[go: up one dir, main page]

JPH06150928A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH06150928A
JPH06150928A JP4299517A JP29951792A JPH06150928A JP H06150928 A JPH06150928 A JP H06150928A JP 4299517 A JP4299517 A JP 4299517A JP 29951792 A JP29951792 A JP 29951792A JP H06150928 A JPH06150928 A JP H06150928A
Authority
JP
Japan
Prior art keywords
lithium
aqueous electrolyte
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4299517A
Other languages
Japanese (ja)
Other versions
JP3003431B2 (en
Inventor
Shoichiro Watanabe
庄一郎 渡邊
Toyoji Sugimoto
豊次 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4299517A priority Critical patent/JP3003431B2/en
Publication of JPH06150928A publication Critical patent/JPH06150928A/en
Application granted granted Critical
Publication of JP3003431B2 publication Critical patent/JP3003431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【目的】 高電圧で高エネルギー密度を有し、かつ充放
電サイクル寿命特性および保存特性に優れる非水電解液
二次電池を提供する。 【構成】 サマリウム(Sm)酸化物あるいは複合酸化
物で粒子表面が覆われたLi(1-x)CoO2(xは0≦x
<1)あるいはLi(1-x)CoMO2(ただし、MはCo
以外の遷移金属、xは0≦x<1である)からなる正極
と、リチウム、リチウム合金あるいはリチウムをインタ
ーカレート/デインターカレートすることができる炭素
材料からなる負極と、非水電解液により構成された非水
電解液二次電池。
(57) [Summary] [Object] To provide a non-aqueous electrolyte secondary battery having a high voltage and a high energy density, and having excellent charge-discharge cycle life characteristics and storage characteristics. [Structure] Li (1-x) CoO 2 (x is 0 ≦ x where the particle surface is covered with samarium (Sm) oxide or composite oxide
<1) or Li (1-x) CoMO 2 (where M is Co
Other than transition metals, x is 0 ≦ x <1), a negative electrode made of lithium, a lithium alloy or a carbon material capable of intercalating / deintercalating lithium, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery composed of.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、とくに正極に用いるリチウム複合酸化物の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a non-aqueous electrolyte secondary battery, particularly a lithium composite oxide used for a positive electrode.

【0002】[0002]

【従来の技術】近年、AV機器やパソコン等の電子機器
のポータブル化、コードレス化にともない、これらの駆
動用電源として高エネルギー密度の二次電池に対する強
い要望があり、とくにリチウムを用いた非水電解液二次
電池は、高電圧で高エネルギー密度の二次電池として期
待されている。この電池の正極に用いる活物質としてリ
チウムをインターカレート/デインターカレートするこ
とができる層状化合物、たとえばLiCoO2,LiN
iO2(米国特許第4302518号明細書)やLiC
xNi(1-x)2(x≦0.27)(特開昭62−26
4560号公報)などのリチウムの複合酸化物が提案さ
れている。
2. Description of the Related Art In recent years, along with portable and cordless electronic devices such as AV devices and personal computers, there has been a strong demand for a high energy density secondary battery as a driving power source for these devices. Electrolyte secondary batteries are expected as high voltage and high energy density secondary batteries. A layered compound capable of intercalating / deintercalating lithium, such as LiCoO 2 or LiN, as an active material used for the positive electrode of this battery.
io 2 (US Pat. No. 4,302,518) and LiC
o x Ni (1-x) O 2 (x ≦ 0.27) (JP-A-62-26)
4560) and the like, a composite oxide of lithium has been proposed.

【0003】そして、これらのリチウムの複合酸化物を
正極活物質として用いることにより、4V級の出力電圧
をもった高エネルギー密度の非水電解液二次電池の開発
が進められている。
Further, by using these lithium composite oxides as a positive electrode active material, development of a high energy density non-aqueous electrolyte secondary battery having an output voltage of 4 V class is under way.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
非水電解液二次電池では、電解液に使用されているプロ
ピレンカーボネートやジメトキシエタンなどの有機溶媒
が高い電圧下で分解されるため、電池の充放電特性が低
下するという問題が生じていた。
However, in the above non-aqueous electrolyte secondary battery, since the organic solvent such as propylene carbonate or dimethoxyethane used in the electrolyte is decomposed at a high voltage, the battery There has been a problem that charge / discharge characteristics are deteriorated.

