JPH06171974A - Glass body having refractive index distribution - Google Patents
Glass body having refractive index distributionInfo
- Publication number
- JPH06171974A JPH06171974A JP34545892A JP34545892A JPH06171974A JP H06171974 A JPH06171974 A JP H06171974A JP 34545892 A JP34545892 A JP 34545892A JP 34545892 A JP34545892 A JP 34545892A JP H06171974 A JPH06171974 A JP H06171974A
- Authority
- JP
- Japan
- Prior art keywords
- distribution
- refractive index
- glass body
- glass
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 73
- 239000011521 glass Substances 0.000 title claims abstract description 45
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 13
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 9
- 229910052745 lead Inorganic materials 0.000 claims abstract description 7
- 229910052716 thallium Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052738 indium Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052709 silver Inorganic materials 0.000 claims abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 6
- 229910052718 tin Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 4
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 4
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 21
- 230000003287 optical effect Effects 0.000 abstract description 15
- 239000006185 dispersion Substances 0.000 abstract description 7
- 230000004075 alteration Effects 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、屈折率分布を有したガ
ラス体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass body having a refractive index distribution.
【0002】[0002]
【従来の技術】従来、屈折率分布を有したガラス体に
は、イオン交換法によるLi,Cs,Tl等のアルカリ
金属に濃度分布を有したセルフォック、分子スタッフィ
ング法によるLi,Cs,Tl等に濃度分布を有したガ
ラス体(特公昭60−54891号公報)、ゾルゲル法
によるPb、TiまたはGeに濃度分布を有したガラス
体がある(特開平3−295818号公報、特開昭60
−145917号公報、特開昭60−14598号公
報)。2. Description of the Related Art Conventionally, a glass body having a refractive index distribution has a self-foam having a concentration distribution in alkali metals such as Li, Cs, and Tl by an ion exchange method, and Li, Cs, Tl, etc. by a molecular stuffing method. There is a glass body having a concentration distribution (Japanese Patent Publication No. 60-54981) and a glass body having a concentration distribution of Pb, Ti or Ge by the sol-gel method (Japanese Patent Laid-Open No. 3-295818 and Japanese Patent Laid-Open No. Sho 60-295818).
-145917, JP-A-60-14598).
【0003】また、色収差をも加味し、La,Y,Gd
等の元素に濃度分布を有した、光学的に優れた特性を持
つ屈折率分布型光学素子の組成が特開平3−14130
2号公報に開示されている。La, Y, Gd are also taken into consideration by taking chromatic aberration into consideration.
A composition of a gradient index optical element having a concentration distribution in elements such as, and having optically excellent characteristics is disclosed in JP-A-3-14130.
No. 2 publication.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記従来のセ
ルフォックや、アルカリ金属またはPb、Ti若しくは
Geに濃度分布を有する屈折率分布を有したガラス体
は、色収差を補正する光学的効果が高くなかった。そこ
で、色収差をも加味した、光学的効果の高い屈折率分布
型光学素子が、特開平3−141302号公報に提案さ
れ、La,Y,Gdに濃度分布を有した屈折率分布型光
学素子の組成分布について述べられているが、La,
Y,Gdに濃度分布を付与する場合、多量にガラス中に
これらの元素を含有させる必要がある。しかし、La,
Y,Gd等の希土類元素を含むガラスはガラス化が難し
く、更に、屈折率分布を付与するためにガラス中に希土
類元素の濃度分布を付与するため、ガラスの部分により
組成が異なり、部分的に失透したり、大きな屈折率差を
付与するために多量にガラスに含有させることは困難で
あった。したがって、所望のガラスが得られず、ひいて
は大きな屈折率差を持った光学的に効果の高い屈折率分
布を有したガラス体を得ることが困難であった。However, the above-mentioned conventional SELFOC and the glass body having the refractive index distribution having the concentration distribution in the alkali metal or Pb, Ti or Ge are not high in the optical effect for correcting the chromatic aberration. It was Therefore, a gradient index optical element having a high optical effect in which chromatic aberration is taken into consideration is proposed in Japanese Patent Laid-Open No. 141301/1993, which is a gradient index optical element having a concentration distribution in La, Y, and Gd. Although the composition distribution is described, La,
When imparting a concentration distribution to Y and Gd, it is necessary to contain a large amount of these elements in the glass. However, La,
Glasses containing rare earth elements such as Y and Gd are difficult to vitrify. Furthermore, since the concentration distribution of rare earth elements is imparted to the glass in order to impart a refractive index distribution, the composition differs depending on the glass portion, and partially It has been difficult to incorporate a large amount of glass in order to devitrify or give a large difference in refractive index. Therefore, it is difficult to obtain a desired glass, and thus it is difficult to obtain a glass body having a refractive index distribution having a large difference in refractive index and having an optically effective effect.
