化物超微粒子が形成され、
フィルター9に捕集され、捕集筒8内に落下集積させ
て、取り出すことができる。このようにして得られたチ
タン・鉄複合化酸化物超微粒子は、白色でありレーザ粒
度分布計により粒径を計測したところ平均粒径が0.1
μmの超微粒子であった。そして、該チタン・鉄複合化
酸化物超微粒子を、50mg/103ccの濃度で懸濁し、厚さ
10mmのセルで紫外線乃至可視光線の領域である波長2
00〜700nmの範囲で吸光度を測定した。その結果
を図3のグラフに破線で示す。Next, an embodiment of the titanium-iron ultrafine particle composite oxide and the method for producing the same according to the present invention will be described using the apparatus shown in FIG. Example 1 A mixed gas flow (50 × 10 3 cc / min) of Ar gas and O 2 gas was supplied from the core gas source 12 to the plasma torch 2, and the output (frequency 3.68M) given by the high frequency induction coil 4 was supplied.
Hz, output 20 kW), center temperature is 10,000 at normal pressure
A thermal plasma above 0 ° C. is formed. Fe / Ti (weight ratio)
The metallic titanium containing iron corresponding to 0.00005 is roughly crushed, and powder having a particle size of 300 mesh or less is used as raw material coarse particles. The titanium / iron-based raw material coarse particles are fluidized with Ar gas and continuously fed at 10 g / min from the raw material feeder 5 to the raw material supply section 6, and the high frequency induction thermal plasma flame 300
Supply to high temperature part above 0 ℃. The supplied raw material coarse particles are instantly melted and vaporized by high temperature thermal plasma to form a gas phase,
New titanium / iron composite oxide ultrafine particles are formed by liquid phase reaction at high temperature while being oxidized by atmospheric gas,
It can be taken out by being collected by the filter 9, dropped and accumulated in the collecting cylinder 8. The titanium-iron composite oxide ultrafine particles thus obtained were white and the average particle size was 0.1 when the particle size was measured with a laser particle size distribution meter.
It was an ultrafine particle of μm. Then, the titanium-iron composite oxide ultrafine particles are suspended at a concentration of 50 mg / 10 3 cc, and a cell having a thickness of 10 mm is used to emit light having a wavelength of 2 to an ultraviolet or visible light region.
Absorbance was measured in the range of 00 to 700 nm. The result is shown by a broken line in the graph of FIG.
【0016】一方、比較例として粒径が0.03μmの
市販の超微粒子酸化チタン(比較例1)を前記実施例と
同様に50mg/103ccの濃度で懸濁し、厚さ10mmのセル
で紫外線乃至可視光線の領域である波長200〜700
nmの範囲で吸光度を測定し、その結果を同様に図3に
実線で示している。該図から明らかなように、本実施例
のものは、超微粒子酸化チタンに比べて特に紫外線A波
領域では著しく高く、紫外線A波の遮蔽効果が非常に優
れていることが判る。また、紫外線B波領域でも十分な
遮蔽効果を有している。On the other hand, as a comparative example, a commercially available ultrafine particle titanium oxide having a particle size of 0.03 μm (Comparative Example 1) was suspended at a concentration of 50 mg / 10 3 cc in the same manner as in the above example, and a cell having a thickness of 10 mm was used. Wavelengths in the range of ultraviolet rays to visible rays of 200 to 700
The absorbance was measured in the range of nm, and the result is similarly shown by the solid line in FIG. As is clear from the figure, the material of this example is significantly higher than the ultrafine titanium oxide, especially in the ultraviolet A wave region, and the ultraviolet A wave shielding effect is very excellent. Further, it has a sufficient shielding effect even in the ultraviolet B wave region.