【0005】この問題を解決するために、複合酸化物L
iCoO2のコバルトの一部を他の金属元素で置換する
という技術が提案されており、具体的にはコバルトの一
部をニッケルで置換する(特開昭63−299056号
公報)、鉄で置換する(特開昭63−211564号公
報)、あるいはアルミニウム、スズ、インジウムで置換
する(特開昭62−90863号公報)というものであ
る。
In order to solve this problem, the complex oxide L
A technique of substituting a part of cobalt of iCoO 2 with another metal element has been proposed. Specifically, a part of cobalt is replaced with nickel (Japanese Patent Laid-Open No. 63-299056), and with iron. (Japanese Patent Application Laid-Open No. 63-2111564) or substitution with aluminum, tin or indium (Japanese Patent Application Laid-Open No. 62-90863).

【0006】しかし、このような金属元素によってコバ
ルトの一部を置換したリチウムの複合酸化物を正極活物
質に用いると、電池としての放電電圧が低くなるため、
高電圧、高エネルギー密度の二次電池の実現を困難にし
ていた。
However, when a lithium composite oxide in which a part of cobalt is substituted by such a metal element is used as a positive electrode active material, the discharge voltage as a battery is lowered,
It has been difficult to realize a high voltage, high energy density secondary battery.

【0007】また、LiCoO2等のリチウムの複合酸
化物を正極活物質に用いた電池では、充電状態で高温に
保存した場合、著しく電池容量が低下するという問題が
あった。
Further, a battery using a lithium composite oxide such as LiCoO 2 as a positive electrode active material has a problem that the battery capacity is remarkably reduced when stored at a high temperature in a charged state.

【0008】これは、正極活物質上での電解液溶媒の分
解反応や、正極活物質の結晶破壊に起因していると考え
られる。
It is considered that this is due to the decomposition reaction of the electrolytic solution solvent on the positive electrode active material and the crystal destruction of the positive electrode active material.

【0009】本発明はこのような課題を解決するもので
あり、高電圧、高エネルギー密度を有し、かつ充放電サ
イクル寿命特性や保存特性に優れた非水電解液を実現す
るために、とくに高電圧下における正極活物質上での電
解液溶媒の分解反応や、充放電時の結晶崩壊を防止する
ことができる正極活物質を用いた非水電解液二次電池を
提供するものである。
The present invention is intended to solve such problems, and in order to realize a non-aqueous electrolyte having a high voltage and a high energy density, and excellent charge / discharge cycle life characteristics and storage characteristics, It is intended to provide a non-aqueous electrolyte secondary battery using a positive electrode active material capable of preventing a decomposition reaction of an electrolytic solution solvent on a positive electrode active material under high voltage and crystal collapse during charge / discharge.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液二次電池は、サマリウム酸化
物または複合酸化物で粒子の表面が覆われたリチウム複
合酸化物Li(1-x)CoO2(xは0≦x<1)、あるい
はLi(1-x)CoMO2(ただし、MはCo以外の遷移金
属、xは0≦x<1である)を活物質とした正極と、リ
チウム、リチウム合金あるいはリチウムをインターカレ
ート/デインターカレートすることができる炭素材料か
らなる負極と、非水電解液とより構成したものである。
In order to solve the above problems, the non-aqueous electrolyte secondary battery of the present invention is a lithium composite oxide Li in which the surface of the particles is covered with samarium oxide or composite oxide. (1-x) CoO 2 (x is 0 ≦ x <1) or Li (1-x) CoMO 2 (where M is a transition metal other than Co and x is 0 ≦ x <1) as an active material And a negative electrode made of a carbon material capable of intercalating / deintercalating lithium, a lithium alloy or lithium, and a non-aqueous electrolyte.

