JPH06194497A - Highly heat resistant soft x-ray multilayer film reflector employing bn - Google Patents
Highly heat resistant soft x-ray multilayer film reflector employing bnInfo
- Publication number
- JPH06194497A JPH06194497A JP34456992A JP34456992A JPH06194497A JP H06194497 A JPH06194497 A JP H06194497A JP 34456992 A JP34456992 A JP 34456992A JP 34456992 A JP34456992 A JP 34456992A JP H06194497 A JPH06194497 A JP H06194497A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- multilayer film
- soft
- irradiation
- reflectance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 14
- 230000005469 synchrotron radiation Effects 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000001015 X-ray lithography Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000003252 repetitive effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 90
- 229910052582 BN Inorganic materials 0.000 description 67
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 67
- 238000012360 testing method Methods 0.000 description 32
- 238000000137 annealing Methods 0.000 description 31
- 229910052799 carbon Inorganic materials 0.000 description 19
- 239000000758 substrate Substances 0.000 description 19
- 229910052721 tungsten Inorganic materials 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 229910052750 molybdenum Inorganic materials 0.000 description 8
- 230000001678 irradiating effect Effects 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241001507928 Aria Species 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 235000004494 Sorbus aria Nutrition 0.000 description 2
- 229910008938 W—Si Inorganic materials 0.000 description 2
- 238000000560 X-ray reflectometry Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000007707 calorimetry Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Particle Accelerators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は次世代超LSI作製のた
めのX線縮小投影露光装置の光学系として不可欠の耐熱
性軟X線多層膜反射鏡としてBNを用いた高耐熱性軟X
線反射鏡、軟X線多層膜反射鏡、狭帯域軟X線反射鏡を
提供しようとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant soft X-ray multilayer film reflecting mirror, which is indispensable as an optical system of an X-ray reduction projection exposure apparatus for the production of next-generation VLSI, and has a high heat-resistant soft X.
The present invention aims to provide a line reflection mirror, a soft X-ray multilayer film reflection mirror, and a narrow band soft X-ray reflection mirror.
【0002】[0002]
【従来の技術】本発明の産業上の利用分野は軟X線光工
学、薄膜多層膜コーティング、耐熱反射鏡、放射光利用
技術に利用される高耐熱性軟X線多層膜反射鏡にある。
従来、大強度放射光の照射に耐えられる軟X線用多層膜
反射鏡としては、高融点材料を組み合わせた、W(タン
グステン)/C(炭素)、W/B4 C(炭化ホウ素)等
のが適当とされている。The industrial fields of application of the present invention are soft X-ray optical engineering, thin film multilayer coating, heat-resistant reflecting mirrors, and high heat-resistant soft X-ray multilayer reflecting mirrors used in the technology of utilizing synchrotron radiation.
Conventionally, as a multilayer film reflection mirror for soft X-rays that can withstand the irradiation of high-intensity synchrotron radiation, W (tungsten) / C (carbon), W / B 4 C (boron carbide), etc., in which refractory materials are combined, are used. Is considered appropriate.
【0003】[0003]
【発明が解決しようとする課題】しかしこれらの考えは
実際の大強度放射光を用いることと同様の苛酷な条件下
でテストを行うことは極めて困難で成功が確認されてい
ない。X線の中で大気中を透過できる波長は2Å以下の
ものを硬X線といい、大気の吸収係数が大きく、大気中
を伝搬できず、真空中で放射し、伝搬させる波長500 Å
〜2Å位のX線を軟X線という。However, these ideas are extremely difficult to test under the same harsh conditions as actual high-intensity synchrotron radiation, and their success has not been confirmed. Hard X-rays with a wavelength of 2 Å or less that can be transmitted through the atmosphere in X-rays have a large absorption coefficient of the atmosphere and cannot propagate in the atmosphere, so they are emitted in a vacuum and propagated in a wavelength of 500 Å
X-rays of about 2Å are called soft X-rays.
【0004】このような放射光軟X線又はレーザー等の
大強度光を光源とする軟X線リソグラフィーの結像光学
系の反射鏡の反射面又は顕微鏡の集光鏡の反射面は従来
は適当な高耐熱性コーティングが確認されておらず、そ
の開発が要望されていた。Conventionally, the reflecting surface of the reflecting mirror of the imaging optical system of the soft X-ray lithography using the high intensity light such as the synchrotron radiation soft X-ray or laser or the reflecting surface of the condenser mirror of the microscope is suitable. A high heat resistant coating has not been confirmed, and its development has been demanded.
【0005】[0005]
【課題を解決するための手段】本発明の目的は放射光軟
X線又はレーザー等の非常に強力な光が当たっても、そ
の多層膜構造が破壊されずに保たれ、当初の性能のまま
安定して放射光を反射できる多層膜反射鏡の構成材料と
しての多層膜の新しい組み合わせ、あるいはその目的に
適う優れた材料よりなるコーティングを施した多層膜反
射鏡を提供するにある。SUMMARY OF THE INVENTION The object of the present invention is to keep the multilayer film structure intact even when exposed to very strong light such as synchrotron radiation soft X-rays or lasers, and to maintain the original performance. (EN) It is possible to provide a new combination of multilayer films as a constituent material of a multilayer film mirror capable of stably reflecting emitted light, or a multilayer film mirror having a coating made of an excellent material suitable for the purpose.
【0006】本発明は繰返し単位がMo/BN又はW/
BNの積層体であって、繰返し数が50〜100 で、1層当
りの厚さが30〜60Åである積層多層膜で、その総膜厚さ
が4500〜9000ÅであるMo/BN又はW/BNの繰返し
積層多層膜を、軟X線又はレーザーを光源とする光学系
の反射鏡の反射面に、コーティングしたことを特徴とす
るBNを用いた高耐熱性軟X線多層膜反射鏡である。In the present invention, the repeating unit is Mo / BN or W /
A laminated multilayer film of BN, having a repetition rate of 50 to 100 and a thickness of 30 to 60Å per layer, and a total film thickness of 4500 to 9000Å Mo / BN or W / A highly heat-resistant soft X-ray multilayer film reflecting mirror using BN, characterized in that a repeating laminated multilayer film of BN is coated on a reflecting surface of a reflecting mirror of an optical system using a soft X-ray or a laser as a light source. .
【0007】[0007]
【作用】本発明者等は最近問題となっている軟X線等の
大強度放射光やレーザーの照射に対する多層膜の安定性
を検討した。The present inventors examined the stability of the multilayer film against the irradiation of high intensity radiant light such as soft X-rays or laser which has been a problem recently.
【0008】かかる高耐熱性軟X線多層膜が発明されれ
ば、放射光を光源として利用している放射光科学におけ
る高効率軟X線反射鏡素子として幅広く用いられること
となる。さらには現在懸命の開発が進められている次世
代超LSI作製のためX線縮小投影露光リソグラフィー
や、半導体加工として有望な軟X線CVD(気相成長)
法では放射光を光源とすることが前提になっており、大
強度放射光を光源とする光学系の反射鏡の耐熱性の問題
が一挙に解決されることとなる。If such a high heat-resistant soft X-ray multilayer film is invented, it will be widely used as a high-efficiency soft X-ray reflecting mirror element in synchrotron radiation science that uses synchrotron radiation as a light source. Furthermore, X-ray reduction projection exposure lithography for the production of next-generation VLSI, which is currently under intense development, and soft X-ray CVD (vapor phase growth), which is promising for semiconductor processing
The method is based on the premise that synchrotron radiation is used as the light source, and the problem of heat resistance of the reflecting mirror of the optical system that uses high intensity radiation as the light source will be solved all at once.