【0017】実施例2 上記実施例と同様なチタン・鉄系原料粗粒子を同様な条
件で図2に示す直流熱プラズマによる製造装置によって
製造した。それにより得られた超微粒子複合酸化物は、
白色状を呈していた。そして、その吸光度曲線を実施例
1と同様な条件で測定した。その結果を図4に破線で示
す。該図から明らかなように、直流熱プラズマを使用す
る図2の装置によって製造した場合も、高周波熱プラズ
マを使用する図1の装置で製造した場合とほぼ同様な吸
光度曲線を示しており、紫外線A波の遮蔽効果が非常に
優れていることが判る。なお、同図に実線で示している
吸光度曲線は、前記の比較例1のものである。 Example 2 The same titanium / iron-based raw material coarse particles as in the above example were produced under the same conditions by the production apparatus using the DC thermal plasma shown in FIG. The ultrafine particle composite oxide thus obtained is
It had a white appearance. Then, the absorbance curve was measured under the same conditions as in Example 1. The result is shown by a broken line in FIG. As is clear from the figure, even when manufactured by the apparatus of FIG. 2 which uses direct-current thermal plasma, it shows almost the same absorbance curve as when manufactured by the apparatus of FIG. 1 which uses high-frequency thermal plasma. It can be seen that the A wave shielding effect is very excellent. The absorbance curve shown by the solid line in the figure is that of Comparative Example 1 described above.
【0018】実施例3 チタン・鉄系原料粗粒子として、鉄/チタン(重量比)
が0.00005含むように金属チタン粉末と酸化鉄粉
末を選択し、該チタン・鉄系原料粗粒子から図1に示す
装置により前記実施例1と同様にして超微粒子複合化酸
化物を得た。得られた超微粒子複合化酸化物は、やはり
白色状を呈していた。そして、それについて前記と同様
な条件で測定した吸光度曲線を比較例1と共に図5に示
す。本実施例においても、特に紫外線A波領域におい
て、紫外線遮蔽効果が優れていることが判る。 Example 3 As titanium / iron-based raw material coarse particles, iron / titanium (weight ratio)
Was selected to contain 0.00005 of metallic titanium powder and iron oxide powder, and ultrafine particle composite oxide was obtained from the titanium / iron-based raw material coarse particles by the apparatus shown in FIG. . The obtained ultrafine particle composite oxide was also white in color. An absorbance curve measured under the same conditions as above is shown in FIG. 5 together with Comparative Example 1. Also in this example, it is understood that the ultraviolet ray shielding effect is excellent especially in the ultraviolet ray A wave region.
【0019】次に、本発明による超微粒子複合化酸化物
の特性をさらに調べるために、本発明の方法で製造した
超微粒子複合化酸化物と、チタンと鉄との成分比が前記
超微粒子複合化酸化物と同一になるように、予め製造さ
れた酸化チタン超微粒子と酸化鉄超微粒子とを混合した
混合物とについて、紫外線遮蔽度を比較する試験を行っ
た。実施例4 該試験を行うために、鉄/チタン(重量比)が0.000
7となるように混合された金属チタン粉末と300メッ
シュ以下の酸化鉄粉末の混合物を、図1の製造装置で第
1実施例と同様にして製造して、淡肌色の超微粒子複合
化酸化物を得た。また、鉄を殆ど含まない純酸化チタン
の超微粒子に、前記超微粒子複合化酸化物とチタンと鉄
の成分比が同じになるような量の酸化鉄微粒子を混合し
てチタン・鉄超微粒子混合物(比較例2)を得た。この
ようにして得られた両者を別々に、50mg/103ccの濃度
で懸濁し、厚さ10mmのセルで紫外線乃至可視光線の領
域である波長200〜700nmの範囲で吸光度を測定
した。その結果を図6に示す。該図において点線で示す
吸光度曲線が本実施例のものであり、実線で示す吸光度
曲線が比較例2のものである。Next, in order to further investigate the characteristics of the ultrafine-particle composite oxide according to the present invention, the ultrafine-particle composite oxide produced by the method of the present invention and the component ratio of titanium and iron are the above-mentioned ultrafine-particle composite oxide. A test was conducted to compare the degree of ultraviolet shielding with respect to a mixture of titanium oxide ultrafine particles and iron oxide ultrafine particles produced in advance so as to be the same as the oxide. Example 4 To carry out the test, iron / titanium (weight ratio) is 0.000.