【0011】[0011]

【作用】リチウムの複合酸化物の粒子表面上でのサマリ
ウムは、主に酸化サマリウム、あるいはリチウムとサマ
リウムの複合酸化物として存在し、LiCoO2やLi
CoMO2(ただし、MはCo以外の遷移金属)の表面
を被覆している。
Samarium on the particle surface of the working composite oxide of lithium is present as a complex oxide mainly samarium oxide or lithium and samarium,, LiCoO 2 and Li
The surface of CoMO 2 (where M is a transition metal other than Co) is coated.

【0012】この被覆により、正極活物質粒子表面と電
解液との直接的な反応を抑制し、正極活物質上での電解
液溶媒の分解反応を防止することができる。
By this coating, the direct reaction between the surface of the positive electrode active material particles and the electrolytic solution can be suppressed, and the decomposition reaction of the electrolytic solution solvent on the positive electrode active material can be prevented.

【0013】したがって、このようなリチウムの複合酸
化物を正極活物質に用いることにより、電解液溶媒の分
解反応を抑制することができ、充放電サイクル寿命特性
や保存特性を向上させることができる。
Therefore, by using such a lithium composite oxide as the positive electrode active material, the decomposition reaction of the electrolyte solvent can be suppressed, and the charge / discharge cycle life characteristics and storage characteristics can be improved.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】本発明の非水電解液二次電池の正極活物質
であるリチウムの複合酸化物を以下のようにして作製し
た。
A lithium composite oxide, which is a positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention, was produced as follows.

【0016】炭酸リチウム(Li2CO3)と炭酸コバル
ト(CoCO3)を原子比で1:1になるように混合し
たものに、酸化サマリウム(Sm23)を炭酸コバルト
中のCoに対して(表1)に示すようなモル%の割合で
添加した。
Lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) were mixed at an atomic ratio of 1: 1 and samarium oxide (Sm 2 O 3 ) was added to Co in cobalt carbonate. (Table 1).

【0017】[0017]

【表1】 [Table 1]

【0018】ついで、これらの混合物を空気中におい
て、900℃で5時間焼成し、6種類の正極活物質A〜
Fを得た。
Next, these mixtures were fired in air at 900 ° C. for 5 hours to obtain six kinds of positive electrode active materials A to
I got F.

【0019】次に、このようにして得られた正極活物質
100重量部と、アセチレンブラック4重量部、フッ素
樹脂系結着剤7重量部を混合して正極合剤とし、これを
カルボキシルメチルセルロース水溶液に懸濁させてペー
スト状にした。
Next, 100 parts by weight of the positive electrode active material thus obtained, 4 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder were mixed to prepare a positive electrode mixture, which was used as an aqueous solution of carboxymethyl cellulose. To form a paste.

【0020】このペーストをアルミ箔の両面に塗着し、
乾燥後圧延して正極板A〜Fとした。
Apply this paste on both sides of aluminum foil,
After drying, it was rolled into positive electrode plates A to F.

【0021】また、負極板は次のようにして作製した。
コークスを焼成した炭素材100重量部に、フッ素樹脂
系結着剤10重量部を混合し、カルボキシルメチルセル
ロース水溶液に懸濁させてペースト状にした。
The negative electrode plate was manufactured as follows.
100 parts by weight of the carbon material obtained by baking the coke was mixed with 10 parts by weight of a fluororesin-based binder, and the mixture was suspended in an aqueous solution of carboxymethyl cellulose to form a paste.

【0022】このペーストを銅箔の両面に塗着し、乾燥
後圧延して負極板とした。これらの正極板と負極板とポ
リプロピレン製のセパレータおよび非水電解液を用い
て、図1に示すような密閉型非水電解液二次電池を構成
し、それぞれを電池A〜Fとした。
This paste was applied to both sides of a copper foil, dried and rolled to obtain a negative electrode plate. The positive electrode plate, the negative electrode plate, the polypropylene separator, and the nonaqueous electrolytic solution were used to construct a sealed nonaqueous electrolytic solution secondary battery as shown in FIG.