【0005】本発明は、かかる従来の問題点に鑑みてな
されもので、希土類元素に濃度分布を有し、これらの元
素を多量に含有して屈折率分布を有し、また色分散をも
考慮した光学的効果の高い屈折率分布を有したガラス体
を提供することを目的とする。The present invention has been made in view of such conventional problems, and has a concentration distribution in rare earth elements, has a refractive index distribution by containing a large amount of these elements, and also considers chromatic dispersion. It is an object of the present invention to provide a glass body having a refractive index distribution with a high optical effect.
【0006】[0006]
【課題を解決するための手段】上記課題を達成するため
に、本発明の屈折率分布を有したガラス体は、La,
Y,Gdのうちの少なくとも1種の元素に濃度分布を有
し、Al,P,Bのうちの少なくとも1種の元素を含む
組成とした。また、色収差補正のために分散特性を考慮
して、更にNb,Ta,Ti,Pb,Zr,Bi,S
b,Ag,Sn,In,Tlのうちの少なくとも1種の
元素を含む組成としてもよい。In order to achieve the above object, the glass body having a refractive index distribution of the present invention is La,
The composition has a concentration distribution in at least one element of Y and Gd and contains at least one element of Al, P and B. Further, in consideration of dispersion characteristics for chromatic aberration correction, Nb, Ta, Ti, Pb, Zr, Bi, S
The composition may include at least one element selected from b, Ag, Sn, In, and Tl.
【0007】[0007]
【作用】希土類元素を多量に含むガラスの作製が困難な
理由は、例えばSiO2 と希土類元素の酸化物の2成分
系を考えたとき、双方の酸化物の融点が高いこと、液−
液不混和領域が存在することのためと考えられる。不混
和がおこるのは、系に形成される相の相対的自由エネル
ギーに依存する。液相−液相間の相分離は、シリカが網
目形成の条件に従いながら、陽イオンが自分の周りに酸
素イオンを引きつけて最低のエネルギーの酸素配列をと
ろうとする、陽イオン間の競合から起こるとされてい
る。修飾イオンや中間イオン(この場合は希土類元素)
は網目構造の中でSiと置換する能力が限られており、
酸素との強い結合エネルギーのため、最小のエネルギー
状態のときに高濃度では入り得ない。そこで、最もエネ
ルギーの低い状態は系が2つの液相に分離して1つが網
目形成体(シリカ)に富む相に、もう一つが修飾イオン
に富む相になる。The reason why it is difficult to produce a glass containing a large amount of rare earth elements is that, for example, when considering a binary system of SiO 2 and an oxide of a rare earth element, the melting points of both oxides are high, and
This is considered to be due to the existence of the liquid immiscible region. The immiscibility depends on the relative free energy of the phases formed in the system. Liquid-liquid phase separation occurs from the competition between cations, with the cations trying to attract oxygen ions around themselves and adopt the lowest energy oxygen arrangement, while silica obey the conditions for network formation. It is said that. Modification ions or intermediate ions (rare earth elements in this case)
Has a limited ability to replace Si in the mesh structure,
Due to the strong binding energy with oxygen, it cannot enter at a high concentration in the minimum energy state. Thus, in the lowest energy state, the system separates into two liquid phases, one rich in network formers (silica) and the other rich in modifying ions.
【0008】そこで、鋭意検討した結果、La,Y,G
dなどの希土類元素に濃度分布を有し屈折率分布を有し
たシリカ系ガラスに、Al,P,Bから選んだ少なくと
も1つの元素を添加すると、La,Y,Gdなどの希土
類元素に濃度分布を有していても、これらの元素を多量
に含有して屈折率分布を有したガラス体を作製できるこ
とを見い出した。これは、Al,P,Bは網目構造中の
Si等の元素と置換する能力が高いので、液−液分離が
起こりにくくなったためと考えられる。Then, as a result of earnest study, La, Y, G
When at least one element selected from Al, P, and B is added to silica-based glass having a concentration distribution in a rare earth element such as d and a refractive index distribution, the concentration distribution in a rare earth element such as La, Y, and Gd It has been found that a glass body containing a large amount of these elements and having a refractive index distribution can be produced even if it has. It is considered that this is because Al, P, and B have a high ability to substitute with elements such as Si in the network structure, so that liquid-liquid separation is less likely to occur.