7, a mixture of metallic titanium powder and iron oxide powder of 300 mesh or less was produced in the same manner as in Example 1 using the production apparatus of FIG. Got In addition, a titanium-iron ultrafine particle mixture is prepared by mixing ultrafine particles of pure titanium oxide containing almost no iron with an amount of iron oxide particles such that the composition ratio of the ultrafine particle composite oxide and titanium and iron is the same. (Comparative example 2) was obtained. Both thus obtained were separately suspended at a concentration of 50 mg / 10 3 cc, and the absorbance was measured in a cell having a thickness of 10 mm in the wavelength range of 200 to 700 nm which is the range of ultraviolet rays or visible rays. The result is shown in FIG. In the figure, the absorbance curve shown by the dotted line is that of this example, and the absorbance curve shown by the solid line is that of Comparative Example 2.
【0020】該図から明らかなように、両者は鉄/チタ
ン(重量比)は同じであっても、本発明の実施例は比較
例と比較して紫外線A波域の遮蔽度が一段と高くなって
いることが判る。即ち、本発明に係るチタン・鉄複合化
酸化物は、単に酸化鉄と酸化チタンとの混合物に比べて
紫外線遮蔽特性、特にA波領域において著しく改善され
ている。このことは本発明に係るチタン・鉄複合化酸化
物が、単なる酸化チタンと酸化鉄の混合物ではなく、チ
タン・鉄系原料粗粒子の高温下での気相化による新しい
固相化化合物の形成、或いは一部酸化チタンの結晶格子
へ鉄が侵入しチタン元素と置換することによって新しい
複合化酸化物が生成されたものと考えられる。そして、
本発明の複合化酸化物を希塩酸で加温処理してもこれに
含まれる鉄分が容易に溶出しなかった事実からも、本発
明の超微粒子複合化酸化物が単なる混合物でないという
ことは明らかである。As can be seen from the figure, even though both have the same iron / titanium (weight ratio), the example of the present invention has a much higher degree of shielding in the ultraviolet A wave region than the comparative example. You can see that That is, the titanium-iron composite oxide according to the present invention is remarkably improved in ultraviolet shielding properties, particularly in the A-wave region, as compared with a mixture of iron oxide and titanium oxide. This means that the titanium / iron composite oxide according to the present invention is not a simple mixture of titanium oxide and iron oxide, but a new solid-phased compound is formed by vaporizing titanium / iron-based raw material coarse particles at high temperature. Or, it is considered that a new complex oxide was generated by partially invading the crystal lattice of titanium oxide and substituting it with titanium element. And
The fact that the iron content contained in the complex oxide of the present invention was not easily eluted even when the complex oxide of the present invention was heated with dilute hydrochloric acid was clear that the ultrafine particle complex oxide of the present invention is not a simple mixture. is there.
【0021】さらに、本発明の実施例1と吸光度スペク
トルがほぼ同じ形の酸化チタン微粒子と酸化鉄微粒子の
混合物を得るために、酸化鉄微粒子の混合割合を変えて
酸化チタン微粒子に酸化鉄微粒子を後から混合して酸化
チタン微粒子・酸化鉄微粒子混合物を得た結果、酸化鉄
を鉄/チタン(重量比)が0.67となるように混合し
たものが、前記実施例1の吸光度スペクトルに最も近い
吸光度スペクトルを示した。即ち、本発明の鉄/チタン
(重量比)0.00005の極微量の鉄を有するもの
と、従来の方法によって酸化鉄微粒子に鉄が40重量%
となるように酸化鉄微粒子を混合したものと同等の紫外
線遮蔽効果を有しているということが言える。その結
果、酸化鉄を40重量%混ぜた比較例のものは、当然茶
褐色に濃く着色しているのに対し、本実施例のものは白
色を呈していた。Further, in order to obtain a mixture of titanium oxide fine particles and iron oxide fine particles having the same absorption spectrum as that of Example 1 of the present invention, the iron oxide fine particles are mixed with the iron oxide fine particles by changing the mixing ratio of the iron oxide fine particles. As a result of later mixing to obtain a titanium oxide fine particle / iron oxide fine particle mixture, a mixture of iron oxide so that the iron / titanium (weight ratio) was 0.67 was the most absent in the absorbance spectrum of Example 1. It showed a close absorbance spectrum. That is, the iron / titanium (weight ratio) of the present invention having an extremely small amount of iron of 0.00005 and iron oxide fine particles containing 40% by weight of iron by the conventional method.