【0023】ここで、前記非水電解液は炭酸プロピレン
と炭酸エチレンとの等容積混合溶媒に、過塩素酸リチウ
ム1モル/lの割合で溶解したものを用いた。
Here, the non-aqueous electrolytic solution used was one dissolved in an equal volume mixed solvent of propylene carbonate and ethylene carbonate at a rate of 1 mol / l lithium perchlorate.

【0024】図1において、正極板と負極板はセパレー
タを介して渦巻状に巻回されて極板群1とされ、この正
極群1は耐有機電解液性のステンレス鋼板からなる電池
ケース2内に収納されている。
In FIG. 1, a positive electrode plate and a negative electrode plate are spirally wound via a separator to form an electrode plate group 1, and this positive electrode group 1 is inside a battery case 2 made of an organic electrolyte resistant stainless steel plate. It is stored in.

【0025】この電池ケース2の上部は、安全弁を備え
た封口板3で封口されている。また、正極からは正極リ
ード4が引き出されて封口板3に電気的に接続されてお
り、負極からは負極リード5が引き出されて電池ケース
2と電気的に接続されている。
The upper part of the battery case 2 is sealed with a sealing plate 3 having a safety valve. Further, the positive electrode lead 4 is drawn out from the positive electrode and is electrically connected to the sealing plate 3, and the negative electrode lead 5 is drawn out from the negative electrode and is electrically connected to the battery case 2.

【0026】さらに、電池ケース2と封口板3との間に
は絶縁パッキング6が配され、極板群1の上下面には絶
縁リング7が配されている。
Further, an insulating packing 6 is arranged between the battery case 2 and the sealing plate 3, and an insulating ring 7 is arranged on the upper and lower surfaces of the electrode plate group 1.

【0027】次に、これらの電池を用いて、充放電サイ
クル寿命試験と高温での充電保存試験を行った。
Next, using these batteries, a charge / discharge cycle life test and a high temperature charge storage test were conducted.

【0028】定電流充放電サイクル寿命試験は、充電を
電流100mAで電圧4.1Vまで行い、放電を電流1
00mAで終止電圧3.0Vまで行って1サイクルとし
た。
In the constant current charge / discharge cycle life test, charging was performed at a current of 100 mA up to a voltage of 4.1 V, and discharging was performed at a current of 1
A final voltage of 3.0 V was applied at 00 mA to complete one cycle.

【0029】高温での充電保存試験は、上記の充放電サ
イクルを10サイクル繰り返した後、電池を60℃にお
いて充電状態で20日間保存して行った。
The high temperature charge storage test was carried out by repeating the above charge / discharge cycle 10 times and then storing the battery in a charged state at 60 ° C. for 20 days.

【0030】電池A〜Fの充放電サイクル寿命試験にお
ける充放電サイクル数と放電容量との関係を図2に示
す。
FIG. 2 shows the relationship between the number of charge / discharge cycles and the discharge capacity in the charge / discharge cycle life test of the batteries A to F.

【0031】また、高温での充電保存試験後における電
池の容量保持率[(保存後の容量/保存前の容量)×1
00]を図3に示す。
The capacity retention rate of the battery after the high temperature charge storage test [(capacity after storage / capacity before storage) × 1]
00] is shown in FIG.

【0032】図3からわかるように、サマリウム(S
m)を一切含有していない電池Aでは、充放電にともな
う容量の低下が大きく、300サイクル経過後には、初
期の容量の半分になった。
As can be seen from FIG. 3, samarium (S
In the battery A containing no m) at all, the capacity was greatly decreased with charge and discharge, and became half of the initial capacity after 300 cycles.

【0033】これに対して、サマリウムを含有した電池
B〜Fでは、サマリウムの量が増加するにしたがい、い
くらか電池の初期容量は低下するが、充放電サイクルに
ともなう容量の低下は著しく抑制された。
On the other hand, in the batteries B to F containing samarium, as the amount of samarium increased, the initial capacity of the battery decreased to some extent, but the decrease in capacity with charge / discharge cycles was significantly suppressed. .

【0034】そして、サマリウムをリチウム複合酸化物
中のコバルトに対して1〜5モル%含んだ電池C〜Fで
は、300サイクル経過後においても電池容量を初期容
量の80%以上と高く維持することができた。
In the batteries C to F containing samarium in an amount of 1 to 5 mol% with respect to cobalt in the lithium composite oxide, the battery capacity should be maintained as high as 80% or more of the initial capacity even after 300 cycles. I was able to.

