[go: up one dir, main page]

JPH06218269A - Horizontal type fluidized bed catalyst reactor - Google Patents

Horizontal type fluidized bed catalyst reactor

Info

Publication number
JPH06218269A
JPH06218269A JP1072393A JP1072393A JPH06218269A JP H06218269 A JPH06218269 A JP H06218269A JP 1072393 A JP1072393 A JP 1072393A JP 1072393 A JP1072393 A JP 1072393A JP H06218269 A JPH06218269 A JP H06218269A
Authority
JP
Japan
Prior art keywords
heat transfer
reactor
fluidized catalyst
fluidized
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1072393A
Other languages
Japanese (ja)
Inventor
Katsutoshi Murayama
勝利 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP1072393A priority Critical patent/JPH06218269A/en
Publication of JPH06218269A publication Critical patent/JPH06218269A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

(57)【要約】 【構成】縦型バッフルプレートにより固定された管径12
〜40mmの水平なU字管型伝熱管を有し、反応熱を高圧蒸
気として回収する横型流動層触媒反応器 【効果】細い伝熱管を用いることができるようになるの
で単位容積当たりの伝熱面積が増大し、より高圧の蒸気
が回収されると共に、反応器のコストが削減され、大型
装置において有利に用いられる。また流動触媒層におけ
る空塔速度(LV)が小さいので、触媒粒子の磨耗や破損、
及び反応器内部の磨耗が防止される。
(57) [Summary] [Constitution] Pipe diameter 12 fixed by vertical baffle plate
Horizontal fluidized bed catalytic reactor that has a horizontal U-shaped heat transfer tube of ~ 40mm and recovers the reaction heat as high-pressure steam. [Effect] Since a thin heat transfer tube can be used, heat transfer per unit volume The area is increased, higher pressure vapor is recovered, the cost of the reactor is reduced, and it is advantageously used in a large apparatus. Also, since the superficial velocity (LV) in the fluidized catalyst bed is small, wear and damage of catalyst particles,
And wear inside the reactor is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超大型装置に適した流動
層触媒反応器に関する。本発明の流動層触媒反応器は、
水素、一酸化炭素および炭酸ガスを有効成分とする合成
ガスからのメタノール合成反応やフィシャー合成反応等
の発熱反応において使用されるものである。
FIELD OF THE INVENTION The present invention relates to a fluidized bed catalytic reactor suitable for ultra-large equipment. The fluidized bed catalytic reactor of the present invention is
It is used in an exothermic reaction such as a methanol synthesis reaction or a Fischer synthesis reaction from a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide as active ingredients.

【0002】[0002]

【従来の技術】流動層触媒反応器は触媒層での伝熱が良
く均一な温度分布が得られ、従って副反応生成物を低く
抑えることができ高転化率および高選択率が得られるこ
と、反応熱が高レベルで回収できること等の特性があ
り、種々の反応において流動触媒を用いた反応器が開発
されている。
2. Description of the Related Art A fluidized bed catalytic reactor has good heat transfer in a catalyst bed and a uniform temperature distribution. Therefore, side reaction products can be suppressed to a low level, and high conversion and high selectivity can be obtained. It has characteristics such as that the heat of reaction can be recovered at a high level, and reactors using fluidized catalysts have been developed in various reactions.

【0003】メタノールは低公害で輸送が容易な安価な
燃料として大量に使用するために、5000T/D 或いは1000
0T/D以上の能力を持つ超大型装置の開発が要請されてい
る。近年、このような燃料用メタノールを製造するため
の超大型装置への対応としての流動層触媒反応器の開発
が行われている。たとえば特開昭60-84142号、特開昭60
-122040 号および特開昭60-106534 号にはメタノール合
成用流動触媒の製造法が記載されており、また特開昭63
-211246 号には流動層触媒を用いてメタノール合成を行
う場合の触媒および反応の条件が記載されている。
Since methanol is used in large quantities as an inexpensive fuel that is low in pollution and easy to transport, it has a capacity of 5000 T / D or 1000
Development of ultra-large equipment with a capacity of 0 T / D or more is required. In recent years, a fluidized bed catalytic reactor has been developed as a response to an ultra-large-sized apparatus for producing such fuel methanol. For example, JP-A-60-84142 and JP-A-60-84142
-122040 and JP-A-60-106534 describe a method for producing a fluidized catalyst for methanol synthesis, and JP-A-63-106534.
-211246 describes the catalyst and reaction conditions when carrying out methanol synthesis using a fluidized bed catalyst.

【0004】[0004]

【発明が解決しようとする課題】メタノール合成反応は
多量の熱発生を伴うことから、その反応熱の回収と反応
温度の制御のために、一般に縦型の反応器内に多数の伝
熱管を配置して高圧の水蒸気を回収する方法が採られ
る。このように反応器内に多数の伝熱管を配置する場
合、特に流動層触媒反応器においては反応器内を高速で
ガスが通過することから伝熱管の振動が起き易い。伝熱
管の長さと径の比(L/D) が30を超えると振動が起こり、
特に L/Dが50を超えると共振も伴って振動が著しくな
り、時には伝熱管の破損にもつながることとなる。
Since a large amount of heat is generated in the methanol synthesis reaction, a large number of heat transfer tubes are generally arranged in a vertical reactor in order to recover the reaction heat and control the reaction temperature. Then, a method of recovering high-pressure steam is adopted. When a large number of heat transfer tubes are arranged in the reactor as described above, vibration of the heat transfer tubes is likely to occur in a fluidized bed catalytic reactor, since the gas passes through the reactor at a high speed. When the ratio (L / D) of length to diameter of heat transfer tube exceeds 30, vibration occurs,
Especially, when L / D exceeds 50, vibration is significant along with resonance and sometimes the heat transfer tube is damaged.

【0005】従って縦型流動層触媒反応器の設計に当た
っては L/Dを30〜50以下に抑える必要があり、実際上細
い管径の伝熱管を用いることができず 3〜4 インチのも
のを用いざるを得ない状態となる。これにより伝熱管の
容積が大きいので反応器が大きくなるため、反応器のコ
ストが高くなり、上記の如き超大型メタノール製造装置
においては反応器の製作限界を超えることとなる。また
反応器内において十分な伝熱面積を得られないので温度
差を大きくするために回収する水蒸気の圧力を低下させ
ざるを得ず、エネルギー回収が有効に行われない。
Therefore, in designing a vertical fluidized bed catalytic reactor, it is necessary to suppress L / D to 30 to 50 or less, and it is practically impossible to use a heat transfer tube having a small tube diameter, and a 3 to 4 inch tube is used. It is in a state where it cannot help being used. As a result, the volume of the heat transfer tube is large and the reactor becomes large, which increases the cost of the reactor and exceeds the manufacturing limit of the reactor in the above-mentioned ultra-large-sized methanol production apparatus. Moreover, since a sufficient heat transfer area cannot be obtained in the reactor, the pressure of the steam to be recovered must be reduced in order to increase the temperature difference, and energy recovery cannot be performed effectively.

【0006】また流動層触媒反応器において高反応率を
得るためには、該流動触媒層はできるだけ均一層とする
ことが必要である。大型装置においては流動触媒層でも
触媒濃度の高い部分と低い部分が生じ易く、高濃度部に
おいては反応温度が上昇して副反応量が増大し、低濃度
部において低反応率のガスが通過することから、全体と
して高反応率を得ることが困難となる。本発明の目的
は、流動触媒を用いる発熱反応器において反応器単位容
積当たりの伝熱面積を増大させ、超大型装置に対応でき
るようにすると共に、効率良く熱回収を行い、高反応率
が得られる反応器を提供することにある。
Further, in order to obtain a high reaction rate in a fluidized bed catalytic reactor, it is necessary to make the fluidized catalyst bed as uniform as possible. In a large-scale apparatus, even in a fluidized catalyst bed, a high-concentration part and a low-concentration part are likely to occur, the reaction temperature rises in the high-concentration part and the side reaction amount increases, and a gas with a low reaction rate passes in the low-concentration part Therefore, it becomes difficult to obtain a high reaction rate as a whole. An object of the present invention is to increase the heat transfer area per unit volume of a reactor in an exothermic reactor using a fluidized catalyst so that it can be applied to an ultra-large-sized device, efficiently recover heat, and obtain a high reaction rate. To provide a reactor that can be used.

【0007】[0007]

【課題を解決するための手段】本発明者は上記の如き課
題を有する流動層触媒反応器について鋭意検討した結
果、反応器を横型としてガス流速を小さくし、且つU字
型伝熱管を用いてバッフルプレートで固定することによ
り、伝熱管の振動が抑制されて小径の伝熱管を用いるこ
とができ、単位容積当たりの伝熱面積を著しく大きくな
るので反応器コストが低下すると共に、より高圧の蒸気
回収を行うことができてメタノール製造装置の熱効率を
高めることができること、および触媒粒子および反応器
内部の磨耗を防止できること等の効果があることを見出
し、本発明に到達した。
As a result of intensive studies on the fluidized bed catalytic reactor having the above-mentioned problems, the present inventor has made the reactor horizontal to reduce the gas flow rate and uses a U-shaped heat transfer tube. By fixing with a baffle plate, vibration of the heat transfer tube is suppressed and a heat transfer tube with a small diameter can be used, and the heat transfer area per unit volume is significantly increased, reducing reactor cost and higher pressure steam. The present invention has been found to be effective in that the recovery can be performed and the thermal efficiency of the methanol production apparatus can be improved, and that the abrasion of the catalyst particles and the inside of the reactor can be prevented.

【0008】即ち本発明は、流動触媒を用いる横型円筒
状の反応器において、(a) 反応器の側部鏡板の中心部に
横型円筒状の気水ドラム、(b) 反応器内部に流動触媒
層、(c) 該流動触媒層内に気水ドラムよりボイラ水を供
給し蒸気を回収する複数個の管径12〜40mmの水平なU字
型伝熱管、(d) 該伝熱管の管束に複数個の縦型バッフル
プレート、(e) 流動触媒層の上部に該流動触媒と反応ガ
スと分離する分離装置、(f) 流動触媒層の下部にガス吹
き出し器を設置し、ガス吹き出し器の下より原料ガスを
導入し、分離装置の上部より反応ガスを排出させること
を特徴とする横型流動層触媒反応器である。
That is, the present invention relates to a horizontal cylindrical reactor using a fluidized catalyst, in which (a) a horizontal cylindrical steam-water drum is provided at the center of a side end plate of the reactor, and (b) a fluidized catalyst is provided inside the reactor. Bed, (c) a plurality of horizontal U-shaped heat transfer tubes having a tube diameter of 12 to 40 mm for supplying steam to the boiler in the fluidized catalyst layer from a water / water drum to recover steam, and (d) a tube bundle of the heat transfer tubes. A plurality of vertical baffle plates, (e) a separation device for separating the fluidized catalyst and the reaction gas above the fluidized catalyst layer, (f) a gas blower installed below the fluidized catalyst layer, and below the gas blower. The horizontal fluidized bed catalytic reactor is characterized in that the raw material gas is further introduced and the reaction gas is discharged from the upper part of the separation device.

【0009】本発明の流動層触媒反応器が用いられる水
素、一酸化炭素および炭酸ガスからのメタノール合成反
応は次の反応式により行われる。 CO + 2H2 → CH3 OH + 21.6 kcal/mol CO2 + H2 → CO + H2 O − 9.8 kcal/mol CO2 + 3H2 → CH3 OH + H2 O + 11.8 kcal/mol
The reaction for synthesizing methanol from hydrogen, carbon monoxide and carbon dioxide using the fluidized bed catalytic reactor of the present invention is carried out according to the following reaction formula. CO + 2H 2 → CH 3 OH + 21.6 kcal / mol CO 2 + H 2 → CO + H 2 O − 9.8 kcal / mol CO 2 + 3H 2 → CH 3 OH + H 2 O +11.8 kcal / mol

【0010】メタノール合成反応には通常、銅系触媒が
用いられ、温度 200〜300 ℃、圧力50〜150 気圧で反応
が行われる。メタノール合成反応のための流動触媒には
通常、シリカ、アルミナ、ジルコニウム等の強固な担体
に触媒成分を担持した触媒が用いられ、触媒の粒子径は
1〜250 μm である。
A copper catalyst is usually used in the methanol synthesis reaction, and the reaction is carried out at a temperature of 200 to 300 ° C. and a pressure of 50 to 150 atm. As a fluidized catalyst for a methanol synthesis reaction, a catalyst in which a catalyst component is supported on a strong carrier such as silica, alumina or zirconium is usually used, and the particle size of the catalyst is
It is 1 to 250 μm.

【0011】本発明においては横型円筒状の反応器が用
いられ、反応器の側部鏡板の中心部に横型円筒状の気水
ドラムが設置される。気水ドラムの機能は、反応熱を回
収するためのボイラ水が供給されて複数個の水平なU字
状伝熱管に分配することと、流動触媒層において反応熱
を回収することによって得られる発生蒸気とボイラ水の
混合体を複数個の伝熱管から導入して、発生蒸気とボイ
ラ水を分離することであり、気水ドラム内にはこのため
に供給ボイラ水と伝熱管からの該混合体を隔離する隔壁
が設けられ、また該混合体から発生蒸気とボイラ水を分
離するための液面計やミストセパレーターが設置され
る。
In the present invention, a horizontal cylindrical reactor is used, and a horizontal cylindrical steam drum is installed at the center of the side end plate of the reactor. The function of the steam drum is obtained by supplying boiler water for collecting reaction heat and distributing it to a plurality of horizontal U-shaped heat transfer tubes, and collecting reaction heat in the fluidized catalyst bed. It is to introduce a mixture of steam and boiler water from a plurality of heat transfer tubes to separate generated steam and boiler water.For this reason, in the steam drum, the mixture from the supply boiler water and the heat transfer tubes is Is provided with a partition wall, and a liquid level gauge and a mist separator for separating generated steam and boiler water from the mixture are installed.

【0012】なお該伝熱管を取り付ける気水ドラムの管
板の形状は特に制限されず、一般に平板型や半球型のも
の等が用いられる。たとえば多数の伝熱管を固定するた
めの必要な表面積を確保するために、半球型の管板を用
いる等の工夫が施される。気水ドラムには複数個のU字
型伝熱管が取付けられ流動触媒層から高圧水蒸気の回収
が行われるが、前述の如くこの伝熱管の振動を防止する
ことために縦型バッフルプレートが設置される。このバ
ッフルプレートの該伝熱管に対する隙間をできるだけ小
さくすることが好ましいが、製作上の限界があり、実際
上この隙間は片側0.15〜0.25mmである。該伝熱管に対す
る隙間をこのように小さくすることにより、該伝熱管が
このバッフルプレートにより固定されたと同様の効果を
有することになり、伝熱管の振動が防止される。
The shape of the tube plate of the water / water drum to which the heat transfer tube is attached is not particularly limited, and a flat plate type or a hemispherical type is generally used. For example, in order to secure a necessary surface area for fixing a large number of heat transfer tubes, a device such as a hemispherical tube plate is used. A plurality of U-shaped heat transfer tubes are attached to the steam drum to collect high-pressure steam from the fluidized catalyst layer. As described above, a vertical baffle plate is installed to prevent vibration of the heat transfer tubes. It It is preferable to make the gap between the baffle plate and the heat transfer tube as small as possible, but there is a limit in manufacturing, and in practice, this gap is 0.15 to 0.25 mm on one side. By making the gap with respect to the heat transfer tube small in this way, the heat transfer tube has the same effect as being fixed by the baffle plate, and vibration of the heat transfer tube is prevented.

【0013】本発明において伝熱管の管径は伝熱管の振
動が防止するためにバッフルプレートの間隔により決定
されることになる。バッフルプレートの間隔は 300〜10
00mmの広い範囲で選ぶことができる。伝熱管の振動が防
止するためにL/D(伝熱管の長さと径の比) を50以下とす
ることが必要であることから、該伝熱管の管径は 6〜20
mm以上となる。本発明において伝熱管径 (外径) は12〜
40mm、好ましくは15〜25mmであり、これに対して好適な
バッフルプレートの間隔が選ばれる。
In the present invention, the diameter of the heat transfer tube is determined by the distance between the baffle plates in order to prevent vibration of the heat transfer tube. Baffle plate spacing is 300 to 10
You can choose from a wide range of 00 mm. In order to prevent vibration of the heat transfer tube, it is necessary to set L / D (ratio of the length and diameter of the heat transfer tube) to 50 or less, so the diameter of the heat transfer tube is 6 to 20.
mm or more. In the present invention, the heat transfer tube diameter (outer diameter) is 12 to
40 mm, preferably 15-25 mm, for which a suitable baffle plate spacing is selected.

【0014】従来の流動層触媒反応器では 3〜4 インチ
の伝熱管が用いられているが、本発明において該伝熱管
に対して上記の如きバッフルプレートを設置することに
より15〜25mm程度の伝熱管を用いることができるように
なり、単位容積当たりの伝熱面積は88〜120m2 /m3 とな
り、従来の3インチのものと比較して約 3.0〜4.1 倍と
なる。これにより反応器を小さくできるようになると共
に、流動触媒層と伝熱管内部流体との温度差を小さくで
きるようになり、回収蒸気の圧力を高めることができ
る。
In the conventional fluidized bed catalytic reactor, a heat transfer tube of 3 to 4 inches is used. In the present invention, the baffle plate as described above is installed on the heat transfer tube to transfer heat of about 15 to 25 mm. Since heat tubes can be used, the heat transfer area per unit volume is 88 to 120 m 2 / m 3 , which is about 3.0 to 4.1 times that of the conventional 3-inch type. As a result, the reactor can be downsized, and the temperature difference between the fluidized catalyst bed and the fluid inside the heat transfer tube can be reduced, so that the pressure of the recovered vapor can be increased.

【0015】本発明において流動触媒層下部に多数のノ
ズルを有するガス吹出し器を設置され、流動触媒層に対
して均等な原料ガスの吹出しが行われる。該反応器は下
から上へガスを緩やかな速度で流動触媒層内を流通さ
せ、反応を行うものである。この種の高圧流動反応器は
通常、空塔速度(LV)を 0.3〜0.7m/secで設計されるが、
該反応器では0.10〜0.25m/sec 程度で設計することがで
きる。
In the present invention, a gas blower having a large number of nozzles is installed below the fluidized catalyst bed, and the raw material gas is blown out uniformly to the fluidized catalyst bed. The reactor is one in which a gas is allowed to flow through the fluidized catalyst bed from the bottom to the top at a slow speed to carry out the reaction. This type of high pressure fluidized reactor is usually designed with a superficial velocity (LV) of 0.3 to 0.7 m / sec.
The reactor can be designed at about 0.10 to 0.25 m / sec.

【0016】本発明の特徴はこのように伝熱管径を縮小
できることの他に、管束軸とガス流れの方向が直角であ
るため伝熱効果の面で有利であり、このためLVの低下
による伝熱効率の低下を補うことができる。またLVの
低下は内部の機械的磨耗や触媒の磨耗・破壊を回避する
ためにも有効である。
The feature of the present invention is that the diameter of the heat transfer tube can be reduced in this way, and in addition, since the tube bundle axis and the gas flow direction are perpendicular to each other, it is advantageous in terms of the heat transfer effect. The decrease in heat transfer efficiency can be compensated. Further, the reduction of LV is also effective for avoiding internal mechanical abrasion and abrasion / destruction of the catalyst.

【0017】反応器内部では管束間の流動する触媒間を
反応ガスが上昇し、触媒が重力と釣り合った状態とな
り、流動触媒層の界面が得られる。この界面からのガス
中にもいくらかの微細な触媒が含まれるので希薄層と称
され、界面より下層は濃厚層と称される。触媒粒子の大
部分はこの希薄層で沈降、および外穀壁面に衝突し、界
面に落下して濃厚層に戻る。希薄層からの反応ガスは最
終的に分離装置を経て反応器外の次の工程に送られる。
この分離装置には一般にサイクロンが用いられ、分離し
た触媒がトリクル弁を介して濃厚層に戻される。
Inside the reactor, the reaction gas rises between the flowing catalysts between the tube bundles, and the catalysts are in balance with gravity, so that the interface of the fluidized catalyst layer is obtained. The gas from this interface also contains some fine catalyst and is therefore referred to as the dilute layer, and the layers below the interface are referred to as the rich layer. Most of the catalyst particles settle in this dilute layer and collide with the outer grain wall surface, fall to the interface and return to the rich layer. The reaction gas from the dilute layer is finally sent to the next step outside the reactor through the separator.
A cyclone is generally used in this separation device, and the separated catalyst is returned to the rich layer through a trickle valve.

【0018】本発明において反応熱の回収にU字型伝熱
管が使用され、且つ横型であるので、ボイラ水の循環は
強制的に行う必要があり、気水ドラムから分離されるボ
イラ水は循環ポンプを用いて循環される。このボイラ水
において不純物の濃縮を避けるために、ボイラ水の一部
は系外に排出される。
In the present invention, since the U-shaped heat transfer tube is used to recover the reaction heat and is horizontal, it is necessary to circulate the boiler water forcibly, and the boiler water separated from the steam drum is circulated. It is circulated using a pump. In order to avoid the concentration of impurities in the boiler water, part of the boiler water is discharged outside the system.

【0019】本発明の反応器においては管径の小さい伝
熱管が用いられるので、単位容積当たりの伝熱面積が大
きくなるので反応器が小さくなり、また大型装置への対
応が容易となる。更に触媒層とボイラ水との温度差が小
さくなるので高圧蒸気を回収できる。また本発明の反応
器は横型であるので、基礎の設計において風圧及び地震
に対する負担が大幅に緩和されることから、建設コスト
の面からも有利である。
In the reactor of the present invention, since a heat transfer tube having a small tube diameter is used, the heat transfer area per unit volume becomes large, so that the reactor becomes small, and it becomes easy to cope with a large apparatus. Furthermore, since the temperature difference between the catalyst layer and the boiler water becomes small, high pressure steam can be recovered. Further, since the reactor of the present invention is horizontal, the burden on wind pressure and earthquake in the design of the foundation is significantly reduced, which is also advantageous from the viewpoint of construction cost.

【0020】[0020]

【実施例】次に実施例により本発明を更に具体的に説明
する。但し本発明はこの実施例により制限されるもので
はない。図1は本発明による流動層触媒反応器の一例の
構造図であり、燃料用メタノール製造装置に使用される
大型反応器の場合を示す。
EXAMPLES Next, the present invention will be described more specifically by way of examples. However, the present invention is not limited to this embodiment. FIG. 1 is a structural diagram of an example of a fluidized bed catalytic reactor according to the present invention, showing a case of a large reactor used in a fuel methanol production apparatus.

【0021】CO、CO2 、H2 を主成分とし少量のC
4 およびN2 が含まれる合成原料ガスは流路1 より流
動触媒層と仕切られた空室2 に導入される。メタノール
合成反応において前述の如く該反応器は50〜150 気圧程
度の圧力で操作されるため、外穀3 は強靱な鋼材で厚く
形成されている。原料ガスは次いで流動触媒層の底部に
ある風箱室4 に導入される。ガス吹出し器5 を通って流
動触媒層6(濃厚層) に導入される。流動触媒層にはメタ
ノール合成用の流動触媒が充填されおり、前述のメタノ
ール合成反応が行われる。
CO, CO 2 , H 2 as main components and a small amount of C
The synthetic raw material gas containing H 4 and N 2 is introduced from the flow path 1 into the empty chamber 2 partitioned from the fluidized catalyst layer. Since the reactor is operated at a pressure of about 50 to 150 atm in the methanol synthesis reaction as described above, the outer grain 3 is made of a strong steel material and thick. The raw material gas is then introduced into the wind box chamber 4 at the bottom of the fluidized catalyst bed. It is introduced into the fluidized catalyst bed 6 (concentrated bed) through the gas blower 5. The fluidized catalyst layer is filled with a fluidized catalyst for methanol synthesis, and the above-mentioned methanol synthesis reaction is performed.

【0022】流動触媒層には反応熱を回収するために水
平なU字型伝熱管7 が多数設けられる。該伝熱管にはボ
イラ水が満たされており、吸収した反応熱を高圧飽和水
蒸気として回収される。伝熱管は管板8 に支持固定され
ており管板部で反応ガス側とボイラ水側がシールされ
る。管板7 は反応器の側部鏡板の中心部に固定された横
型円筒状の気水ドラム9 に設置されており、内部はボイ
ラーの気水室10と給水室11に分割されている。給水室11
にはボイラ水の給水流路12が、気水室10には分離された
循環水流路13が設けられている。
A large number of horizontal U-shaped heat transfer tubes 7 are provided in the fluidized catalyst bed to recover the reaction heat. The heat transfer tube is filled with boiler water, and the absorbed reaction heat is recovered as high-pressure saturated steam. The heat transfer tube is supported and fixed to the tube plate 8, and the reaction gas side and the boiler water side are sealed by the tube plate portion. The tube plate 7 is installed in a horizontal cylindrical steam water drum 9 fixed to the center of the side end plate of the reactor, and the inside is divided into a steam water chamber 10 and a water supply chamber 11 of the boiler. Water supply room 11
A boiler water supply channel 12 is provided in the steam water chamber 10, and a separate circulating water channel 13 is provided in the steam chamber 10.

【0023】該伝熱管7 には複数個の縦型バッフルプレ
ート14が設置されており、該伝熱管を好適に固定する。
これにより管径の小さい伝熱管を用いることでき、単位
容積当たりの伝熱面積が大きくなると共に、流動触媒層
の均一な流れが得られる。反応ガス及び流動触媒は反応
器の上部で触媒が重力と釣り合った状態となった流動触
媒層の界面を経て希薄層となり、サイクロン15に導入さ
れ、触媒粒子を分離し、流路16から反応器を出て次の工
程に送られる。分離された触媒はサイクロン下部のトリ
クル弁17より排出され、濃厚層に循環される。
The heat transfer tube 7 is provided with a plurality of vertical baffle plates 14 to suitably fix the heat transfer tube.
As a result, a heat transfer tube having a small tube diameter can be used, the heat transfer area per unit volume is increased, and a uniform flow of the fluidized catalyst layer can be obtained. The reaction gas and the fluidized catalyst become a dilute layer through the interface of the fluidized catalyst layer in which the catalyst is in balance with gravity at the upper part of the reactor, and are introduced into the cyclone 15 to separate the catalyst particles, and the reactor from the flow path 16 to the reactor. And sent to the next step. The separated catalyst is discharged from the trickle valve 17 below the cyclone and circulated in a rich layer.

【0024】一方、反応熱の回収により発生した高圧水
蒸気は流路18より排出され、合成ガス製造装置における
プロセス蒸気や、各所の熱源、動力源として利用され
る。また気水ドラムにおいて分離されたボイラ水は流路
12より排出され循環水ポンプにより昇圧されてボイラ給
水と共に流路11から供給されて循環使用される。なお本
発明の反応器は横型であるので支持架19によって支持さ
れ、更に基礎に固定される。
On the other hand, the high-pressure steam generated by the recovery of the reaction heat is discharged from the flow path 18 and used as process steam in the synthesis gas manufacturing apparatus, as a heat source and a power source at various places. In addition, the boiler water separated in the steam drum is in the flow path.
It is discharged from 12, is pressurized by a circulating water pump, is supplied from the flow path 11 together with boiler feed water, and is circulated for use. Since the reactor of the present invention is horizontal, it is supported by the support rack 19 and further fixed to the foundation.

【0025】[0025]

【発明の効果】本発明の流動触媒反応器においては横型
とし、U字管型伝熱管をバッフループレートに固定され
るような構造とすることにより、次のような利点を有す
る。 (1) 従来の流動触媒反応器において使用されていない15
〜25mm程度の細い伝熱管を用いることができるので、単
位容積当たりの伝熱面積が大きくなり、反応器の容積を
小さくでき、反応器のコストが低下する。 (2) 流動触媒層と伝熱管内流体の温度差が小さくなるの
で、より高圧蒸気を回収することができ、プロセスの熱
効率の向上を図ることができる。またこれによっても流
動触媒層の温度分布が均一化が図られる。 (3) U字管型伝熱管を用いるので反応温度による熱応力
が回避される。また反応器の容積を小さくなるので、よ
り大型装置への対応が可能となる。 (4) 横型反応器で流動触媒層における空塔速度(LV)が低
くなるので、触媒粒子の磨耗、破損、及び反応器内部の
磨耗を防止できる。 (5) 横型反応器であるので風圧や地震に対する負担が大
幅に緩和されるので、建設コストが低下する。
The fluid catalytic reactor of the present invention has the following advantages by adopting a horizontal type and a structure in which the U-shaped heat transfer tube is fixed to the baffle plate. (1) Not used in conventional fluid catalytic reactors 15
Since a thin heat transfer tube of about 25 mm can be used, the heat transfer area per unit volume is increased, the volume of the reactor can be reduced, and the cost of the reactor is reduced. (2) Since the temperature difference between the fluidized catalyst layer and the fluid in the heat transfer tube becomes small, the high-pressure steam can be recovered more and the thermal efficiency of the process can be improved. Further, this also makes the temperature distribution of the fluidized catalyst bed uniform. (3) Since U-shaped heat transfer tubes are used, thermal stress due to reaction temperature is avoided. Further, since the volume of the reactor is reduced, it is possible to support a larger apparatus. (4) Since the superficial velocity (LV) in the fluidized catalyst bed is low in the horizontal reactor, abrasion and breakage of catalyst particles and abrasion inside the reactor can be prevented. (5) Since it is a horizontal reactor, the burden on wind pressure and earthquakes is greatly reduced, and construction costs are reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 断面図 本発明による横型流動層触媒反応器の構造を示す断面図
の一例である。
FIG. 1 is a sectional view showing an example of a sectional view showing the structure of a horizontal fluidized bed catalytic reactor according to the present invention.

【符号の説明】[Explanation of symbols]

1 原料ガス供給流路 3 横型流動層触媒反応器の外穀 5 原料ガス吹き出し器 7 U字管型伝熱管 9 気水ドラム 10 気水室 11 給水室 14 バッフルプレート 15 サイクロン 16 反応ガス排出流路 1 Raw material gas supply flow path 3 Outer grains of horizontal fluidized bed catalytic reactor 5 Raw material gas blower 7 U-shaped tube heat transfer tube 9 Steam drum 10 Steam room 11 Water supply room 14 Baffle plate 15 Cyclone 16 Reaction gas discharge path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流動触媒を用いる横型円筒状の反応器にお
いて、(a) 反応器の側部鏡板の中心部に横型円筒状の気
水ドラム、(b) 反応器内部に流動触媒層、(c) 該流動触
媒層内に気水ドラムよりボイラ水を供給し蒸気を回収す
る複数個の管径12〜40mmの水平なU字型伝熱管、(d) 該
伝熱管の管束に複数個の縦型バッフルプレート、(e) 流
動触媒層の上部に該流動触媒と反応ガスと分離する分離
装置、(f) 流動触媒層の下部にガス吹き出し器を設置
し、 ガス吹き出し器の下より原料ガスを導入し、分離装置の
上部より反応ガスを排出させることを特徴とする横型流
動層触媒反応器
1. A horizontal cylindrical reactor using a fluidized catalyst, comprising: (a) a horizontal cylindrical air-water drum at the center of a side end plate of the reactor, (b) a fluidized catalyst layer inside the reactor, c) a plurality of horizontal U-shaped heat transfer tubes having a tube diameter of 12 to 40 mm for supplying boiler water from a steam drum to recover steam in the fluidized catalyst bed, (d) a plurality of tube bundles of the heat transfer tube. A vertical baffle plate, (e) a separation device for separating the fluidized catalyst and the reaction gas above the fluidized catalyst layer, and (f) a gas blower installed below the fluidized catalyst layer. And a reaction gas is discharged from the upper part of the separation device.
JP1072393A 1993-01-26 1993-01-26 Horizontal type fluidized bed catalyst reactor Pending JPH06218269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072393A JPH06218269A (en) 1993-01-26 1993-01-26 Horizontal type fluidized bed catalyst reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072393A JPH06218269A (en) 1993-01-26 1993-01-26 Horizontal type fluidized bed catalyst reactor

Publications (1)

Publication Number Publication Date
JPH06218269A true JPH06218269A (en) 1994-08-09

Family

ID=11758211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072393A Pending JPH06218269A (en) 1993-01-26 1993-01-26 Horizontal type fluidized bed catalyst reactor

Country Status (1)

Country Link
JP (1) JPH06218269A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1027922A3 (en) * 1999-02-10 2000-10-25 EISENMANN MASCHINENBAU KG (Komplementär: EISENMANN-Stiftung) Reactor for catalytic exothermic reactions of substances in a gas flow
CN103055776A (en) * 2013-01-22 2013-04-24 安阳盈德气体有限公司 Reaction system of dimehtyl oxalate
JP2022085877A (en) * 2020-11-27 2022-06-08 Ube株式会社 Horizontal multi-flow plate type reactor used for large-scale DMO reaction
CN119746732A (en) * 2025-01-06 2025-04-04 上海交通大学 A reaction system and method for producing methanol by hydrogenating carbon dioxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1027922A3 (en) * 1999-02-10 2000-10-25 EISENMANN MASCHINENBAU KG (Komplementär: EISENMANN-Stiftung) Reactor for catalytic exothermic reactions of substances in a gas flow
CN103055776A (en) * 2013-01-22 2013-04-24 安阳盈德气体有限公司 Reaction system of dimehtyl oxalate
JP2022085877A (en) * 2020-11-27 2022-06-08 Ube株式会社 Horizontal multi-flow plate type reactor used for large-scale DMO reaction
CN119746732A (en) * 2025-01-06 2025-04-04 上海交通大学 A reaction system and method for producing methanol by hydrogenating carbon dioxide

Similar Documents

Publication Publication Date Title
EP2249958B1 (en) Reactor for the preparation of methanol
EP1839735B1 (en) A transverse tubular heat exchange reactor and a process for catalytic synthesis therein
JP4203129B2 (en) Method for producing a liquid product and optionally a gaseous product from a gaseous reactant
KR101922067B1 (en) Method for separating gas in a fluidized gas/solid mixture
BRPI0608541A2 (en) methods for operating a two-phase fluidized bed reactor and for operating a three-phase slurry reactor; and, two-phase and three-phase slurry fluidized bed reactors
JP5188895B2 (en) Methanol synthesis reactor and methanol synthesis method
US2995426A (en) Elevated fluidizing reactor
JP2016536127A (en) Fluidized bed reactor including conical gas distributor and associated fluorination process
JP4917439B2 (en) Slurry bubble column reactor
JPH06218269A (en) Horizontal type fluidized bed catalyst reactor
JP5312355B2 (en) Reactor and reaction product manufacturing method using the same
US20080146682A1 (en) Production of Liquid and, Optionally, Gaseous Products from Gaseous Reactants
JPH06218270A (en) Vertical type fluidized bed catalyst reactor
CN1680013A (en) A kind of organosilicon fluidized bed reactor with cyclone separator
KR101923231B1 (en) Exchanger-reactor for the production of hydrogen with an integrated steam generation bundle
US2488033A (en) Catalytic conversion system
US20020143075A1 (en) Low-profile moving bed reactor
CN215277236U (en) Fixed bed reactor for Fischer-Tropsch synthesis
WO1985004820A1 (en) Reactor
US6467438B1 (en) Circulating bed reactor
NZ202746A (en) Reactor and methanol synthesis process
CN115608110A (en) A baffle type mobile bed plate string device for HF recovery
US4395386A (en) Apparatus for isotope exchange reaction
WO2003068379A2 (en) Apparatus for heterogeneous catalysed reactions
RU2369432C2 (en) Reactor for solid/fluid/gaseous substances