It can be said that it has an ultraviolet ray shielding effect equivalent to that obtained by mixing iron oxide fine particles so that As a result, the comparative example in which 40% by weight of iron oxide was mixed was naturally dark brown, whereas the example of this example was white.
【0022】実施例5、6、7 チタン・鉄系原料粗粒子として、Fe/Ti(重量比)が
0.00003に相当する金属鉄を含有する金属チタン
粉末鉄(実施例5)、Fe/Ti(重量比)が0.0001
5に相当する金属鉄を含有する金属チタン粉末(実施例
6)、及び鉄/チタン(重量比)が0.03となるように
混合された金属チタン粉末と酸化鉄粉末の混合物(実施
例7)と変えて、図1の製造装置により実施例1と同様
な方法で製造して、実施例5〜7のチタン・鉄の超微粒
子複合酸化物を得た。また、比較例として、チタン・鉄
系原料粗粒子として、Fe/Ti(重量比)が0.0000
2に相当する金属鉄を含有する金属チタン粉末鉄を出発
原料として、同様な方法でチタン・鉄の超微粒子複合酸
化物を得た(比較例3)。それらの超微粒子複合酸化物
の吸光度を測定して、鉄の含有割合の違いによる吸光度
の変化及び超微粒子複合化酸化物の色彩を観察した。そ
の結果を図7及び表1に示す。該図から明らかなよう
に、酸化鉄の含有量が多くなる程紫外線A波領域及Bび
波領域とも吸光度が高くなっていて、紫外線A波領域及
びB波領域ともに充分な分遮蔽効果を有しているが、比
較例3のように鉄の重量比が0.00002以に下なる
と紫外線A波領域の遮蔽効果が低下している。[0022]Examples 5, 6, 7 Fe / Ti (weight ratio) as titanium / iron raw material coarse particles
Metallic titanium containing metallic iron equivalent to 0.00003
Powdered iron (Example 5), Fe / Ti (weight ratio) is 0.0001
Metallic titanium powder containing metallic iron corresponding to 5 (Example
6) and iron / titanium (weight ratio) to be 0.03
Mixture of mixed metallic titanium powder and iron oxide powder (implemented
Example 7) is replaced with the manufacturing apparatus of FIG.
Manufactured by various methods, and ultrafine particles of titanium and iron of Examples 5 to 7
A child composite oxide was obtained. As a comparative example, titanium / iron
Fe / Ti (weight ratio) of the system raw material coarse particles is 0.0000
Starting with metallic titanium powder iron containing metallic iron equivalent to 2
As a raw material, titanium-iron ultrafine particle composite acid is processed by the same method.
A compound was obtained (Comparative Example 3). Those ultrafine particle composite oxides
Absorbance due to difference in iron content by measuring the absorbance of
And the color of the ultrafine-particle composite oxide were observed. So
The results are shown in FIG. 7 and Table 1. As is clear from the figure
In addition, the higher the iron oxide content, the more ultraviolet A wave region and B
Absorbance is high in both the wave region and the ultraviolet A wave region and
And the B-wave region have sufficient shielding effect, but
The weight ratio of iron falls below 0.00002 as in Comparative Example 3.
And the shielding effect in the ultraviolet A wave region is reduced.