【0035】しかし、サマリウムをコバルトに対し8モ
ル%含有した電池Fでは、サマリウムによるLiCoO
2の表面被覆率が大きくなり過ぎるため、活物質反応が
極度に抑えられるため電池の容量は初期からかなり低下
したものとなった。
However, in the battery F containing 8 mol% of samarium with respect to cobalt, LiCoO formed by samarium was used.
Since the surface coverage of No. 2 became too large, the reaction of the active material was extremely suppressed, and the capacity of the battery was considerably lowered from the initial stage.

【0036】また、図3からわかるように、サマリウム
を含有していない電池Aでは、高温保存後の電池の容量
保持率が52%であったのに対し、サマリウムをコバル
トに対して1モル%以上含有した電池C〜Fでは、容量
維持率が85%以上まで向上した。
Further, as can be seen from FIG. 3, in the battery A containing no samarium, the capacity retention of the battery after high temperature storage was 52%, whereas in the battery A containing 1 mol% of samarium to cobalt. In the batteries C to F containing the above, the capacity retention rate was improved to 85% or more.

【0037】しかし、サマリウムをこれ以上添加しても
高温保存後の電池の容量維持率は、ほとんど変わらなか
った。
However, even if samarium was further added, the capacity retention rate of the battery after high temperature storage remained almost unchanged.

【0038】これらの結果から、サマリウムの添加量は
コバルトに対して5モル%以下であることが好ましい。
From these results, the amount of samarium added is preferably 5 mol% or less with respect to cobalt.

【0039】なお、本実施例では、正極活物質としてL
iCoO2を用いたが、この他にCoの一部を遷移金属
であるNi,Fe,Mnのうちのいずれかで置換したL
iの複合酸化物であっても、同様の効果が得られた。
In this example, L was used as the positive electrode active material.
iCoO 2 was used, but in addition to this, L was obtained by substituting a part of Co with any one of transition metals Ni, Fe, and Mn.
Similar effects were obtained even with the complex oxide of i.

【0040】また、本実施例では、正極活物質合成時の
出発材料として、リチウムおよびコバルトの炭酸塩であ
る炭酸リチウム(Li2CO3)と炭酸コバルト(CoC
3)を用いたが、この他に、リチウムおよびコバルト
の酸化物、またはこれらの水酸化物や酢酸塩であっても
良い。
Further, in this example, lithium carbonate (Li 2 CO 3 ) which is a carbonate of lithium and cobalt and cobalt carbonate (CoC) were used as starting materials for synthesizing the positive electrode active material.
Although O 3 ) is used, other oxides of lithium and cobalt, or hydroxides or acetates thereof may be used.

【0041】また、本実施例では、負極構成材料として
活物質であるリチウムをインターカレート/デインター
カレートすることができる炭素材を用いたが、この他に
それ自体が活物質をなすリチウム金属やリチウム合金で
あっても良い。
Further, in this embodiment, a carbon material capable of intercalating / deintercalating lithium as an active material was used as a negative electrode constituent material, but in addition to this, lithium which is itself an active material is used. It may be a metal or a lithium alloy.

【0042】さらに電解液も、炭酸プロピレンと炭酸エ
チレンの等容積混合溶媒に、過塩素酸リチウムを溶解し
たものを用いたが、他の有機溶媒にリチウム塩を溶質と
して溶解したものでも良い。
Further, as the electrolytic solution, a solution obtained by dissolving lithium perchlorate in a mixed solvent of equal volume of propylene carbonate and ethylene carbonate was used, but a solution obtained by dissolving a lithium salt as a solute in another organic solvent may be used.