【0009】この効果は、光学的な色収差補正能力に注
目したときに希土類元素と組み合わされるNb,Ta,
Ti,Pb,Zr,Bi,Sb,Ag,Sn,In,T
lを含む系においても同様である。したがって、La,
Y,Gdなどの希土類元素に濃度分布を有していても、
これらのLa,Y,Gdなどの希土類元素を多量に含有
し、さらにNb,Ta,Ti,Pb,Zr,Bi,S
b,Ag,Sn,In,Tlを多量に含む色収差補正能
力のある屈折率分布を有したガラス体を作製することが
できる。これらNb,Ta,Ti,Pb,Zr,Bi,
Sb,Ag,Sn,In,Tlの元素には、濃度分布が
付与されていてもよいし、濃度分布が付与されていなく
てもよい。This effect is due to the fact that Nb, Ta, and
Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, T
The same applies to a system containing l. Therefore, La,
Even if the rare earth element such as Y or Gd has a concentration distribution,
It contains a large amount of rare earth elements such as La, Y and Gd, and further contains Nb, Ta, Ti, Pb, Zr, Bi and S.
It is possible to manufacture a glass body having a refractive index distribution that contains a large amount of b, Ag, Sn, In, and Tl and has the ability to correct chromatic aberration. These Nb, Ta, Ti, Pb, Zr, Bi,
A concentration distribution may or may not be given to the elements Sb, Ag, Sn, In, and Tl.
【0010】本発明の屈折率分布を有したガラス体は、
例えば図1(A)および(B)に示すような特公平3−
141302号公報に示されている、金属種bと金属種
cとが互いに反対方向の濃度分布、図2(A)および
(B)に示すように、金属種dが勾配をもって分布し、
金属種eが略平坦に分布する濃度分布、図3(A)およ
び(B)に示すように、金属種fが金属種gと同方向に
金属種fより小さな勾配をもって分布する濃度分布等に
対して特に有効であるが、金属種の分布形状は図1から
図3に示したように、径方向に分布を有したものに限ら
ず、光軸方向に金属種の分布を有したもの、球状に金属
種の分布を有したもの等にも適用することができる。な
お、これらの適用は、色分散特性が優れた屈折率分布を
有するガラス体に限ったものではなく、ガラス体を得ら
れるという点で効果を有する。The glass body having the refractive index distribution of the present invention is
For example, as shown in FIGS. 1 (A) and 1 (B)
No. 141302, the metal species b and the metal species c have concentration distributions in mutually opposite directions, and as shown in FIGS. 2A and 2B, the metal species d are distributed with a gradient,
A concentration distribution in which the metal species e is distributed substantially flat, and a concentration distribution in which the metal species f is distributed with a smaller gradient than the metal species f in the same direction as the metal species g as shown in FIGS. Although it is particularly effective against the above, the distribution shape of the metal species is not limited to the one having the distribution in the radial direction as shown in FIGS. 1 to 3, but the one having the distribution of the metal species in the optical axis direction, It can also be applied to those having a spherical distribution of metal species. It should be noted that these applications are not limited to glass bodies having a refractive index distribution having excellent color dispersion characteristics, and have an effect in that glass bodies can be obtained.
【0011】以上のことは、ここで説明したようにSi
O2 を主成分としたものに限られているわけではなく、
B2 O3 などを主成分としたガラスにも同様に適用でき
る。Al,P,Bの添加量は、少量でも効果はあり、特
に制限されない。例えばAlの場合、濃度分布があるた
めにガラスの部分により希土類元素との原子数比は異な
っているが、(希土類元素の数/Alの数)は6以下で
あることが望ましく、最も効果的であるのは1付近の場
合である。Pの場合は(希土類元素の数/Pの数)は4
以下であることが望ましく、最も効果的であるのは1付
近の場合である。Bの場合は、(希土類元素の数/Bの
数)は6以下であることが望ましく、最も効果的である
のは1から2付近の場合である。As described above, Si has
It is not limited to those containing O 2 as a main component,
The same can be applied to glass containing B 2 O 3 as a main component. The addition amount of Al, P, B is effective even if it is small, and is not particularly limited. For example, in the case of Al, the ratio of the number of atoms with the rare earth element varies depending on the glass portion due to the concentration distribution, but (the number of rare earth elements / the number of Al) is preferably 6 or less, which is the most effective. Is when 1 is around. In case of P, (number of rare earth elements / number of P) is 4
The following is desirable, and the most effective case is around 1. In the case of B, (the number of rare earth elements / the number of B) is preferably 6 or less, and the most effective case is around 1 to 2.