【表1】 また、その色彩は、鉄含有量(重量比)が0.0000
3の場合は純白であり、鉄含有量が多くなるにつれて次
第に淡い着色を帯びてきて、0.03では淡肌色を呈
し、化粧料として望ましい色の超微粒子複合化酸化物が
得られる。従って、用途に応じて酸化鉄の含有量を適宜
選択することにより、紫外線遮蔽効果に優れ且つ所望の
色の超微粒子複合化酸化物を得ることができる。[Table 1] Moreover, the iron content (weight ratio) of the color is 0.0000.
In the case of No. 3, it is pure white, and gradually becomes lighter as the iron content increases, and at 0.03, a pale skin color is exhibited, and an ultrafine particle composite oxide having a color desirable for cosmetics is obtained. Therefore, by appropriately selecting the content of iron oxide according to the application, it is possible to obtain an ultrafine particle composite oxide having an excellent ultraviolet shielding effect and a desired color.
【0023】[0023]
【発明の効果】本発明のチタン・鉄の超微粒子複合化酸
化物は、鉄がチタンと超微粒子複合化酸化物を形成する
ことにより、紫外線A波領域及びB波領域で優れた紫外
線遮蔽効果を有し、且つ、従来のものと比べて鉄が非常
にごく微量であるので、白色乃至肌色の超微粒子であ
り、酸化鉄による着色の問題がない。また、その製造方
法は、複雑な工程を要することなく単純であり、短時間
に容易にでき生産性を向上させ、且つ均質なチタン・鉄
の超微粒子複合化酸化物を廉価に得ることができる。INDUSTRIAL APPLICABILITY The titanium-iron ultrafine-particle composite oxide of the present invention has an excellent ultraviolet-shielding effect in the ultraviolet A-wave region and B-wave region because iron forms an ultrafine-particle composite oxide with titanium. In addition, since it has a very small amount of iron as compared with the conventional one, it is a white or flesh-colored ultrafine particle, and there is no problem of coloring due to iron oxide. Further, the manufacturing method thereof is simple without requiring complicated steps, can be easily performed in a short time and can improve productivity, and a homogeneous titanium-iron ultrafine particle composite oxide can be obtained at low cost. .
【図1】本発明のチタン・鉄の超微粒子複合化酸化物の
製造装置概略説明図である。FIG. 1 is a schematic explanatory view of an apparatus for producing a titanium / iron ultrafine particle composite oxide of the present invention.
【図2】本発明のチタン・鉄の超微粒子複合化酸化物の
他の製造装置概略説明図である。FIG. 2 is a schematic explanatory view of another manufacturing apparatus of the titanium / iron ultrafine particle composite oxide of the present invention.
【図3】本発明の実施例に係るチタン・鉄の超微粒子複
合化酸化物と酸化チタンとの吸光度スペクトルを表した
線図である。FIG. 3 is a diagram showing an absorbance spectrum of titanium / iron ultrafine particle composite oxide and titanium oxide according to an example of the present invention.
【図4】本発明の他の実施例に係るチタン・鉄の超微粒
子複合化酸化物と酸化チタンとの吸光度スペクトルを表
した線図である。FIG. 4 is a diagram showing an absorbance spectrum of titanium-iron ultrafine particle composite oxide and titanium oxide according to another embodiment of the present invention.
【図5】本発明のさらに他の実施例に係るチタン・鉄の
超微粒子複合化酸化物と酸化チタンとの吸光度スペクト
ルを表した線図である。FIG. 5 is a diagram showing an absorbance spectrum of titanium-iron ultrafine particle composite oxide and titanium oxide according to still another embodiment of the present invention.
【図6】本発明のさらに他の実施例に係るチタン・鉄の
超微粒子複合化酸化物と比較例との吸光度スペクトルを
表した線図である。FIG. 6 is a diagram showing absorbance spectra of titanium-iron ultrafine particle composite oxides according to still another embodiment of the present invention and a comparative example.
【図7】鉄の含有量を変えた場合における本発明のさら
に他の実施例に係るチタン・鉄の超微粒子複合化酸化物
の吸光度スペクトルを表した線図である。FIG. 7 is a diagram showing an absorbance spectrum of titanium-iron ultrafine particle composite oxides according to still another embodiment of the present invention when the iron content is changed.
1、21 反応容器 2 高周波プラ
ズマトーチ 4 加熱コイル 5、27、28
原料フィーダ 7 捕集器 8 捕集筒 9 フィルター 10 導管 11、31、32 ガスポンプ 22、23 直流
プラズマトーチ1, 21 Reaction container 2 High frequency plasma torch 4 Heating coil 5, 27, 28
Raw material feeder 7 Collector 8 Collection tube 9 Filter 10 Conduit 11, 31, 32 Gas pump 22, 23 DC plasma torch
Claims (11)
〜0.03であるチタン・鉄の超微粒子複合化酸化物。1. The iron / titanium (weight ratio) is 0.00003.
An ultrafine particle composite oxide of titanium and iron of about 0.03.
にある請求項1の超微粒子複合化酸化物。2. The ultrafine particle composite oxide according to claim 1, wherein the particle diameter is in the range of 0.01 μm to 0.3 μm.
0.03であるチタン・鉄系原料粗粒子を高温下で溶融
蒸発させて気相化させることにより、チタン・鉄の超微
粒子複合化酸化物を生成させて捕集することを特徴とす
るチタン・鉄の超微粒子複合化酸化物の製造方法。3. Iron / titanium (weight ratio) is 0.00003-
Titanium characterized in that ultrafine titanium composite particles of titanium / iron are produced and collected by melting and evaporating titanium / iron-based raw material coarse particles of 0.03 at a high temperature to form a gas phase. A method for producing an ultrafine particle composite oxide of iron.
を含有する金属チタン粉末である請求項3の超微粒子複
合化酸化物の製造方法。4. The method for producing an ultrafine particle composite oxide according to claim 3, wherein the coarse particles of titanium / iron-based raw material are metallic titanium powder containing metallic iron.
タン粉末と酸化鉄粉末の混合物である請求項3の超微粒
子複合化酸化物の製造方法。5. The method for producing an ultrafine particle composite oxide according to claim 3, wherein the titanium / iron-based raw material coarse particles are a mixture of metallic titanium powder and iron oxide powder.
タン粉末と金属鉄粉末の混合物である請求項3の超微粒
子複合化酸化物の製造方法。6. The method for producing an ultrafine particle composite oxide according to claim 3, wherein the titanium / iron-based raw material coarse particles are a mixture of titanium oxide powder and metallic iron powder.
タン粉末と酸化鉄粉末の混合物である請求項3の超微粒
子複合化酸化物の製造方法。7. The method for producing an ultrafine particle composite oxide according to claim 3, wherein the titanium / iron-based raw material coarse particles are a mixture of titanium oxide powder and iron oxide powder.
タン粉末と金属鉄粉末の混合物である請求項3の超微粒
子複合化酸化物の製造方法。8. The method for producing an ultrafine particle composite oxide according to claim 3, wherein the titanium / iron-based raw material coarse particles are a mixture of metallic titanium powder and metallic iron powder.
高温中に前記チタン・鉄系原料粗粒子を供給することに
より溶融蒸発させる請求項3のチタン・鉄の超微粒子複
合化酸化物の製造方法。9. The method for producing an ultrafine particle composite oxide of titanium / iron according to claim 3, wherein the titanium / iron-based raw material coarse particles are melted and vaporized by being supplied to a high temperature formed by high frequency induction thermal plasma.
中に前記チタン・鉄系原料粗粒子を供給することにより
溶融蒸発させる請求項3のチタン・鉄の超微粒子複合化
酸化物の製造方法。10. The method for producing an ultrafine particle composite oxide of titanium / iron according to claim 3, wherein the titanium / iron-based raw material coarse particles are melted and vaporized by being supplied to a high temperature formed by direct current thermal plasma.
前記チタン・鉄系原料粗粒子を供給することにより溶融
蒸発させる請求項3のチタン・鉄の超微粒子複合化酸化
物の製造方法。11. The method for producing an ultrafine particle composite oxide of titanium / iron according to claim 3, wherein the titanium / iron-based raw material coarse particles are melted and vaporized by being supplied to a high temperature formed by a high temperature combustion flame.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29404292A JPH06115942A (en) | 1992-10-08 | 1992-10-08 | Ultrafine particle compound oxide of titanium-iron and its production |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29404292A JPH06115942A (en) | 1992-10-08 | 1992-10-08 | Ultrafine particle compound oxide of titanium-iron and its production |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH06115942A true JPH06115942A (en) | 1994-04-26 |
Family
ID=17802526
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP29404292A Withdrawn JPH06115942A (en) | 1992-10-08 | 1992-10-08 | Ultrafine particle compound oxide of titanium-iron and its production |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06115942A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005097055A (en) * | 2003-09-26 | 2005-04-14 | Japan Science & Technology Agency | Amorphous complex oxide fine particles and method and apparatus for producing the same |
| US7371275B2 (en) | 2004-07-02 | 2008-05-13 | E.I. Du Pont De Nemours And Company | Titanium dioxide pigment and polymer compositions |
-
1992
- 1992-10-08 JP JP29404292A patent/JPH06115942A/en not_active Withdrawn
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005097055A (en) * | 2003-09-26 | 2005-04-14 | Japan Science & Technology Agency | Amorphous complex oxide fine particles and method and apparatus for producing the same |
| US7371275B2 (en) | 2004-07-02 | 2008-05-13 | E.I. Du Pont De Nemours And Company | Titanium dioxide pigment and polymer compositions |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3483282B2 (en) | Method for producing ultrafine titanium dioxide composite oxide | |
| US6994837B2 (en) | Plasma synthesis of metal oxide nanopowder and apparatus therefor | |
| KR100917293B1 (en) | Plasma synthesis of titanium dioxide nanopowder and powder doping and surface modification process | |
| KR20060121855A (en) | Process for the synthesis, separation and purification of powder materials | |
| US3848068A (en) | Method for producing metal compounds | |
| JP4140324B2 (en) | Metal boride powder and method for producing the same | |
| Wang et al. | Synthesis of ultrafine silicon carbide nanoparticles using nonthermal arc plasma at atmospheric pressure | |
| Wang et al. | Modification of plasma-generated SiC nanoparticles by heat treatment under air atmosphere | |
| JPH06115942A (en) | Ultrafine particle compound oxide of titanium-iron and its production | |
| Li et al. | Synthesis and structural characterization of titanium oxides and composites by thermal plasma oxidation of titanium carbide | |
| JPH06144834A (en) | Production of electrically conductive zinc oxide | |
| Ishigaki et al. | Synthesis of functional nanocrystallites through reactive thermal plasma processing | |
| KR102044380B1 (en) | Fabricating method of titania nano-particles | |
| RU2359906C2 (en) | Method for preparation of nanocrystalline silicon powders | |
| JP2001287996A (en) | Anatase-type titanium oxide single crystal | |
| Hong et al. | Synthesis of titanium dioxide in O2/Ar/SO2/TiCl4 microwave torch plasma and its band gap narrowing | |
| JP3550660B2 (en) | Manufacturing method of spherical titanium oxide powder | |
| DE2139446A1 (en) | Process for the production of powder materials | |
| Ishigaki | Synthesis of ceramic nanoparticles with non-equilibrium crystal structures and chemical compositions by controlled thermal plasma processing | |
| JP3597893B2 (en) | Iron oxide ultrafine particles and method for producing the same | |
| CN1058920C (en) | Technology for preparing room temp. austenitic iron submicron-sized particles | |
| Paskalov | RF PLASMA: from R&D to commercial applications | |
| JPH01286919A (en) | Production of fine particle of zinc oxide | |
| EP1204591A1 (en) | Production of silica particles | |
| Ishigaki et al. | Synthesis of Intra-Particulate Composite of TiO2-TiC by Thermal Plasma Oxidation of Titanium Carbide |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000104 |