【0043】[0043]

【発明の効果】以上のように、本発明の非水電解液で
は、サマリウム(Sm)の酸化物あるいは複合酸化物で
表面が覆われたLi(1-x)CoO2(xは0≦x<1)、
あるいはLi(1-x)CoMO2(ただし、MはCo以外の
遷移金属、xは0≦x<1)からなるリチウム複合酸化
物を正極に用いているので、高電圧下における正極活物
質上での電解液の分解反応や正極活物質の結晶崩壊を防
止することができ、電池として充放電サイクル寿命特性
および保存特性を向上させることができる。
As described above, in the non-aqueous electrolytic solution of the present invention, the surface of Li (1-x) CoO 2 (x is 0 ≦ x is covered with an oxide or complex oxide of samarium (Sm). <1),
Alternatively, since a lithium composite oxide composed of Li (1-x) CoMO 2 (where M is a transition metal other than Co and x is 0 ≦ x <1) is used for the positive electrode, the positive electrode active material on the positive electrode active material under high voltage is used. It is possible to prevent the decomposition reaction of the electrolytic solution and the crystal collapse of the positive electrode active material in the above, and it is possible to improve the charge / discharge cycle life characteristics and the storage characteristics of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液二次電池を示す図FIG. 1 is a diagram showing a non-aqueous electrolyte secondary battery of the present invention.

【図2】充放電サイクル数と放電容量との関係を示す図FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity.

【図3】高温保存試験後のサマリウム添加量と電池容量
保持率との関係を示す図
FIG. 3 is a diagram showing the relationship between the amount of samarium added and the battery capacity retention rate after a high temperature storage test.

【符号の説明】[Explanation of symbols]

1 極板群 2 電池ケース 3 封口板 4 正極リード 5 負極リード 6 絶縁パッキング 7 絶縁リング 1 electrode plate group 2 battery case 3 sealing plate 4 positive electrode lead 5 negative electrode lead 6 insulating packing 7 insulating ring

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】サマリウムの酸化物または複合酸化物で粒
子の表面が覆われたリチウム複合酸化物Li(1-x)Co
2(xは0≦x<1)からなる正極と、 リチウム、リチウム合金あるいはリチウムをインターカ
レート/デインターカレートすることができる炭素材料
からなる負極と、非水電解液とより構成した非水電解液
二次電池。
1. A lithium composite oxide Li (1-x) Co whose surface is covered with a samarium oxide or a composite oxide.
A positive electrode composed of O 2 (x is 0 ≦ x <1), a negative electrode composed of lithium, a lithium alloy or a carbon material capable of intercalating / deintercalating lithium, and a non-aqueous electrolytic solution. Non-aqueous electrolyte secondary battery.
【請求項2】Smの添加量は、リチウム複合酸化物中の
Coに対しモル比で5%以下である請求項1記載の非水
電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the added amount of Sm is 5% or less in terms of molar ratio with respect to Co in the lithium composite oxide.
【請求項3】サマリウムの酸化物または複合酸化物で粒
子の表面が覆われたリチウム複合酸化物Li(1-x)Co
MO2(ただし、MはCo以外の遷移金属、xは0≦x
<1)からなる正極と、リチウム、リチウム合金あるい
はリチウムをインターカレート/デインターカレートす
ることができる炭素材料からなる負極と、非水電解液と
より構成した非水電解液二次電池。
3. A lithium composite oxide Li (1-x) Co whose particles are covered with a samarium oxide or a composite oxide.
MO 2 (where M is a transition metal other than Co, x is 0 ≦ x
A non-aqueous electrolyte secondary battery comprising a positive electrode comprising <1), a negative electrode comprising lithium, a lithium alloy or a carbon material capable of intercalating / deintercalating lithium, and a non-aqueous electrolyte.
【請求項4】Co以外の遷移金属が、Ni,Mn,Fe
からなる群のうちのいずれかである請求項3記載の非水
電解液二次電池。
4. A transition metal other than Co is Ni, Mn, Fe.
The non-aqueous electrolyte secondary battery according to claim 3, which is any one of the group consisting of:
【請求項5】Smの添加量は、リチウム複合酸化物中の
Coに対しモル比で5%以下である請求項3記載の非水
電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 3, wherein the added amount of Sm is 5% or less in terms of molar ratio with respect to Co in the lithium composite oxide.
JP4299517A 1992-11-10 1992-11-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3003431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4299517A JP3003431B2 (en) 1992-11-10 1992-11-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4299517A JP3003431B2 (en) 1992-11-10 1992-11-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06150928A true JPH06150928A (en) 1994-05-31
JP3003431B2 JP3003431B2 (en) 2000-01-31