【0012】Al,P,Bを複数用いる場合は、希土類
元素との原子数比(希土類元素の数/Al+P+B)は
Al,P,Bを単独で用いる場合よりも更に少なくても
よく、これらの元素は分布を有していてもよいし、有し
ていなくてもよい。また、これらの成分に分布を付与す
ることにより色分散特性をも制御することができる。特
にPを用いる場合は、ガラスの化学的耐久性が低下する
ため、過剰に用いることは好ましくなく、希土類元素の
濃度分布に対して、各位置で必要最低量が添加されるよ
うに濃度分布させるのが好ましい。When a plurality of Al, P and B are used, the atomic ratio with the rare earth element (the number of rare earth elements / Al + P + B) may be smaller than that when Al, P and B are used alone. The element may or may not have a distribution. Further, the color dispersion characteristics can also be controlled by giving a distribution to these components. Especially when P is used, it is not preferable to use it excessively because it lowers the chemical durability of the glass, and the concentration distribution is adjusted so that the necessary minimum amount is added at each position with respect to the concentration distribution of the rare earth element. Is preferred.
【0013】また、本発明の屈折率分布を有したガラス
体は、例えばイオン交換法、分子スタッフィング法、ゾ
ルゲル法、薄いガラスを重ねて融着させるガラス積層
法、CDV法、VAD法等、またはそれ以外のどのよう
な製造方法においても適用することができる。Further, the glass body having a refractive index distribution of the present invention is, for example, an ion exchange method, a molecular stuffing method, a sol-gel method, a glass laminating method in which thin glasses are laminated and fused, a CDV method, a VAD method, or the like, or It can be applied to any other manufacturing method.
【0014】[0014]
【実施例1】本実施例は、図4に示したような形状に金
属種に分布を有したものであり、中心部のAl2 O3 と
Y2 O3 の含有量が23(mol比)、TiO2 の含有
量が0(mol比)であって、周辺部のY2 O3 の含有
量が0(mol比)になるように中心部から周辺部に向
けてY2 O3 の含有量がほぼ放物線状に減少するような
分布をしており、また、周辺部のAl2 O3 の含有量が
23(mol比)で、TiO2 の含有量が7(mol
比)になるように、中心部より周辺部に向けてTiO2
の含有量がY2 O3 の含有量分布とは反対方向のほぼ放
物線状に増加する径方向の屈折率分布を有したガラス体
である。Example 1 In this example, metal species were distributed in a shape as shown in FIG. 4, and the content of Al 2 O 3 and Y 2 O 3 in the central portion was 23 (mol ratio). ), the content of TiO 2 is a 0 (mol ratio), the content of Y 2 O 3 in the peripheral portion is 0 (the center such that the mol ratio) toward the periphery of the Y 2 O 3 The distribution is such that the content decreases in a parabolic shape, the Al 2 O 3 content in the peripheral portion is 23 (mol ratio), and the TiO 2 content is 7 (mol).
Ratio) from the center to the periphery so that TiO 2
The glass body has a refractive index distribution in the radial direction in which the content of γ increases almost in a parabola in the direction opposite to the Y 2 O 3 content distribution.
【0015】このガラス体は部分的な失透や結晶化は見
られなかった。また、このガラス体の屈折率分布を測定
したところ、中心部は、nd :1.666,νd :5
3、周辺部はnd :1.533,νd :48であり、光
学的に有効な光学特性を有していた。No partial devitrification or crystallization was observed in this glass body. The measured refractive index distribution of the glass body, the heart, n d: 1.666, ν d : 5
3 and the peripheral portion were n d : 1.533 and ν d : 48, and had optically effective optical characteristics.
【0016】[0016]
【実施例2〜8】これらの実施例は、図1(A)および
(B)と同様の分布を有したもので、表1に記載のよう
に、Al,P,Bから選んだ成分をa群、互いに反対方
向の濃度分布を持つ成分がそれぞれb群、c群に記載し
た酸化物換算含有mol比である。各実施例2〜8で得
られたガラス体には、失透している部分や結晶化してい
る部分は見られず、かつ効果の高い光学素子であった。Examples 2 to 8 These examples have the same distribution as in FIGS. 1A and 1B, and as shown in Table 1, the components selected from Al, P, and B are selected. The components having the concentration distributions in the group a and the directions opposite to each other are the mol ratios in terms of oxides described in the groups b and c, respectively. No devitrified portion or crystallized portion was found in the glass bodies obtained in Examples 2 to 8 and the optical element was highly effective.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【実施例9〜13】実施例9〜13は図2(A)および
(B)に示したような形状に金属種に分布を有したもの
であり、表2に記載のようにAl,P,Bから選んだ成
分をa群、ガラス中に勾配をもって分布する金属種をd
群、ガラス中の金属原子の数が略平坦に分布した金属種
をe群に記載した酸化物換算含有mol比である。各実
施例9〜13で得られたガラス体には、失透している部
分や結晶化している部分は見られず、かつ光学的効果の
高い光学素子であった。Examples 9 to 13 In Examples 9 to 13, the metal species are distributed in the shapes shown in FIGS. 2 (A) and 2 (B). , B are components selected from group a, and metal species having a gradient distribution in the glass are d.
It is the oxide-equivalent content mol ratio in which the group and the metal species in which the number of metal atoms in the glass is distributed substantially flat are described in the group e. In the glass bodies obtained in each of Examples 9 to 13, neither devitrified portion nor crystallized portion was observed, and the optical element had a high optical effect.
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【実施例14〜18】実施例14〜18は図3(A)お
よび(B)に示したような形状に金属種に分布を有した
ものであり、表3に記載のようにAl,P,Bから選ん
だ成分をa群、ガラス中に勾配をもって分布する金属種
を、それぞれf群、g群としたときの酸化物換算含有m
ol比である。各実施例14〜18で得られたガラス体
には、失透している部分や結晶化している部分は見られ
ず、かつ光学的効果の高い光学素子であった。Examples 14 to 18 Examples 14 to 18 have a distribution of metal species in the shape shown in FIGS. 3 (A) and 3 (B). , B in the group a, and the metal species distributed in the glass with a gradient in the groups f and g, respectively.
ol ratio. In the glass bodies obtained in Examples 14 to 18, neither devitrified portion nor crystallized portion was found, and the optical element had a high optical effect.
【0021】[0021]
【表3】 [Table 3]
【0022】なお、上記実施例では半径方向にほぼ放物
線状の分布をしているものについて述べたが、金属の分
布形状は放物線状の分布形状に制限されているものでは
なく、これ以外の分布形状についても原理的に何等制限
されるものではない。屈折率分布が非常に小さかった
り、実質上屈折率差が0であっても、分散特性に分布を
有していれば、本発明は同様に適用することができる。
また、La,Y,Gd等の希土類元素と組み合わせられ
る元素は実施例に述べられているものに限られておら
ず、本発明の効果を損なわない範囲において、ガラス作
製上や耐性向上のための成分を更に添加してもよい。In the above-mentioned embodiment, the distribution having a substantially parabolic shape in the radial direction has been described, but the distribution shape of the metal is not limited to the parabolic distribution shape, and distributions other than this are possible. The shape is not limited in principle. Even if the refractive index distribution is very small or the refractive index difference is substantially zero, the present invention can be similarly applied as long as the dispersion characteristic has a distribution.
Further, the elements to be combined with the rare earth elements such as La, Y, and Gd are not limited to those described in the examples, and may be used for glass production or for improving the resistance as long as the effects of the present invention are not impaired. Further ingredients may be added.
【0023】[0023]
【発明の効果】以上のように、本発明の屈折率分布を有
したガラス体によれば、希土類元素に濃度分布を有し、
これらの元素を多量に含有した屈折率分布を有したガラ
ス体を作製することが可能となり、色分散等をも考慮し
た光学的効果の高い屈折率分布を有したガラス体を製造
することができる。As described above, according to the glass body having the refractive index distribution of the present invention, the rare earth element has the concentration distribution,
It becomes possible to produce a glass body having a refractive index distribution containing a large amount of these elements, and it is possible to produce a glass body having a refractive index distribution having a high optical effect in consideration of chromatic dispersion and the like. .
【図1】金属種bと金属種cとが互いに反対方向の濃度
分布を有しているときの金属種の含有量分布を示す概念
図である。FIG. 1 is a conceptual diagram showing a content distribution of metal species when the metal species b and the metal species c have concentration distributions in mutually opposite directions.
【図2】金属種dが勾配をもって分布し、金属種eが略
平坦に分布しているときの金属種の含有量分布を示す概
念図である。FIG. 2 is a conceptual diagram showing the content distribution of the metal species when the metal species d is distributed with a gradient and the metal species e is distributed substantially flat.
【図3】金属種fが金属種gと同方向に、金属種gの勾
配より小さな勾配をもって分布してるいときの金属種の
含有量分布を示す概念図である。FIG. 3 is a conceptual diagram showing the content distribution of the metal species when the metal species f is distributed in the same direction as the metal species g with a gradient smaller than the gradient of the metal species g.
【図4】本発明の実施例1により得られたガラス体の金
属原子の分布を示す図である。FIG. 4 is a diagram showing the distribution of metal atoms in the glass body obtained in Example 1 of the present invention.
Claims (2)
の元素に濃度分布を有し、Al,P,Bのうちの少なく
とも1種の元素を含むことを特徴とする屈折率分布を有
したガラス体。1. A refractive index distribution characterized by having a concentration distribution in at least one element of La, Y, and Gd and including at least one element in Al, P, B. Glass body.
の元素に濃度分布を有し、Al,P,Bのうちの少なく
とも1種の元素およびNb,Ta,Ti,Pb,Zr,
Bi,Sb,Ag,Sn,In,Tlのうちの少なくと
も1種の元素を含むことを特徴とする屈折率分布を有し
たガラス体。2. At least one element selected from La, Y and Gd has a concentration distribution, and at least one element selected from Al, P and B and Nb, Ta, Ti, Pb, Zr,
A glass body having a refractive index distribution characterized by containing at least one element selected from Bi, Sb, Ag, Sn, In and Tl.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34545892A JP3193492B2 (en) | 1992-11-30 | 1992-11-30 | Glass body with refractive index distribution |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34545892A JP3193492B2 (en) | 1992-11-30 | 1992-11-30 | Glass body with refractive index distribution |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH06171974A true JPH06171974A (en) | 1994-06-21 |
| JP3193492B2 JP3193492B2 (en) | 2001-07-30 |
Family
ID=18376734
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP34545892A Expired - Fee Related JP3193492B2 (en) | 1992-11-30 | 1992-11-30 | Glass body with refractive index distribution |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3193492B2 (en) |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6250108B1 (en) | 1997-07-02 | 2001-06-26 | Olympus Optical Co., Ltd | Glass-making method |
| WO2003007027A1 (en) * | 2001-07-10 | 2003-01-23 | Nippon Sheet Glass Co., Ltd. | Refractive index profile type rod lens unit and micro- chemical system provided with the unit |
| EP1344752A1 (en) * | 2002-03-11 | 2003-09-17 | Tosoh Corporation | Highly durable silicate glass, process for producing same, member comprised thereof, and apparatus provided therewith |
| US6641939B1 (en) | 1998-07-01 | 2003-11-04 | The Morgan Crucible Company Plc | Transition metal oxide doped alumina and methods of making and using |
| US7101819B2 (en) | 2001-08-02 | 2006-09-05 | 3M Innovative Properties Company | Alumina-zirconia, and methods of making and using the same |
| US7141522B2 (en) | 2003-09-18 | 2006-11-28 | 3M Innovative Properties Company | Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
| US7141523B2 (en) | 2003-09-18 | 2006-11-28 | 3M Innovative Properties Company | Ceramics comprising Al2O3, REO, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
| US7175786B2 (en) | 2003-02-05 | 2007-02-13 | 3M Innovative Properties Co. | Methods of making Al2O3-SiO2 ceramics |
| US7179526B2 (en) * | 2002-08-02 | 2007-02-20 | 3M Innovative Properties Company | Plasma spraying |
| US7197896B2 (en) | 2003-09-05 | 2007-04-03 | 3M Innovative Properties Company | Methods of making Al2O3-SiO2 ceramics |
| US7258707B2 (en) | 2003-02-05 | 2007-08-21 | 3M Innovative Properties Company | AI2O3-La2O3-Y2O3-MgO ceramics, and methods of making the same |
| US7281970B2 (en) | 2005-12-30 | 2007-10-16 | 3M Innovative Properties Company | Composite articles and methods of making the same |
| US7297171B2 (en) | 2003-09-18 | 2007-11-20 | 3M Innovative Properties Company | Methods of making ceramics comprising Al2O3, REO, ZrO2 and/or HfO2 and Nb205 and/or Ta2O5 |
| US7332453B2 (en) | 2004-07-29 | 2008-02-19 | 3M Innovative Properties Company | Ceramics, and methods of making and using the same |
| US7497093B2 (en) | 2004-07-29 | 2009-03-03 | 3M Innovative Properties Company | Method of making ceramic articles |
| US7507268B2 (en) * | 2001-08-02 | 2009-03-24 | 3M Innovative Properties Company | Al2O3-Y2O3-ZrO2/HfO2 materials, and methods of making and using the same |
| US7563293B2 (en) * | 2001-08-02 | 2009-07-21 | 3M Innovative Properties Company | Al2O3-rare earth oxide-ZrO2/HfO2 materials, and methods of making and using the same |
| US7563294B2 (en) | 2001-08-02 | 2009-07-21 | 3M Innovative Properties Company | Abrasive particles and methods of making and using the same |
| US7598188B2 (en) | 2005-12-30 | 2009-10-06 | 3M Innovative Properties Company | Ceramic materials and methods of making and using the same |
| US7625509B2 (en) | 2001-08-02 | 2009-12-01 | 3M Innovative Properties Company | Method of making ceramic articles |
| CN102241480A (en) * | 2010-05-11 | 2011-11-16 | 海洋王照明科技股份有限公司 | Elemental silver-doped rare earth ion luminescent glass and its preparation method |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101418870B1 (en) | 2012-06-13 | 2014-07-17 | 한국광기술원 | Method for manufacturing lens with multi-refraction |
-
1992
- 1992-11-30 JP JP34545892A patent/JP3193492B2/en not_active Expired - Fee Related
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6250108B1 (en) | 1997-07-02 | 2001-06-26 | Olympus Optical Co., Ltd | Glass-making method |
| US6641939B1 (en) | 1998-07-01 | 2003-11-04 | The Morgan Crucible Company Plc | Transition metal oxide doped alumina and methods of making and using |
| US6941041B2 (en) | 2001-07-10 | 2005-09-06 | Nippon Sheet Glass Co., Ltd. | Gradient index rod lens unit and microchemical system having the same |
| WO2003007027A1 (en) * | 2001-07-10 | 2003-01-23 | Nippon Sheet Glass Co., Ltd. | Refractive index profile type rod lens unit and micro- chemical system provided with the unit |
| JP2003021704A (en) * | 2001-07-10 | 2003-01-24 | Nippon Sheet Glass Co Ltd | A pair of refractive index distributed rod lenses and microchemical system equipped with the lenses |
| US7147544B2 (en) | 2001-08-02 | 2006-12-12 | 3M Innovative Properties Company | Glass-ceramics |
| US7563293B2 (en) * | 2001-08-02 | 2009-07-21 | 3M Innovative Properties Company | Al2O3-rare earth oxide-ZrO2/HfO2 materials, and methods of making and using the same |
| US7101819B2 (en) | 2001-08-02 | 2006-09-05 | 3M Innovative Properties Company | Alumina-zirconia, and methods of making and using the same |
| US7625509B2 (en) | 2001-08-02 | 2009-12-01 | 3M Innovative Properties Company | Method of making ceramic articles |
| US7563294B2 (en) | 2001-08-02 | 2009-07-21 | 3M Innovative Properties Company | Abrasive particles and methods of making and using the same |
| US7501000B2 (en) | 2001-08-02 | 2009-03-10 | 3M Innovative Properties Company | Abrasive particles, abrasive articles, and methods of making and using the same |
| US7168267B2 (en) | 2001-08-02 | 2007-01-30 | 3M Innovative Properties Company | Method of making amorphous materials and ceramics |
| US7501001B2 (en) | 2001-08-02 | 2009-03-10 | 3M Innovative Properties Company | Abrasive particles, and methods of making and using the same |
| US7507268B2 (en) * | 2001-08-02 | 2009-03-24 | 3M Innovative Properties Company | Al2O3-Y2O3-ZrO2/HfO2 materials, and methods of making and using the same |
| US7510585B2 (en) | 2001-08-02 | 2009-03-31 | 3M Innovative Properties Company | Ceramic materials, abrasive particles, abrasive articles, and methods of making and using the same |
| US7084084B2 (en) | 2002-03-11 | 2006-08-01 | Tosoh Corporation | Highly durable silica glass, process for producing same, member comprised thereof, and apparatus provided therewith |
| EP1344752A1 (en) * | 2002-03-11 | 2003-09-17 | Tosoh Corporation | Highly durable silicate glass, process for producing same, member comprised thereof, and apparatus provided therewith |
| US7179526B2 (en) * | 2002-08-02 | 2007-02-20 | 3M Innovative Properties Company | Plasma spraying |
| US7258707B2 (en) | 2003-02-05 | 2007-08-21 | 3M Innovative Properties Company | AI2O3-La2O3-Y2O3-MgO ceramics, and methods of making the same |
| US7175786B2 (en) | 2003-02-05 | 2007-02-13 | 3M Innovative Properties Co. | Methods of making Al2O3-SiO2 ceramics |
| US7197896B2 (en) | 2003-09-05 | 2007-04-03 | 3M Innovative Properties Company | Methods of making Al2O3-SiO2 ceramics |
| US7297646B2 (en) | 2003-09-18 | 2007-11-20 | 3M Innovative Properties Company | Ceramics comprising Al2O3, REO, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
| US7297171B2 (en) | 2003-09-18 | 2007-11-20 | 3M Innovative Properties Company | Methods of making ceramics comprising Al2O3, REO, ZrO2 and/or HfO2 and Nb205 and/or Ta2O5 |
| US7253128B2 (en) | 2003-09-18 | 2007-08-07 | 3M Innovative Properties Company | Ceramics comprising AI2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
| US7141523B2 (en) | 2003-09-18 | 2006-11-28 | 3M Innovative Properties Company | Ceramics comprising Al2O3, REO, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
| US7141522B2 (en) | 2003-09-18 | 2006-11-28 | 3M Innovative Properties Company | Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
| US7497093B2 (en) | 2004-07-29 | 2009-03-03 | 3M Innovative Properties Company | Method of making ceramic articles |
| US7332453B2 (en) | 2004-07-29 | 2008-02-19 | 3M Innovative Properties Company | Ceramics, and methods of making and using the same |
| US7281970B2 (en) | 2005-12-30 | 2007-10-16 | 3M Innovative Properties Company | Composite articles and methods of making the same |
| US7598188B2 (en) | 2005-12-30 | 2009-10-06 | 3M Innovative Properties Company | Ceramic materials and methods of making and using the same |
| CN102241480A (en) * | 2010-05-11 | 2011-11-16 | 海洋王照明科技股份有限公司 | Elemental silver-doped rare earth ion luminescent glass and its preparation method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3193492B2 (en) | 2001-07-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3193492B2 (en) | Glass body with refractive index distribution | |
| US4612295A (en) | Glass for eye glass lens | |
| US4084978A (en) | Glass for eye glass lens | |
| JP3299737B2 (en) | Lead-free optical glass | |
| JP3247482B2 (en) | High refractive ophthalmic and optical glass | |
| JP3458462B2 (en) | Optical glass | |
| JP2002537206A (en) | High zirconium oxide containing glass and use thereof | |
| US4438211A (en) | Optical and ophthalmic glass with refractive indices nd>1.58, Abbe numbers>45 and densities<2.75 g/cm3 | |
| JP3219437B2 (en) | Refractive index distribution type optical element | |
| JP4672819B2 (en) | Very high refractive index glass | |
| CN1039405C (en) | High Refractive Photochromic Glass | |
| US6764972B2 (en) | Mother glass composition for graded index lens | |
| JPS605037A (en) | Optical glass | |
| JPS638056B2 (en) | ||
| JP3987174B2 (en) | Optical glass for precision press molding | |
| JPS61168551A (en) | Glass for glasses having high refractive index | |
| US4297141A (en) | Optical glass for optical paths | |
| JP3015079B2 (en) | Optical glass for precision press | |
| JPS5941934B2 (en) | Glass composition for light focusing lenses | |
| US4562162A (en) | Glass for multi-focal eyeglass lens | |
| JPH0788234B2 (en) | Light focusing lens | |
| US4568651A (en) | Glass for multi-focal eyeglass lens | |
| US5854151A (en) | Glass body with distribution composition | |
| US3477863A (en) | Heavy flint glasses | |
| CN109704563A (en) | Environmentally friendly lanthanide optical glass and its preparation method and application |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010508 |
|
| R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
| LAPS | Cancellation because of no payment of annual fees |