【0009】多層膜が強力な放射光を受けた場合、それ
によって局所的に高温になったり、高エネルギー光の物
理的作用によって多層膜を構成している各々の物質が相
互に拡散しあったり、物質的変化を受けて多層膜の本来
の性能が失われてしまうのが普通である。高耐熱性多層
膜は単に融点が高い物質であるというだけではなく、物
理的にも安定な物質で構成されることが要求される。し
かしこれに関するデータは現在極めて不充分である。When the multi-layered film receives strong radiant light, the temperature of the multi-layered film locally rises, and the substances constituting the multi-layered film mutually diffuse due to the physical action of high-energy light. However, it is usual that the original performance of the multilayer film is lost due to the material change. The high heat resistant multilayer film is required not only to be a substance having a high melting point, but also to be made of a physically stable substance. However, the data on this is currently very insufficient.
【0010】本発明は放射光軟X線又はレーザー等の大
強度光に対しても充分耐えられる多層膜を構成する材料
として、BN(窒化ホウ素)を実際に高温アニールテス
トと放射光照射テストを通じて実験的に幾多研究の結
果、本発明を完成したものである。According to the present invention, BN (boron nitride) is actually used as a material for forming a multilayer film that can sufficiently withstand high intensity light such as soft X-rays or laser, through a high temperature annealing test and a radiation irradiation test. The present invention has been completed as a result of many experimental studies.
【0011】多層膜反射鏡は周期(相隣る物質の2層の
厚さの合計)を変えることによって最大反射率の波長を
ずらすことができる。つまり多層膜の用途に合わせ、最
も必要とする波長の光を取り出すために多層膜を設計・
製作できる利点がある。本発明においては、Mo/BN
又はW/BNの繰返し積層多層膜を用いてその利用目的
に応じて作製された軟X線用多層膜は、放射光を利用す
る基礎科学研究における光学系の基本素子として、また
超LSI作製用縮小投影露光系や軟X線CVD法の光学
系の素子として大強度放射光に対しても本来の性能を保
持し、目的の波長の光を安定に供給できる高耐熱性軟X
線多層膜反射鏡を見出した。The wavelength of the maximum reflectance can be shifted by changing the period (sum of thicknesses of two layers of adjacent materials) of the multilayer film reflecting mirror. In other words, the multilayer film is designed / designed to extract the light of the most necessary wavelength according to the application of the multilayer film
It has the advantage of being manufactured. In the present invention, Mo / BN
Or, a multilayer film for soft X-rays, which is manufactured by using a W / BN repeated multilayer film according to its purpose, is used as a basic element of an optical system in basic scientific research using synchrotron radiation, and for the production of VLSI. High heat-resistant soft X that can maintain its original performance even with high intensity radiant light and can stably supply light of the target wavelength as an element of reduction projection exposure system and optical system of soft X-ray CVD method.
A linear multilayer mirror was found.
【0012】[0012]
【実施例】以下本発明の軟X線多層膜反射鏡としてMo
/BN又はW/BNが所望の高耐熱性材料であることを
見出すために下記の基礎実験を行った。EXAMPLES As a soft X-ray multilayer mirror of the present invention, Mo
The following basic experiments were conducted to find that / BN or W / BN is a desired high heat resistant material.
【0013】試験例1 軟X線多層膜Mo/X,W/X
(X=Si,C,BN,B4 C)のアニールテスト 大強度放射光やレーザーの照射に対する多層膜の安定性
が最近問題となっている。本発明の研究ではこのような
強力放射光の照射にも耐えられる軟X線多層膜反射鏡の
開発を系統的に進めるため、高密度物質としてはMoと
Wを、低密度物質としてSi,C,BN,B4 Cを選
び、アニール前後の軟X線反射率の変化から性能評価を
行った。条件をそろえるため、各多層膜は入射角45゜の
とき100 eV付近に反射ピークを持つように設計した。
試料はマグネトロンスパッタ法でSiウェハ上に作成し
た。アニールは真空電気炉で200 ℃から700 ℃まて100
℃おきに、各温度では5時間ずつのアニールを行った。
反射率はレーザープラズマを光源とした軟X線反射率計
で測定した。その結果を図1に示す。図1は横軸にアニ
ール温度、縦軸に反射率をとって測定したものである。
これからわかるように熱的安定性はMoやWには依ら
ず、軽元素物質によって主に決まっており、4つの物質
の中ではBNが最もすぐれ、B4 Cがそれに次いでいる
ことがわかった。Test Example 1 Soft X-ray multilayer film Mo / X, W / X
Annealing test of (X = Si, C, BN, B 4 C) The stability of the multilayer film against the irradiation of high-intensity synchrotron radiation and laser has recently become a problem. In the research of the present invention, in order to systematically proceed with the development of a soft X-ray multilayer mirror that can withstand the irradiation of such intense synchrotron radiation, Mo and W are used as high-density materials, and Si and C are used as low-density materials. , BN, B 4 C were selected and the performance was evaluated from the change in the soft X-ray reflectance before and after annealing. In order to meet the conditions, each multilayer film was designed to have a reflection peak near 100 eV at an incident angle of 45 °.
The sample was created on a Si wafer by the magnetron sputtering method. Annealing is performed in a vacuum electric furnace at 200 ℃ to 700 ℃ until 100
Annealing was performed every 5 ° C. for 5 hours at each temperature.
The reflectance was measured with a soft X-ray reflectometer using laser plasma as a light source. The result is shown in FIG. In FIG. 1, the horizontal axis represents the annealing temperature and the vertical axis represents the reflectance.
As can be seen, the thermal stability is determined not by Mo or W but by the light element material, and BN is the best among the four materials, followed by B 4 C.
【0014】試験例2 軟X線多層膜Mo/X,W/X
(X=BN,B4 C)のアンジュレーター光照射テスト 上記試験例1のアニールテストの結果から軽元素物質と
してBNとB4 Cを用いた軟X線多層膜が熱的安定性に
すぐれていることがわかった。これらが実際の強力な放
射光に対してどのような安定性を示すかを確認するため
PF(文部省高エネルギー物理学研究所放射光実験施設
(フォトン・ファクトリー)BL−28の直進ビームライ
ンでアンジュレーター光を照射し、その前後の反射率の
変化をレーザープラズマを光源とした軟X線反射率計で
評価した。試料はアニールテストの時と同様に入射角45
゜で100 eV付近に反射率ピークが来るように設計し、
マグネトロンスパッタでSiC基板上に成膜した。照射
はアンジュレーターのギャップが60mmでリング電流が約
340 mAの時に10分間行った。このときのパワー密度は
約2.3 W/mm2 であることは熱量計測法で確かめた。図
2はMo/BNについて照射前と後について入射角45゜
で測定した結果を示す。図2より明らかなように、4つ
の中ではMo/BNが最も安定しており、W/BNがそ
れについでいることがわかった。この結果はアニールテ
ストの傾向と大体一致することが確かめられた。Test Example 2 Soft X-ray multilayer film Mo / X, W / X
(X = BN, B 4 C) Undulator Light Irradiation Test From the results of the annealing test of Test Example 1 above, the soft X-ray multilayer film using BN and B 4 C as the light element substances has excellent thermal stability. I found out that In order to confirm what kind of stability these show with respect to actual strong synchrotron radiation, angling at the straight beam line of the PF (Photon Factory) BL-28 Synchrotron Radiation Experiment Facility (Photon Factory) The change in reflectance before and after the irradiation with the latrator light was evaluated by a soft X-ray reflectometer using a laser plasma as a light source.
Designed to have a reflectance peak near 100 eV at
A film was formed on a SiC substrate by magnetron sputtering. For irradiation, the undulator gap is 60 mm and the ring current is approximately
It was carried out for 10 minutes at 340 mA. It was confirmed by calorimetry that the power density at this time was about 2.3 W / mm 2 . FIG. 2 shows the results of measurement of Mo / BN before and after irradiation at an incident angle of 45 °. As is clear from FIG. 2, it was found that Mo / BN is the most stable of the four and W / BN follows it. It was confirmed that this result agrees with the tendency of the annealing test.
【0015】1. 実験の概要;軟X線多層膜反射鏡は高
い直入射反射率ばかりでなく、より良い偏光及び濾光特
性を示すので今注目されている軟X線光学素子である。
軟X線多層膜反射鏡の種々な応用が多くの分野で研究さ
れ特に次期世代シンクロトロン放射光(SR)用ビーム
ライン光学系に応用されることが期待されている。1. Outline of experiment: The soft X-ray multilayer mirror is a soft X-ray optical element that has been attracting attention because it exhibits not only high direct incidence reflectance but also better polarization and filtering characteristics.
Various applications of the soft X-ray multilayer mirror have been studied in many fields, and are expected to be applied particularly to the beamline optical system for the next-generation synchrotron radiation (SR).
【0016】アンジュレーターやウィグラーのような挿
入光源の技術における最近の進歩は極めて強力且つ収束
されたシンクロトロン放射(SR)ビームを供給するこ
とに成功した。この高輝度のビームは放射光(SR)科
学の新分野発展に貢献することが広く期待されている。
しかし、このような高性能ビームを自由に扱える光学素
子は未だ開発されていない。KAP,TAP等の如き有
機結晶は二結晶軟X線モノクロメーターの分散素子とし
て広く用いられている。しかし、これらの結晶にとって
強力な放射光に耐えることは絶対に不可能である。熱負
荷問題の見地から、軟X線多層膜反射鏡が最近注目され
ている。いくつかのグループは第1の結晶に軟X線多層
膜反射鏡を又第2の結晶に有機結晶の組合せを採用し、
分解能等の性能を評価した。Recent advances in the technology of intercalating light sources such as undulators and wigglers have succeeded in delivering extremely intense and focused synchrotron radiation (SR) beams. It is widely expected that this high-intensity beam will contribute to the development of a new field of synchrotron radiation (SR) science.
However, an optical element that can freely handle such a high-performance beam has not been developed yet. Organic crystals such as KAP and TAP are widely used as a dispersive element of a double crystal soft X-ray monochromator. However, it is absolutely impossible for these crystals to withstand intense synchrotron radiation. From the viewpoint of the heat load problem, a soft X-ray multilayer mirror has recently been drawing attention. Some groups have adopted a combination of soft X-ray multilayer mirrors for the first crystal and organic crystals for the second crystal,
The performance such as resolution was evaluated.
【0017】これまでのところ高熱負荷軟X線多層膜の
開発に成功していない。いくつかの研究グループは最近
かかる軟X線多層膜開発の第一歩として、興味ある予備
的研究結果を得た。ツイーグラー等はハジイラブ(ハン
ブルグ)で硬X線ウィグラーからの白色ビームを照射し
てPt/C,W/C,W/Si及びSi−W−Si/C
等の多層膜の安定性を調査した。試料表面のパワー密度
は約0.42W/mm2 であった。多層膜の安定性はCuKα
X線を用いて照射テスト前後の反射率を測定することに
より評価した。結果は単に約15%の減少を示したSi−
W−Si/C試料を除いて、積層構造の完全破壊から反
射率の40〜60%の減少に至るまでいろいろな損傷を示し
た。コートライト等はハジイラブにおいて硬X線ウィグ
ラーを使用し積極的に冷却したW/C及びW/Si多層
膜の安定性を調査した。照射テストは試料表面で約0.25
W/mm2 のパワー密度で40時間実行された。CuKα照
射のX線に対する反射率の減少は数%であったが、照射
された全試料は表面汚染を示した。照射効果は真空炉で
400 ℃で2時間の熱アニール効果よりも小さいことがわ
かった。照射効果が多層膜の繰返し積層数と構成材料に
よることもわかった。So far, the development of a high heat load soft X-ray multilayer film has not been successful. Several research groups recently obtained interesting preliminary research results as the first step in developing such a soft X-ray multilayer film. Twigler, etc., is radiated with a white beam from a hard X-ray wiggler in Hadjirab (Hamburg) to Pt / C, W / C, W / Si and Si-W-Si / C.
The stability of the multilayer film was investigated. The power density on the surface of the sample was about 0.42 W / mm 2 . The stability of the multilayer film is CuKα
It was evaluated by measuring the reflectance before and after the irradiation test using X-ray. The results showed only a reduction of about 15% Si-
Except for the W-Si / C sample, it showed various damages ranging from complete destruction of the laminated structure to 40-60% reduction in reflectance. Coat Light et al. Investigated the stability of W / C and W / Si multilayer films actively cooled using a hard X-ray wiggler in Hajiirab. The irradiation test is about 0.25 on the sample surface.
It was run for 40 hours at a power density of W / mm 2 . Although the decrease in reflectance for X-rays of CuKα irradiation was a few percent, all irradiated samples showed surface contamination. Irradiation effect in a vacuum furnace
It was found to be less than the effect of thermal annealing at 400 ° C for 2 hours. It was also found that the irradiation effect depends on the number of repeated laminated layers and the constituent materials.
【0018】本発明者等は多極ウィグラーからの白色放
射線に照射したMo/BN,Mo/B4 C,W/BN及
びW/B4 Cの繰返し積層多層膜の軟X線に対する安定
性を調べた。これら材料の組み合せはMo/X及びW/
X多層膜(X=C,Si,BN及びB4 C)の熱アニー
ルテストの結果から選択した。熱アニールテストの結果
を簡単に述べた後、照射テストの結果を示す。The present inventors have found that the stability of Mo / BN, Mo / B 4 C, W / BN and W / B 4 C repeatedly laminated multilayer films irradiated with white radiation from a multipolar wiggler against soft X-rays. Examined. The combination of these materials is Mo / X and W /
The X multilayer film (X = C, Si, BN and B 4 C) was selected from the results of the thermal annealing test. After briefly describing the result of the thermal annealing test, the result of the irradiation test is shown.
【0019】2. 熱アニールテスト シンクロトロン放射光照射テストのための試料を選択す
るために、本発明者等はMo/X及びW/X(X=C,
Si,BN及びB4 C)の多層膜のアニールテストを行
った。試料は反射率が入射角45゜で100 eV付近でピー
クになるような設計基準で準備した。試料はマグネトロ
ンスパッタで平滑なシリコンウェハ上に蒸着した。この
後高真空炉で200 から700 ℃の間の一定温度で5時間ア
ニールした。熱アニールの効果はアニールの後及び以前
の軟X線反射率と周期間隔を測定することにより調べ
た。8組の試料からシリコン(Si)とカーボン(C)
を含む試料は300 ℃以上で不安定となることがわかっ
た。図3はアニール温度で入射角45゜における多層膜反
射率の変化を示す。このデータはMo/BN,W/B
N,Mo/B4 C及びW/B4 Cの各多層膜のものであ
り、反射率はアニール前の値で規準化したものを示す。2. Thermal Annealing Test In order to select a sample for the synchrotron radiation irradiation test, we have Mo / X and W / X (X = C,
An annealing test was performed on a multilayer film of Si, BN, and B 4 C). The sample was prepared according to the design criteria such that the reflectance has a peak at around 100 eV at an incident angle of 45 °. The sample was deposited on a smooth silicon wafer by magnetron sputtering. After that, it was annealed in a high vacuum furnace at a constant temperature between 200 and 700 ° C. for 5 hours. The effect of thermal annealing was investigated by measuring soft X-ray reflectivity and period spacing after and before annealing. Silicon (Si) and carbon (C) from 8 sets of samples
It was found that the samples containing Pd became unstable at temperatures above 300 ° C. FIG. 3 shows changes in the reflectance of the multilayer film at an incident angle of 45 ° at the annealing temperature. This data is Mo / BN, W / B
N, Mo / B 4 C and W / B 4 C multilayer films, and the reflectance is normalized by the value before annealing.
【0020】図4は上記試料について周期長の変化を横
軸をアニール温度で示したものである。図4はアニール
温度で周期間隔の変化を示す。両Mo/BN及びW/B
Nの繰返し多層膜はアニールで膨張するが、一方Mo/
B4 C及びW/B4 Cはアニールで収縮する。(但し、
周期間隔はアニールの値で規準化されたものである。)FIG. 4 shows changes in the cycle length of the above sample, with the horizontal axis representing the annealing temperature. FIG. 4 shows the change in the cycle interval with the annealing temperature. Both Mo / BN and W / B
The repeating multilayer of N expands by annealing, while Mo /
B 4 C and W / B 4 C shrink upon annealing. (However,
The cycle interval is normalized by the value of annealing. )
【0021】1. 図3及び図4より明らかなように、熱
安定性は主として低密度材料(BN,C,B4 C,S
i)により影響され、金属(Mo,W)の種類によらな
い。 2. 両Mo/BN及びW/BNの繰返し多層膜は700 ℃
迄熱的に安定である。 これらの結果にもとづいて、本発明者等はBNとB4 C
を低密度材料として選択した。1. As is clear from FIGS. 3 and 4, thermal stability is mainly due to low density materials (BN, C, B 4 C, S).
It is influenced by i) and does not depend on the type of metal (Mo, W). 2. 700 / ℃ for both Mo / BN and W / BN repeating multilayer film
It is thermally stable up to. Based on these results, the present inventors have found that BN and B 4 C
Was selected as the low density material.
【0022】3. 試 料 Mo/BN,Mo/B4 C,W/BN及びW/B4 Cの
多層膜は本発明者等の研究においてマグネトロンスパッ
タ法により準備した。各多層膜は84Åの周期間隔を有す
る51層の繰返し多層からなる。上述の繰返し積層多層膜
とはMo/BN−Mo/BN−Mo/BNの如く同一の
組合せのものを繰返すので、Mo/BNとW/BNとを
交互に積層することを意味するものではない。この構造
は入射角45゜のとき105 eV付近に反射率のピークを生
じる。マグネトロンスパッタ装置は鉛直型で垂直に置か
れたターゲットと試料基板を有する。システムはDCス
パッタの4−インチターゲットとRFスパッタの6−イ
ンチターゲットを有する。モリブデン(Mo)とタング
ステン(W)は100 Wの入力でDCスパッタされ、一方
BNとB4 Cは400 Wの入力でスパッタされた。アルゴ
ン圧力は2.0 mTorrであった。多層膜は30×30×10mm3
の超研磨したSiC基板上に蒸着された。基板とターゲ
ット間の距離は約15 cm であった。基板を装着した回転
板は10回転/分で回転された。一つの物質のスパッタ
中、他の物質はシャッターを使って遮断した。例えば、
Mo/BN多層膜試料の場合、BN層は基板の全77回転
する間に蒸着された。得られた膜は約56Åの厚さで約1.
2 Å/秒の平均蒸着率であった。B4 C,Mo及びW層
の蒸着率はそれぞれ 0.90,2.5 及び1.9 Å/秒であっ
た。真空度は約2×10-6 Torr であった。SiC基板は
先づ中性洗剤をつけたガーゼで洗浄し、それから約40℃
の流水で完全に水洗した。濡れたSiC基板はエタノー
ルにつけた後、スパッタ装置に移す前に、40〜60分プロ
パノール蒸気浴で乾燥した。3. Samples Multilayer films of Mo / BN, Mo / B 4 C, W / BN and W / B 4 C were prepared by the magnetron sputtering method in the study by the present inventors. Each multilayer film consists of 51 repeating layers with a periodic spacing of 84Å. The above-mentioned repeated laminated multilayer film repeats the same combination such as Mo / BN-Mo / BN-Mo / BN, and does not mean that Mo / BN and W / BN are alternately laminated. . This structure causes a peak of reflectance near 105 eV at an incident angle of 45 °. The magnetron sputtering apparatus has a vertical type vertically placed target and sample substrate. The system has a 4-inch target for DC sputter and a 6-inch target for RF sputter. Molybdenum (Mo) and tungsten (W) were DC sputtered at 100 W input, while BN and B 4 C were sputtered at 400 W input. Argon pressure was 2.0 mTorr. Multilayer film is 30 × 30 × 10 mm 3
Was deposited on a super-polished SiC substrate. The distance between the substrate and the target was about 15 cm. The rotating plate equipped with the substrate was rotated at 10 rpm. During the sputtering of one material, the other material was blocked using a shutter. For example,
For the Mo / BN multilayer film sample, the BN layer was deposited during all 77 revolutions of the substrate. The film obtained has a thickness of approximately 56Å and approximately 1.
The average deposition rate was 2Å / sec. The vapor deposition rates of the B 4 C, Mo and W layers were 0.90, 2.5 and 1.9 Å / sec, respectively. The degree of vacuum was about 2 × 10 -6 Torr. The SiC substrate is first washed with gauze soaked in a neutral detergent, and then about 40 ° C.
It was completely washed with running water. The wet SiC substrate was dipped in ethanol and then dried in a propanol vapor bath for 40-60 minutes before being transferred to the sputter device.
【0023】マグネトロンスパッタにより準備された多
層膜に加えて、本発明者等はイオンビームスパッタによ
りRh/Si多層膜も準備した。アルゴン雰囲気は約3
×10-4 Torr であった。この多層膜は約45゜の入射角で
97eV付近のピーク反射率を有するように設計した。準
備された試料の軟X線反射率はレーザープラズマを光源
とした軟X線反射率計を用いて評価した。データは表1
に要約する。In addition to the multilayer film prepared by magnetron sputtering, the present inventors also prepared an Rh / Si multilayer film by ion beam sputtering. Argon atmosphere is about 3
It was × 10 -4 Torr. This multilayer film has an incident angle of about 45 °
It was designed to have a peak reflectance around 97 eV. The soft X-ray reflectivity of the prepared sample was evaluated using a soft X-ray reflectometer using laser plasma as a light source. The data is Table 1
In summary.
【0024】[0024]
【表1】 [Table 1]
【0025】4. 照射テスト 照射テストは2.5 GeVで運転されるフォトン ファク
トリ リングのビームラインBL−28の23極ウィグラー
から放射される白色ビームに試料をさらすことにより行
われた。このビームラインはベリリウムやグラファイト
の如きフィルターが無く、前置鏡もなかった。照射テス
トには光源から約16.5mに設置された超高真空テスト槽
が用いられた。本発明者等はこれ迄予め、銅製の光吸収
体を用いて熱量測定法により入射ビームのパワー密度分
布を測定しておいた。4. Irradiation test The irradiation test was carried out by exposing the sample to a white beam emitted from the 23-pole wiggler on the beam line BL-28 of the Photon Factory ring operated at 2.5 GeV. This beamline had no filters such as beryllium or graphite and no front mirror. For the irradiation test, an ultra-high vacuum test tank installed about 16.5 m from the light source was used. The present inventors have previously measured the power density distribution of the incident beam by a calorimetric method using a copper light absorber.
【0026】互いに近接して置かれた4つの試料は熱導
体としてのアルミ箔をはさんで水冷した銅製のホルダー
にきっちりと取り付けられた。試料表面温度は照射中サ
ファイア窓を通して赤外線カメラでモニターされた。更
に、温度は試料の一つに取り付けられたアルメル−クロ
メル熱電対(0.3 mm直径)でモニターされた。The four samples placed close to each other were tightly mounted in a water-cooled copper holder with an aluminum foil as a heat conductor sandwiched between them. The sample surface temperature was monitored with an infrared camera through a sapphire window during irradiation. In addition, the temperature was monitored with an alumel-chromel thermocouple (0.3 mm diameter) attached to one of the samples.
【0027】試料の上流に位置した8mm(縦)×9mm
(横)の開口を通って白色ウィグラービームは試料表面
に垂直に入射した。この配置ではX線エネルギーは反射
されない。先づ各試料の下半分をウィグラー ギャップ
を100 mm(K値で3.15)で約45分間照射した。リング電
流は約315 mAで、平均パワー密度は照射中心で約0.9
W/mm2 であった。続いて各試料の上半分をギャップ60
mm(K値で7.66)で約10分間照射された。この時のリン
グ電流は345 mAで約2.3 W/mm2 のパワー密度であっ
た。各試料の下半分照射中、熱電対は最高で約5℃の温
度上昇を示した。上半分照射中の上昇は13℃であった。
赤外線像から推定された表面温度は各々の場合で大体34
℃と60℃とであった。照射中、真空は4×10-8Torrより
良く保たれた。8 mm (length) x 9 mm located upstream of the sample
The white wiggler beam was vertically incident on the sample surface through the (horizontal) opening. X-ray energy is not reflected in this arrangement. First, the lower half of each sample was irradiated with a Wiggler gap at 100 mm (K value: 3.15) for about 45 minutes. The ring current is about 315 mA, and the average power density is about 0.9 at the irradiation center.
It was W / mm 2 . Then gap 60 the upper half of each sample.
mm (K value 7.66) for about 10 minutes. The ring current at this time was 345 mA, and the power density was about 2.3 W / mm 2 . During the lower half irradiation of each sample, the thermocouple showed a maximum temperature increase of about 5 ° C. The increase during the upper half irradiation was 13 ° C.
The surface temperature estimated from the infrared image is approximately 34 in each case.
℃ and 60 ℃. The vacuum was kept better than 4 × 10 -8 Torr during irradiation.
【0028】Rh/Siの多層膜は8mm×20mmの開口を
通してウィグラー ビームを照射した。上半分及び下半
分はそれぞれ15分及び10分間に1.7 及び2.2 W/mm2 の
パワー密度で照射された。基板の温度上昇は熱電対で測
定して各々の場合で大体170℃及び220 ℃であった。The Rh / Si multilayer film was irradiated with a wiggler beam through an opening of 8 mm × 20 mm. The upper and lower halves were irradiated at power densities of 1.7 and 2.2 W / mm 2 for 15 and 10 minutes, respectively. The temperature rise of the substrate was approximately 170 ° C and 220 ° C in each case measured by thermocouple.
【0029】5. 結果及び考察 多層膜試料へのウィグラー光照射の効果は入射角45゜で
の反射率を測定して評価した。反射率はレーザープラズ
マを光源とした軟X線反射率計で測定した。図5〜図9
はそれぞれMo/BN,W/BN,Mo/B4 C,W/
B4 C及びRh/Siについて測定したピーク反射率を
示す。実線(A)は照射前の試料の反射率を示し、白丸
をつけた破線(B)は0.9 W/mm2 のパワー密度での放
射光照射後の反射率を示す。黒丸をつけた点線(C)は
2.3 W/mm2 のパワー密度での放射光照射後の反射率を
示す。Mo/BN試料はピーク反射率で約20%減少し、
ピークは102 eVから96eVに移った。しかし、二つの
パワー密度の差による効果は観測出来ない。W/BN試
料はMo/BN試料と同様な効果を示すが、ピーク反射
率において約65%減少した。Mo/B4 C試料は0.9 W
/mm2 の照射で反射率があるだけで殆んど破壊された。
実際に、照射による多層膜が破壊されたのは眼でも見え
た。W/B4 C試料においては、反射率の減少は0.9 W
/mm2 の照射で約50%であり、一方2.3 W/mm2 の照射
で約98%以上であった。5. Results and Discussion The effect of irradiation of the wiggler light on the multilayer film sample was evaluated by measuring the reflectance at an incident angle of 45 °. The reflectance was measured with a soft X-ray reflectometer using laser plasma as a light source. 5 to 9
Are Mo / BN, W / BN, Mo / B 4 C, W / respectively
The peak reflectance measured for B 4 C and Rh / Si is shown. The solid line (A) shows the reflectance of the sample before irradiation, and the broken line (B) with white circles shows the reflectance after irradiation with radiant light at a power density of 0.9 W / mm 2 . The dotted line (C) with a black circle is
The reflectance after irradiation with synchrotron radiation at a power density of 2.3 W / mm 2 is shown. The Mo / BN sample has a peak reflectance of about 20% reduced,
The peak moved from 102 eV to 96 eV. However, the effect due to the difference between the two power densities cannot be observed. The W / BN sample shows the same effect as the Mo / BN sample, but the peak reflectance is reduced by about 65%. Mo / B 4 C sample is 0.9 W
Almost all of them were destroyed by the reflectance of irradiation of / mm 2 .
In fact, it was visible that the multilayer film was destroyed by the irradiation. In the W / B 4 C sample, the decrease in reflectance is 0.9 W
/ Mm is about 50% at an irradiation of 2, whereas was about 98% or more of 2.3 W / mm 2 irradiation.
【0030】図5は放射光照射前にSiC基板上のMo
/BN多層膜の反射率ピークの測定値(実線A)、同M
o/BN多層膜の上半分に0.9 W/mm2 の放射光照射後
(白丸破線B)、同Mo/BN多層膜の下半分に2.3 W
/mm2 の放射光照射後(黒丸点線C)に測定した反射率
ピーク値をそれぞれ示す特性図である。FIG. 5 shows Mo on a SiC substrate before irradiation with synchrotron radiation.
/ BN multilayer film reflectance peak measurement value (solid line A), same M
After irradiating 0.9 W / mm 2 of radiant light on the upper half of the o / BN multilayer film (white circled broken line B), 2.3 W on the lower half of the Mo / BN multilayer film.
FIG. 4 is a characteristic diagram showing reflectance peak values measured after irradiation with radiant light of / mm 2 (dotted circle C).
【0031】図6は放射光照射前にSiC基板上のW/
BN多層膜の反射率ピークの測定値(実線A)、W/B
N多層膜の上半分に0.9 W/mm2 の放射光照射後(白丸
破線B)、W/BN多層膜の下半分に2.3 W/mm2 の放
射光照射後(黒丸点線C)に測定した反射率ピーク値を
それぞれ示す特性図である。FIG. 6 shows W / on a SiC substrate before irradiation with radiant light.
Measured value of reflectance peak of BN multilayer film (solid line A), W / B
The upper half of the N multilayer film was irradiated with 0.9 W / mm 2 of radiant light (white circle dashed line B), and the lower half of the W / BN multilayer film was irradiated with 2.3 W / mm 2 of radiant light (black circle dotted line C). It is a characteristic view which shows each reflectance peak value.
【0032】図7は放射光照射前にSiC基板上のMo
/B4 C多層膜の反射率ピークの測定値(実線A)、M
o/B4 C多層膜の上半分に0.9 W/mm2 の放射光照射
後(白丸付破線B)、Mo/B4 Cの多層膜の下半分に
2.3 W/mm2 の放射光照射後(黒丸点線C)に測定した
反射率ピーク値をそれぞれ示す特性図である。FIG. 7 shows Mo on a SiC substrate before irradiation with synchrotron radiation.
/ B 4 C multilayer film reflectance peak measurement value (solid line A), M
After irradiating 0.9 W / mm 2 of radiant light on the upper half of the o / B 4 C multilayer film (broken line B with white circles), on the lower half of the Mo / B 4 C multilayer film
FIG. 3 is a characteristic diagram showing reflectance peak values measured after irradiation with 2.3 W / mm 2 of radiant light (dotted line C).
【0033】図8は放射光照射前にSiC基板上のW/
B4 Cの多層膜の反射率ピークの測定値(実線A)、W
/B4 C多層膜の上半分に0.9 W/mm2 の放射光照射後
(白丸破線B)、W/B4 C多層膜の下半分に2.3 W/
mm2 の放射光照射後(黒丸点線C)に測定した反射率ピ
ーク値をそれぞれ示す特性図である。FIG. 8 shows W / on a SiC substrate before irradiation with radiant light.
Measured value of reflectance peak of B 4 C multilayer film (solid line A), W
After irradiation of 0.9 W / mm 2 of radiant light on the upper half of the / B 4 C multilayer film (white circled broken line B), 2.3 W / on the lower half of the W / B 4 C multilayer film.
It is a characteristic view which respectively shows the reflectance peak value measured after irradiating a radiant light of mm 2 (black dotted line C).
【0034】図9は放射光照射前にRh/Si多層膜の
反射率測定値(実線A)及び 1.7W/mm2 の照射後(白
丸破線B)及び2.2 W/mm2 照射後(黒丸点線C)にそ
れぞれ測定したRh/Si多層膜の反射率ピーク値を示
す特性図である。[0034] Figure 9 is reflectance measurements of Rh / Si multilayer film before synchrotron radiation (solid line A) and after irradiation of 1.7 W / mm 2 (open circles dashed B) and 2.2 W / mm 2 after irradiation (black circle dotted line It is a characteristic view which shows the reflectance peak value of each measured Rh / Si multilayer film in C).
【0035】上記の結果を特徴付けているのは主として
BN及びB4 Cであり、モリブデン(Mo)やタングス
テン(W)ではない。すなわちMo/BN及びW/BN
試料は2.3 W/mm2 の照射に耐えられるが、反射率ピー
クは長波長の方へ移行する。一方、Mo/B4 C及びW
/B4 C試料は2.3 W/mm2 の軟X線及びX線ビーム照
射には耐えられない。しかし、ピーク位置は少なくとも
0.9 W/mm2 の照射には安定である。これは第2項で述
べたアニールテストの結果と傾向が定性的に一致する。
この結果はアニールテストがシンクロトロン放射照射テ
ストをする際に材料の組み合せを選択する上で有効な手
段であることを示唆している。It is mainly BN and B 4 C that characterize the above results, not molybdenum (Mo) or tungsten (W). That is, Mo / BN and W / BN
The sample can withstand irradiation of 2.3 W / mm 2 , but the reflectance peak shifts to longer wavelengths. On the other hand, Mo / B 4 C and W
The / B 4 C sample cannot withstand 2.3 W / mm 2 soft X-ray and X-ray beam irradiation. However, the peak position is at least
It is stable to irradiation of 0.9 W / mm 2 . This tendency qualitatively agrees with the result of the annealing test described in the second section.
This result suggests that the annealing test is an effective means for selecting the combination of materials when performing the synchrotron irradiation test.
【0036】Mo/BN及びW/BNの多層膜試料にと
って、2.3 W/mm2 で照射中の表面温度は0.9 W/mm2
のときに比べて相当高いが、反射率の減少がパワー密度
には依らず大体同じであるということは非常に注目すべ
きである。しかし、0.9 W/mm2 で照射中のX線線量は
2.3 W/mm2 で照射中の線量よりほんの少々高いだけで
ある。Mo/BN及びW/BNで見られた軟X線反射率
の減少の理由は熱効果ではなく特にBN層放射光誘起効
果におけるであろうと思もわれる。For the Mo / BN and W / BN multilayer film samples, the surface temperature during irradiation at 2.3 W / mm 2 was 0.9 W / mm 2.
It is very remarkable that the decrease in reflectance is almost the same regardless of the power density, though it is considerably higher than that at. However, the X-ray dose during irradiation at 0.9 W / mm 2
It is only slightly higher than the dose during irradiation at 2.3 W / mm 2 . It is believed that the reason for the decrease in the soft X-ray reflectance observed in Mo / BN and W / BN is not the thermal effect but the BN layer radiant light induced effect.
【0037】最後に、比較の目的で、本発明者等はRh
/Siの多層膜の試験結果を示す。図9はウィグラー光
で照射したRh/Siの軟X線反射率の変化を示す。実
線曲線Aは準備直後の試料の反射率を示す。白丸(B曲
線)は1.7 W/mm2 のパワー密度による照射テストの結
果であり、黒丸(C曲線)は2.2 W/mm2 のパワー密度
によるものである。26%のピーク反射率は1.7 W/mm2
のパワー密度に対して1.7 %に減少し、2.2 W/mm2 の
パワー密度に対して1.5 %に減少した。ピーク位置はそ
れぞれ92.5eVから95.5eV及び96.5eVへ移行した。
基板温度は照射条件の相違からRh/SiとMo/BN
試料の間で異なっているが、Rh/Si多層膜はMo/
BN多層膜より安定でないことが確かめられた。Finally, for comparison purposes, the inventors
The test result of the / Si multilayer film is shown. FIG. 9 shows changes in the soft X-ray reflectance of Rh / Si irradiated with wiggler light. The solid curve A shows the reflectance of the sample immediately after preparation. The white circles (B curve) are the results of irradiation tests with a power density of 1.7 W / mm 2 , and the black circles (C curve) are with a power density of 2.2 W / mm 2 . The peak reflectance of 26% is 1.7 W / mm 2
The power density was decreased to 1.7% and the power density to 2.2 W / mm 2 was decreased to 1.5%. The peak positions shifted from 92.5 eV to 95.5 eV and 96.5 eV, respectively.
Substrate temperature is Rh / Si and Mo / BN because of different irradiation conditions.
Although different among the samples, the Rh / Si multilayer film has Mo /
It was confirmed to be less stable than the BN multilayer film.
【0038】6. 実験結論 Mo/X及びW/X(X=C,Si,BN及びB4 C)
多層膜のアニールテストを基礎にして、本発明者等は照
射テスト用にMo/BN,W/BN,Mo/B4 C及び
W/B4 Cの多層膜を選択した。これらの試料はSiC
基板上にマグネトロンスパッタ法により作成された。パ
ワー密度2.3 W/mm2 の白色ウィグラー光で10分間照射
したときの効果を入射角45゜での軟X線反射率を比較す
ることにより評価した。その結果次の結論が得られた。 1. Mo/BNは上記条件下で最も安定している。 2. Mo/BN及びW/BN多層膜でみられた反射率減
少はBN層における放射光誘起効果に起因するものと思
われる。 3. アニールテストは照射テスト用試料の條補を選ぶの
に有効である。6. Experimental Conclusions Mo / X and W / X (X = C, Si, BN and B 4 C)
Based on the multilayer film anneal test, the inventors have selected Mo / BN, W / BN, Mo / B 4 C and W / B 4 C multilayer films for irradiation testing. These samples are SiC
It was created on the substrate by the magnetron sputtering method. The effect of irradiation with white wiggler light having a power density of 2.3 W / mm 2 for 10 minutes was evaluated by comparing the soft X-ray reflectance at an incident angle of 45 °. As a result, the following conclusions were obtained. 1. Mo / BN is the most stable under the above conditions. 2. The decrease in reflectance observed in the Mo / BN and W / BN multilayers is considered to be due to the radiation-induced effect in the BN layer. 3. The annealing test is effective in selecting a sample for irradiation test.
【0039】[0039]
【発明の効果】本発明によると目的に合った波長の光
を、大強度でしかも安定に供給されることが期待できる
ので、放射光利用基礎科学分野では極めて質の高い分光
スぺクトルを短時間で測定できるようになり、これまで
光の強度の点から困難視されていた分光実験にも道を開
いてくれることが期待できる。一方、X線縮小投影露光
リソグラフィーや軟X線CVD加工では大強度安定ビー
ムによってLSIパターンの転写や半導体加工が、短時
間のうちに一様にできることから生産ベースにのせる際
の課題も解決される。According to the present invention, it can be expected that light having a wavelength suitable for the purpose can be supplied with high intensity and stably. Therefore, in the field of basic science utilizing synchrotron radiation, a very high-quality spectroscopic spectrum can be shortened. It will be possible to measure in time, and it can be expected to open the way to spectroscopic experiments, which have been difficult to achieve due to the light intensity. On the other hand, in X-ray reduction projection exposure lithography and soft X-ray CVD processing, transfer of LSI patterns and semiconductor processing can be made uniform in a short time by a high-intensity stable beam. It
【図1】各種多層膜のアニール後における入射角45゜で
のピーク反射率の変化を横軸にアニール温度、縦軸に反
射率をとってプロットしたものである。FIG. 1 is a plot of changes in peak reflectance at various incident angles of 45 ° after annealing of various multilayer films, with the horizontal axis representing the annealing temperature and the vertical axis representing the reflectance.
【図2】Mo/BNについて照射テスト前(実線)と後
(点線:2.3 W/mm2 ,−点鎖線:0.9 W/mm2 )につ
いて入射角45゜で測定した反射ピークである。FIG. 2 shows reflection peaks of Mo / BN measured before and after the irradiation test (solid line) and after (dotted line: 2.3 W / mm 2 , −dot chain line: 0.9 W / mm 2 ) at an incident angle of 45 °.
【図3】各種多層膜のアニール後における入射角45゜で
のピーク反射率の変化を横軸にアニール温度、縦軸に反
射率をとってプロットしたものである。FIG. 3 is a plot of changes in peak reflectance at an incident angle of 45 ° after annealing of various multilayer films, with the horizontal axis representing the annealing temperature and the vertical axis representing the reflectance.
【図4】図4は各種多層膜のアニール後における周期間
隔の変化をアニール温度に対してプロットしたものであ
る。FIG. 4 is a plot of changes in cycle intervals after annealing of various multilayer films with respect to annealing temperature.
【図5】図5は放射光照射前にSiC基板上のMo/B
N多層膜の反射率ピークの測定値(実線A)、同Mo/
BN多層膜の上半分に0.9 W/mm2 の放射光照射後(白
丸破線B)、同Mo/BN多層膜の下半分に2.3 W/mm
2 の放射光照射後(黒丸点線C)に測定した反射率ピー
ク値をそれぞれ示す特性図である。FIG. 5 shows Mo / B on a SiC substrate before irradiation with synchrotron radiation.
Measured value of reflectance peak of N multilayer film (solid line A), Mo /
After irradiating 0.9 W / mm 2 of radiant light on the upper half of the BN multilayer film (white circled broken line B), 2.3 W / mm on the lower half of the Mo / BN multilayer film.
It is a characteristic view which respectively shows the reflectance peak value measured after irradiating the radiant light of 2 (black circle dotted line C).
【図6】図6は放射光照射前にSiC基板上のW/BN
多層膜の反射率ピークの測定値(実線A)、W/BN多
層膜の上半分に0.9 W/mm2 の放射光照射後(白丸破線
B)、W/BN多層膜の下半分に2.3 W/mm2 の放射光
照射後(黒丸点線C)に測定した反射率ピーク値をそれ
ぞれ示す特性図である。FIG. 6 shows W / BN on a SiC substrate before irradiation with synchrotron radiation.
Measurement value of the reflectance peak of the multilayer film (solid line A), after irradiation with 0.9 W / mm 2 of radiant light on the upper half of the W / BN multilayer film (white circle broken line B), 2.3 W on the lower half of the W / BN multilayer film FIG. 4 is a characteristic diagram showing reflectance peak values measured after irradiation with radiant light of / mm 2 (dotted circle C).
【図7】図7は放射光照射前にSiC基板上のMo/B
4 C多層膜の反射率ピークの測定値(実線A)、Mo/
B4 C多層膜の上半分に0.9 W/mm2 の放射光照射後
(白丸付破線B)、Mo/B4 Cの多層膜の下半分に2.
3 W/mm2 の放射光照射後(黒丸点線C)に測定した反
射率ピーク値をそれぞれ示す特性図である。FIG. 7 shows Mo / B on a SiC substrate before irradiation with synchrotron radiation.
Measured value of reflectance peak of 4 C multilayer film (solid line A), Mo /
After irradiating 0.9 W / mm 2 of radiant light on the upper half of the B 4 C multilayer film (broken line B with white circles), 2. on the lower half of the Mo / B 4 C multilayer film.
FIG. 3 is a characteristic diagram showing reflectance peak values measured after irradiation with radiant light of 3 W / mm 2 (dotted circles C).
【図8】図8は放射光照射前にSiC基板上のW/B4
Cの多層膜の反射率ピークの測定値(実線A)、W/B
4 C多層膜の上半分に0.9 W/mm2 の放射光照射後(白
丸破線B)、W/B4 C多層膜の下半分に2.3 W/mm2
の放射光照射後(黒丸点線C)に測定した反射率ピーク
値をそれぞれ示す特性図である。FIG. 8 shows W / B 4 on a SiC substrate before irradiation with synchrotron light.
Measurement value of the reflectance peak of the multilayer film of C (solid line A), W / B
After irradiating 0.9 W / mm 2 of radiant light on the upper half of the 4 C multilayer film (white circled broken line B), 2.3 W / mm 2 on the lower half of the W / B 4 C multilayer film.
FIG. 5 is a characteristic diagram showing reflectance peak values measured after irradiation with the radiant light (dotted circle C).
【図9】図9は放射光照射前にRh/Si多層膜の反射
率測定値(実線A)及び 1.7W/mm2 の照射後(白丸破
線B)及び2.2 W/mm2 照射後(黒丸点線C)にそれぞ
れ測定したRh/Si多層膜の反射率ピーク値を示す特
性図である。Figure 9 is reflectance measurements of Rh / Si multilayer film before synchrotron radiation (solid line A) and after irradiation of 1.7 W / mm 2 (open circles dashed B) and 2.2 W / mm 2 after irradiation (black circles It is a characteristic view which shows the reflectance peak value of the Rh / Si multilayer film which was measured in each of dotted lines C).
Claims (2)
積層体であって、繰返し数が50〜100 で、1層当りの厚
さが30〜60Åである積層多層膜で、その総膜厚さが4500
〜9000ÅであるMo/BN又はW/BNの繰返し積層多
層膜を、軟X線又はレーザーを光源とする光学系の反射
鏡の反射面に、コーティングしたことを特徴とする高耐
熱性軟X線多層膜反射鏡。1. A laminated multilayer film having a repeating unit of Mo / BN or W / BN and having a repeating number of 50 to 100 and a thickness of 30 to 60Å per layer, and a total film thereof. 4500 thickness
A highly heat-resistant soft X-ray characterized by coating a repeating laminated multilayer film of Mo / BN or W / BN of up to 9000Å on the reflecting surface of a reflecting mirror of an optical system using a soft X-ray or a laser as a light source. Multi-layered film mirror.
はレーザー等の大強度光を光源とする軟X線リソグラフ
ィーの結像光学系の反射鏡の反射面又は軟X線顕微鏡に
する顕微鏡の集光鏡の反射面に、コーティングした請求
項1記載の高耐熱性軟X線多層膜反射鏡。2. A microscope which uses a soft X-ray such as synchrotron radiation or a reflection surface of a reflection mirror of a focusing mirror of an imaging optical system of soft X-ray lithography which uses high intensity light such as laser as a light source or a microscope which is used as a soft X-ray microscope. The highly heat-resistant soft X-ray multilayer mirror according to claim 1, wherein the reflective surface of the condenser mirror is coated.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34456992A JPH06194497A (en) | 1992-12-24 | 1992-12-24 | Highly heat resistant soft x-ray multilayer film reflector employing bn |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP34456992A JPH06194497A (en) | 1992-12-24 | 1992-12-24 | Highly heat resistant soft x-ray multilayer film reflector employing bn |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH06194497A true JPH06194497A (en) | 1994-07-15 |
Family
ID=18370289
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP34456992A Pending JPH06194497A (en) | 1992-12-24 | 1992-12-24 | Highly heat resistant soft x-ray multilayer film reflector employing bn |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06194497A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6947518B2 (en) * | 1999-05-28 | 2005-09-20 | Mitsubishi Denki Kabushiki Kaisha | X-ray exposure apparatus, X-ray exposure method, X-ray mask, X-ray mirror, synchrotron radiation apparatus, synchrotron radiation method and semiconductor device |
| US6947519B2 (en) | 2000-09-18 | 2005-09-20 | Canon Kabushiki Kaisha | X-ray exposure apparatus and method, semiconductor manufacturing apparatus, and microstructure |
| JP2008090030A (en) * | 2006-10-03 | 2008-04-17 | Japan Atomic Energy Agency | High efficiency heat resistant multilayer grating |
| JP2010076955A (en) * | 2008-09-24 | 2010-04-08 | Mitsui Chemicals Inc | Sheet with metallic foil and laminated body for circuit board |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0237303A (en) * | 1988-07-27 | 1990-02-07 | Olympus Optical Co Ltd | Multilayered reflecting mirror |
| JPH02124500A (en) * | 1988-06-13 | 1990-05-11 | Nippon Telegr & Teleph Corp <Ntt> | Multilayered film |
-
1992
- 1992-12-24 JP JP34456992A patent/JPH06194497A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02124500A (en) * | 1988-06-13 | 1990-05-11 | Nippon Telegr & Teleph Corp <Ntt> | Multilayered film |
| JPH0237303A (en) * | 1988-07-27 | 1990-02-07 | Olympus Optical Co Ltd | Multilayered reflecting mirror |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6947518B2 (en) * | 1999-05-28 | 2005-09-20 | Mitsubishi Denki Kabushiki Kaisha | X-ray exposure apparatus, X-ray exposure method, X-ray mask, X-ray mirror, synchrotron radiation apparatus, synchrotron radiation method and semiconductor device |
| US6947519B2 (en) | 2000-09-18 | 2005-09-20 | Canon Kabushiki Kaisha | X-ray exposure apparatus and method, semiconductor manufacturing apparatus, and microstructure |
| JP2008090030A (en) * | 2006-10-03 | 2008-04-17 | Japan Atomic Energy Agency | High efficiency heat resistant multilayer grating |
| JP2010076955A (en) * | 2008-09-24 | 2010-04-08 | Mitsui Chemicals Inc | Sheet with metallic foil and laminated body for circuit board |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Andreev et al. | Multilayer optics for XUV spectral region: technology fabrication and applications | |
| Seely et al. | Evidence for gain on the C vi 182 Å transition in a radiation-cooled selenium/Formvar plasma | |
| US8198612B2 (en) | Systems and methods for heating an EUV collector mirror | |
| Ziegler et al. | Performance of multilayers in intense synchrotron x‐ray beams | |
| Steeg et al. | Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron lasers | |
| Snigireva et al. | Diamond X-ray refractive optics | |
| Louis et al. | Enhancement of reflectivity of multilayer mirrors for soft x-ray projection lithography by temperature optimization and ion bombardment | |
| JPH06194497A (en) | Highly heat resistant soft x-ray multilayer film reflector employing bn | |
| Farahani et al. | Damage threshold of amorphous carbon mirror for 177 eV FEL radiation | |
| JPH09230098A (en) | Multi-layer X-ray mirror | |
| EP3438744B1 (en) | Method for treating a reflective optical element for the euv wavelength range, method for producing same, and treating apparatus | |
| JP3018648B2 (en) | Method for manufacturing X-ray multilayer mirror | |
| Yanagihara et al. | Stability of sputtered Mo/BN, W/BN, Mo/B4C, and W/B4C soft X-ray multilayers under exposure to multipole-wiggler radiation | |
| US20220214609A1 (en) | Blank mask and photomask using the same | |
| JPH03174307A (en) | Production of oxide superconductor | |
| CN114875370A (en) | Method for reducing interface width of short-wavelength multilayer film based on low surface energy material co-sputtering | |
| Nakajima et al. | Thermal stability of Ni-C multilayer mirror for X-rays | |
| Farnum et al. | Neutron damage to diagnostic mirrors | |
| Yanagihara et al. | Stability tests for soft x-ray multilayers under exposure to multipole-wiggler radiation | |
| Feigl et al. | High-temperature LPP collector mirror | |
| JP3309890B2 (en) | Multi-layer X-ray reflector | |
| Juha et al. | Radiation damage to amorphous-carbon optical coatings | |
| JPH06167599A (en) | Production method for multilayer film mirror for x-ray | |
| Benoit et al. | EUV multilayer mirrors with enhanced stability | |
| Andreev et al. | Small d-spacing multilayer structures for the photon energy range E> 0.3 keV |