Family

ID=17873618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4299517A Expired - Fee Related JP3003431B2 (en) 1992-11-10 1992-11-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3003431B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102332A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Secondary battery
JPH09139232A (en) * 1995-09-14 1997-05-27 Toshiba Corp Lithium battery
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
US6436574B1 (en) 1999-04-26 2002-08-20 Nec Corporation Nonaqueous electrolyte secondary battery
US6723472B2 (en) 1999-12-01 2004-04-20 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2007005267A (en) * 2005-06-27 2007-01-11 Central Res Inst Of Electric Power Ind Lithium ion secondary battery using room temperature molten salt and method for producing the same
JP2008153177A (en) * 2006-12-20 2008-07-03 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2009004316A (en) * 2007-06-25 2009-01-08 Sony Corp Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
US20110059356A1 (en) * 2009-09-04 2011-03-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
WO2012086277A1 (en) * 2010-12-20 2012-06-28 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using said positive electrode
WO2013002369A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Non-aqueous electrolyte secondary cell, and method for producing same
WO2016132963A1 (en) * 2015-02-20 2016-08-25 日本電気株式会社 Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102332A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Secondary battery
JPH09139232A (en) * 1995-09-14 1997-05-27 Toshiba Corp Lithium battery
US6436574B1 (en) 1999-04-26 2002-08-20 Nec Corporation Nonaqueous electrolyte secondary battery
US6723472B2 (en) 1999-12-01 2004-04-20 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
JP2002151081A (en) * 2000-08-29 2002-05-24 Santoku Corp Positive pole active material for non-aqueous electrolytic liquid secondary battery, its manufacturing method, and non-aqueous electrolytic liquid secondary battery
JP2007005267A (en) * 2005-06-27 2007-01-11 Central Res Inst Of Electric Power Ind Lithium ion secondary battery using room temperature molten salt and method for producing the same
JP2008153177A (en) * 2006-12-20 2008-07-03 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2009004316A (en) * 2007-06-25 2009-01-08 Sony Corp Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
US20110059356A1 (en) * 2009-09-04 2011-03-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US9570740B2 (en) * 2009-09-04 2017-02-14 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
WO2012086277A1 (en) * 2010-12-20 2012-06-28 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using said positive electrode
JPWO2012086277A1 (en) * 2010-12-20 2014-05-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the positive electrode
US9437869B2 (en) 2010-12-20 2016-09-06 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the positive electrode
WO2013002369A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Non-aqueous electrolyte secondary cell, and method for producing same
WO2016132963A1 (en) * 2015-02-20 2016-08-25 日本電気株式会社 Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same
JPWO2016132963A1 (en) * 2015-02-20 2017-11-30 日本電気株式会社 Lithium iron manganese composite oxide and lithium ion secondary battery using the same
US10847788B2 (en) 2015-02-20 2020-11-24 Nec Corporation Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same

Also Published As

Publication number Publication date
JP3003431B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
JP2855877B2 (en) Non-aqueous electrolyte secondary battery
CN100448096C (en) lithium secondary battery
JPH1027626A (en) Lithium secondary battery
JPH0737576A (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2751624B2 (en) Non-aqueous electrolyte secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6791112B2 (en) Manufacturing method of positive electrode material for non-aqueous secondary batteries
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JPH056779A (en) Non-aqueous electrolyte secondary battery
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JPH08329946A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH05266889A (en) Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same
JPH056780A (en) Non-aqueous electrolyte secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP3136679B2 (en) Non-aqueous electrolyte secondary battery
JPH04319259A (en) Non-aqueous electrolyte secondary battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JPH11139831A (en) Method for producing cobalt oxide and battery using cobalt oxide produced by the method
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JP3008638B2 (en) Non-aqueous electrolyte secondary battery and its negative electrode active material
JP3509477B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees