JPH06223625A - Ceramic substrate - Google Patents
Ceramic substrateInfo
- Publication number
- JPH06223625A JPH06223625A JP1316593A JP1316593A JPH06223625A JP H06223625 A JPH06223625 A JP H06223625A JP 1316593 A JP1316593 A JP 1316593A JP 1316593 A JP1316593 A JP 1316593A JP H06223625 A JPH06223625 A JP H06223625A
- Authority
- JP
- Japan
- Prior art keywords
- less
- ceramic substrate
- glass
- composition
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 52
- 239000000758 substrate Substances 0.000 title claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 32
- 239000011521 glass Substances 0.000 claims abstract description 27
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910011255 B2O3 Inorganic materials 0.000 claims abstract description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 3
- 101100296544 Caenorhabditis elegans pbo-5 gene Proteins 0.000 claims 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 1
- 238000010304 firing Methods 0.000 abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 14
- 229910010293 ceramic material Inorganic materials 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 229910052573 porcelain Inorganic materials 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000004017 vitrification Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- -1 Al 2O3 Chemical compound 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えばマイクロ波帯用
の共振器やフィルタ等の誘電体として用いることがで
き、かつ高誘電率,高いQ値,及び安定した温度特性を
有しながら、低温焼成を可能にして融点の低い電極との
同時焼成を実現できるようにしたセラミック基板に関す
る。INDUSTRIAL APPLICABILITY The present invention can be used as a dielectric such as a resonator for microwave band or a filter, and has a high dielectric constant, a high Q value, and a stable temperature characteristic. The present invention relates to a ceramic substrate capable of low temperature firing and simultaneous firing with an electrode having a low melting point.
【0002】[0002]
【従来の技術】従来、マイクロ波帯用の共振器やフィル
タ等においては、電子部品の小型化を図るために高い誘
電率εr を有する誘電体セラミック基板を空胴共振器に
置き換えることが行われている。これは誘電体セラミッ
ク基板内部における電磁波の波長が自由空間のその1/
εr 1/2 に短縮される効果を利用したものである。とこ
ろで、誘電体共振器として使用できるゼロ温度係数をも
つセラミック材料の誘電率は、今までのところ100 以下
に限定されており、近年のさらなる小型化の要求には対
応できなくなっている。2. Description of the Related Art Conventionally, in a microwave band resonator, filter or the like, a dielectric ceramic substrate having a high dielectric constant εr is replaced with a cavity resonator in order to miniaturize electronic parts. ing. This is because the wavelength of the electromagnetic wave inside the dielectric ceramic substrate is 1/1 of the free space.
This utilizes the effect of being shortened to εr 1/2 . By the way, the dielectric constant of a ceramic material having a zero temperature coefficient that can be used as a dielectric resonator is so far limited to 100 or less, and it is not possible to meet the recent demand for further miniaturization.
【0003】このような小型化に対応するには、マイク
ロ波回路で知られているLC共振器を用いることが有効
である。またこのLC共振器を組み合わせた回路を構成
する場合、積層コンデンサや多層基板等で実用化されて
いるセラミック層と内部電極とを交互に重ねて一体焼結
してなる積層セラミック基板を適用することにより、よ
り小型化を可能にでき、かつ信頼性の高い電子部品が得
られる。この場合、マイクロ波帯で高誘電率,高いQ
値,及び高温での安定性を有するLC共振器を得るに
は、上記セラミック基板の内部電極に導電率の高い金,
銀,銅等を用いる必要がある。To cope with such miniaturization, it is effective to use an LC resonator known in the microwave circuit. Further, in the case of forming a circuit in which the LC resonators are combined, a laminated ceramic substrate formed by alternately stacking ceramic layers and internal electrodes, which are put into practical use in a laminated capacitor or a multilayer substrate, and integrally sintering them is applied. As a result, it is possible to obtain a highly reliable electronic component that can be made more compact. In this case, high dielectric constant and high Q in the microwave band
In order to obtain an LC resonator having a high value and stability at high temperature, gold with high conductivity is added to the internal electrodes of the ceramic substrate,
It is necessary to use silver, copper, etc.
【0004】[0004]
【発明が解決しようとする課題】しかしながら上記従来
のセラミック基板では、誘電体セラミックの焼成温度よ
り内部電極の融点が低いことから、同時に一体焼成する
のが困難である。このため低温での焼結に対応できるセ
ラミック材料の出現が要請されている。However, in the above-mentioned conventional ceramic substrate, since the melting point of the internal electrodes is lower than the firing temperature of the dielectric ceramic, it is difficult to perform simultaneous firing at the same time. For this reason, the emergence of ceramic materials that can be sintered at low temperatures is required.
【0005】本発明は上記従来の状況に鑑みてなされた
もので、内部電極に採用される金属の融点よりも低い温
度で焼結できるセラミック基板を提供することを目的と
している。The present invention has been made in view of the above conventional circumstances, and an object of the present invention is to provide a ceramic substrate that can be sintered at a temperature lower than the melting point of the metal used for the internal electrodes.
【0006】[0006]
【課題を解決するための手段】本件発明者は、高誘電
率,高いQ値,及び安定した温度特性を有しながら、
金,銀等の内部電極と同時に一体焼結できるセラミック
材料を見出すべき鋭意検討したところ、BaO−TiO
2 −NdO3/2 を主成分とする高周波用誘電体磁器組成
物に、ガラス成分を添加するとともにCuOを添加し、
かつ上記各組成物,ガラス成分,及びCuOの添加量を
規制することにより内部電極の融点より低い温度で焼結
できることを見出し、本発明を成したものである。The inventor of the present invention has a high dielectric constant, a high Q value, and stable temperature characteristics,
As a result of diligent research to find a ceramic material that can be integrally sintered with an internal electrode such as gold or silver, BaO-TiO 2
In addition to the glass component, CuO was added to the high frequency dielectric ceramic composition containing 2- NdO 3/2 as the main component,
Further, it was found that the composition can be sintered at a temperature lower than the melting point of the internal electrode by controlling the addition amount of each composition, glass component, and CuO, and the present invention has been accomplished.
【0007】そこで本発明は、x・BaO−y・TiO
2 −z・NdO3/2(但し、x+y+z=100%)と表
したとき、上記x,y,zがそれぞれ2.5 ≦x≦15,5
2.5≦y≦70,15≦z≦45のモル%の範囲にあるものを
主成分とし、これにBi2 O3が17wt%以下及びPbO
が10wt%以下添加された誘電体磁器組成物30〜95wt%
と、SiO2 を5〜60wt%、BaOを40〜80wt%、Al
2 O3 ,ZrO2 ,TiO 2 のうち少なくとも1種を10
wt%以下、B2 O3 を5〜20wt%含み、かつSrO,C
aO,MgO,ZnO,PbOのうち少なくとも1種を
15wt%以下含むガラス5〜70wt%とからなり、さらにこ
れらに対してCuOを3wt%以下添加してなる組成物を
焼成したことを特徴とするセラミック基板である。Therefore, the present invention is based on x.BaO-y.TiO.
2-Z ・ NdO3/2(However, x + y + z = 100%)
Then x, y and z are 2.5 ≤ x ≤ 15, 5 respectively.
Those in the range of 2.5 ≤ y ≤ 70, 15 ≤ z ≤ 45 mol%
Main component, Bi2O3Is less than 17 wt% and PbO
Porcelain composition containing less than 10 wt% 30-95 wt%
And SiO25 to 60 wt%, BaO 40 to 80 wt%, Al
2O3, ZrO2, TiO 2At least one of these 10
wt% or less, B2O35 to 20 wt% of SrO, C
at least one of aO, MgO, ZnO and PbO
Consists of 5 to 70 wt% glass containing 15 wt% or less.
The composition which added CuO 3wt% or less to these
It is a ceramic substrate characterized by being fired.
【0008】ここで、上記各組成物の添加量を規制した
理由について説明する。 〔主成分をx・BaO−y・TiO2 −z・NdO3/2
に規制した理由〕図1は、上記主成分の組成範囲を示す
三元図である。同図において、上記x,y,zがA領域
では焼結が困難となり、通常の焼結に必要な温度である
1400℃になると多孔質の磁器しか得られなくなる。
またB領域では温度特性がプラス側で大きくなり過ぎる
ことから焼結が不安定となる。これはC領域においても
同様のことがいえる。さらにD領域では温度特性が逆に
マイナス側で大きくなってくることから焼結が進まなく
なる。この結果、上記x,y,zの最適範囲は上記A〜
D領域で囲まれた範囲内(図中、斜線部分)が望まし
い。Here, the reason why the addition amount of each composition is regulated will be described. [- the main component x BaO-y · TiO 2 -z · NdO 3/2
Reason for Restriction] FIG. 1 is a ternary diagram showing the composition range of the main components. In the figure, it becomes difficult to sinter when x, y, z are in the A region, and only porous porcelain can be obtained at 1400 ° C. which is the temperature required for normal sintering.
Further, in the B region, the temperature characteristics become too large on the plus side, so that the sintering becomes unstable. The same can be said for the C region. Further, in the D region, the temperature characteristics are increased on the negative side, and the sintering does not proceed. As a result, the optimum range of x, y, and z is A to
It is desirable to be within the range surrounded by the D area (hatched portion in the figure).
【0009】〔誘電体磁器組成物量を限定した理由〕誘
電体磁器組成物が95wt%を越えると1000℃以下で
の焼結が困難となるからであり、また5wt%未満にする
と誘電率及びQ値が低下し、所望の特性が得られなくな
るからである。[Reasons for Limiting the Amount of Dielectric Ceramic Composition] When the dielectric ceramic composition exceeds 95 wt%, it becomes difficult to sinter at 1000 ° C. or less, and when it is less than 5 wt%, the dielectric constant and Q This is because the value decreases and desired characteristics cannot be obtained.
【0010】〔ガラス組成物の添加量を限定した理由〕
上記B2 O3 はガラス粘度下げる働きがあることから、
これを添加することによりセラミック基板の焼結を促進
できる。しかしガラス中のB成分が20wt%を越えると
セラミックグリーンシート上にホウ酸結晶として析出す
る。また上記B 2 O3 量を5wt%未満にすると1000
℃以下での基板の焼結が困難となる。[Reason for Limiting Addition Amount of Glass Composition]
B above2O3Has the function of lowering the glass viscosity,
Addition of this promotes sintering of the ceramic substrate
it can. However, if the B component in the glass exceeds 20 wt%,
Precipitated as boric acid crystals on ceramic green sheets
It Also above B 2O31000 if the amount is less than 5 wt%
Sintering of the substrate below ℃ becomes difficult.
【0011】上記BaOは上記誘電体磁器組成物とガラ
ス反応を促進させ、ガラスの軟化点を下げる働きがあ
る。しかしこのBaO量を40wt%以下にすると上記磁
器組成物との反応が進まず、1000℃以下での焼結が
困難となる。またBaOはセラミック基板のQ値に影響
を与え易く、これの添加量が80wt%を越えるとQ値が
著しく悪化する。The BaO has a function of promoting a glass reaction with the dielectric ceramic composition and lowering the softening point of the glass. However, if the amount of BaO is 40 wt% or less, the reaction with the porcelain composition does not proceed and the sintering at 1000 ° C. or less becomes difficult. Further, BaO is likely to affect the Q value of the ceramic substrate, and if the addition amount of BaO exceeds 80 wt%, the Q value will be significantly deteriorated.
【0012】上記SiO2 量を限定したのは、この量が
60wt%を越えるとガラス化温度が高くなり過ぎること
から、工業的な実用ガラス溶融温度の1500℃以下で
ガラス化しなくなるからである。またSiO2 量を5wt
%未満にすると焼結体の収縮率のばらつきが大きくな
り、セラミック基板としての採用が困難になる。The amount of SiO 2 is limited because if the amount exceeds 60 wt%, the vitrification temperature becomes too high and vitrification does not occur at 1500 ° C., which is the industrial practical glass melting temperature. In addition, the amount of SiO 2 is 5 wt
If it is less than%, the shrinkage ratio of the sintered body varies greatly, and it becomes difficult to adopt it as a ceramic substrate.
【0013】また上記Al2 O3 ,ZrO2 ,TiO2
はガラス及びセラミック基板の化学的な耐久性を高める
働きをする。しかしこの量が10wt%を越えるとガラス
の溶融温度を高くしてしまうことから、セラミック基板
の焼結温度も高くなる。The above Al 2 O 3 , ZrO 2 , and TiO 2
Serves to enhance the chemical durability of the glass and ceramic substrates. However, if this amount exceeds 10 wt%, the melting temperature of the glass becomes high, and the sintering temperature of the ceramic substrate also becomes high.
【0014】さらに上記SrO,CaO,MgO,Zn
O,PbOはセラミック基板の焼結性,及びQ値を向上
させる働きがある。しかしこの添加量が15wt%を越え
るとセラミック基板の収縮率が不安定になる。Further, the above SrO, CaO, MgO, Zn
O and PbO have a function of improving the sinterability and the Q value of the ceramic substrate. However, if this addition amount exceeds 15 wt%, the shrinkage rate of the ceramic substrate becomes unstable.
【0015】〔CuOを添加した理由〕CuOを添加す
ることによりセラミック基板の焼結温度を下げることが
でき、しかもQ値,及び誘電率を高くすることができ
る。この場合、3wt%を越えると逆に誘電率が低くな
り、Q値が劣化する。なお、上記CuOは、上記ガラス
組成の一部としてガラス合成時に添加してもよく、ある
いは上記誘電体磁器組成物の合成時に添加してもよい。[Reason for adding CuO] By adding CuO, the sintering temperature of the ceramic substrate can be lowered, and the Q value and the dielectric constant can be increased. In this case, if it exceeds 3 wt%, the dielectric constant is lowered and the Q value is deteriorated. The CuO may be added as part of the glass composition at the time of glass synthesis, or may be added at the time of synthesis of the dielectric ceramic composition.
【0016】ここで、上記ガラス成分にNa2 O,K2
O,Li2 Oのうら少なくとも1種を0.01〜7wt%
の範囲で添加するのが望ましい。これらのアルカリ成分
はガラス化温度を低くする機能を有していることから、
セラミック基板の焼結温度を下げるのに有効である。し
かし添加量が0.01wt%未満であるとその効果が得ら
れず、また7wt%を越えるとセラミック基板の化学的耐
久性及びQ値が悪くなる。Here, Na 2 O and K 2 are added to the above glass component.
0.01 to 7% by weight of at least one of O and Li 2 O
It is desirable to add in the range of. Since these alkaline components have the function of lowering the vitrification temperature,
It is effective in lowering the sintering temperature of the ceramic substrate. However, if the addition amount is less than 0.01 wt%, the effect cannot be obtained, and if it exceeds 7 wt%, the chemical durability and Q value of the ceramic substrate deteriorate.
【0017】[0017]
【作用】本発明に係るセラミック基板によれば、BaO
−TiO2 −NdO3/2 を主成分とする誘電体磁器組成
物にガラス,及びCuOを添加し、かつこの磁器組成
物,ガラス成分,及びCuOの添加量を上述の範囲に限
定したので、従来例えば1400℃程度必要であった焼結温
度を1000℃以下にすることができ、低温焼結が可能とな
る。その結果、比抵抗の小さいAg,Au,Cu等の融
点より低い温度で同時に一体焼結することができる。ま
た、本発明のセラミック基板では、低温での焼結を可能
にしながら、高い誘電率,及びQ値を得ることができる
とともに、高温での安定した温度特性を得ることができ
る。従って、上記セラミック基板をマイクロ波,ミリ波
等の高周波帯域における積層型共振器,フィルタとして
採用でき、ひいては小型化に貢献でき、かつ品質に対す
る信頼性を向上できる。According to the ceramic substrate of the present invention, BaO
Since glass and CuO are added to the dielectric ceramic composition containing —TiO 2 —NdO 3/2 as the main component, and the addition amounts of this ceramic composition, the glass component, and CuO are limited to the above range, The sintering temperature, which was conventionally required to be about 1400 ° C., can be reduced to 1000 ° C. or less, and low temperature sintering becomes possible. As a result, it is possible to perform simultaneous sintering at a temperature lower than the melting point of Ag, Au, Cu or the like having a low specific resistance. Further, in the ceramic substrate of the present invention, it is possible to obtain a high dielectric constant and a Q value while enabling the sintering at a low temperature, and to obtain a stable temperature characteristic at a high temperature. Therefore, the ceramic substrate can be used as a laminated resonator and a filter in a high frequency band such as a microwave and a millimeter wave, which can contribute to downsizing and improve the reliability of quality.
【0018】[0018]
【実施例】以下、本発明の実施例を説明する。本実施例
では、本発明のセラミック基板を製造し、該基板の効果
を確認するために行った特性試験について説明する。EXAMPLES Examples of the present invention will be described below. In this example, a characteristic test conducted to manufacture the ceramic substrate of the present invention and confirm the effect of the substrate will be described.
【0019】[0019]
【表1】 [Table 1]
【0020】実施例1 まず、誘電体磁器組成物を製造する。表1に示すよう
に、x・BaO−y・TiO2 −z・NdO3/2 のx,
y.zがそれぞれ、x =2.5 〜15.0, y =52.5〜70.0,z
=15.0〜45.0mol %となるように、BaCO3 ,TiO
2 ,及びNd2 O3 を秤量し、これに副成分として、B
i2 O3 及びPbO粉末をそれぞれ8〜11,2〜15mol
%添加混合し、これを1150℃の温度で1時間仮焼成し
た。次いで、この仮焼成粉を粉砕して混合し、1300〜14
00℃で焼成した後、再び粉砕し、これにより誘電体磁器
組成物(試料番号S1〜S9)を作成した。Example 1 First, a dielectric ceramic composition is manufactured. As shown in Table 1, x, BaO-y, TiO 2 -z, NdO 3/2 x,
y. z is x = 2.5 to 15.0, y = 52.5 to 70.0, z, respectively.
= 15.0-45.0 mol% so that BaCO 3 , TiO
2 , and Nd 2 O 3 are weighed, and B
i 2 O 3 and PbO powder are 8-11, 2-15 mol, respectively.
% And mixed, and this was pre-baked at a temperature of 1150 ° C. for 1 hour. Then, this calcinated powder is crushed and mixed, and 1300 ~ 14
After firing at 00 ° C., the powder was pulverized again to prepare dielectric ceramic compositions (sample numbers S1 to S9).
【0021】[0021]
【表2】 [Table 2]
【0022】次に、表2示すように、ガラス成分として
B2 O3 ,BaO,SiO2 ,Al 2 O3 ,Li2 O,
Na2 O,K2 O,CaOを準備し、これらが表に示す
組成比(wt%)となるように調合して原料を作成した。
この原料を1100℃〜1400℃の温度で溶融した後、水中急
冷し、この後湿式粉砕してガラス粉末(〜)を作成
した。Next, as shown in Table 2, as a glass component,
B2O3, BaO, SiO2, Al 2O3, Li2O,
Na2O, K2Prepare O and CaO, these are shown in the table
Raw materials were prepared by blending so as to have a composition ratio (wt%).
After melting this raw material at a temperature of 1100 ℃ to 1400 ℃,
Cool and then wet pulverize to create glass powder (~)
did.
【0023】[0023]
【表3】 [Table 3]
【0024】表3に示すように、上記作成した誘電体磁
器組成物試料S1〜S9の中から、静電容量の変化率の
小さい試料S2と、該変化率が最も大きい試料S6とを
選択し、この両試料S2,S6に上記〜のガラス粉
末を混合するとともに、これにCuOを添加混合し、そ
れぞれの添加量を変化させてセラミック材料を作成し
た。またこのセラミック材料100 wt%に対して適当量の
バインダー, 可塑剤, 及び溶剤を加えて混練し、スラリ
ーを形成した。As shown in Table 3, among the dielectric ceramic composition samples S1 to S9 prepared above, a sample S2 having a small rate of change in capacitance and a sample S6 having the largest rate of change were selected. The glass powders (1) to (3) were mixed with both of the samples S2 and S6, CuO was added and mixed into the samples, and the respective addition amounts were changed to prepare ceramic materials. An appropriate amount of binder, plasticizer, and solvent was added to 100 wt% of this ceramic material and kneaded to form a slurry.
【0025】上記スラリーをドクターブレード法により
厚さ1mmのセラミックグリーンシートを成形し、該シー
トを縦30mm, 横10mmの寸法にカットするとともに0.5mm
の厚さとなるように圧着して成形体を形成した。この成
形体を空気中にて870 〜940℃の範囲の温度で1時間焼
成し、これにより多層セラミック基板を得た(試料No.
1〜No. 32)。そして、この各試料No. 1〜32の誘
電率ε,Q値,及び静電容量の変化率(TCC)ppm を
測定した。A ceramic green sheet having a thickness of 1 mm was formed from the above slurry by the doctor blade method, and the sheet was cut into a size of 30 mm in length and 10 mm in width and 0.5 mm in width.
A molded body was formed by press-bonding so as to have a thickness of. This molded body was fired in air at a temperature in the range of 870 to 940 ° C. for 1 hour to obtain a multilayer ceramic substrate (Sample No.
1-No. 32). Then, the permittivity ε, Q value, and capacitance change rate (TCC) ppm of each of the sample Nos. 1 to 32 were measured.
【0026】表3からも明らかなように、何れの試料N
o. 1〜No. 32においても、所定のモル比からなるB
aO−TiO2 −NdO3/2 を主成分とする誘電体磁器
組成物に所定量のガラス成分,及びCuOを添加するこ
とにより、焼成温度を1000℃以下にしても高い誘電率,
及びQ値を有し、かつ静電容量の変化率の小さいセラミ
ック基板が得られている。また上記基本成分の組成を選
定することにより、試料No. 16〜22のように±10
ppm/℃以下の容量温度特性を得ることも可能であること
がわかる。As is clear from Table 3, any sample N
Even in o. 1 to No. 32, B having a predetermined molar ratio is used.
By adding a predetermined amount of glass component and CuO to the dielectric ceramic composition containing aO—TiO 2 —NdO 3/2 as the main component, a high dielectric constant can be obtained even if the firing temperature is 1000 ° C. or less.
And a Q value, and a ceramic substrate having a small rate of change in capacitance is obtained. Moreover, by selecting the composition of the above basic components, it is possible to obtain ± 10 as shown in Sample Nos.
It can be seen that it is also possible to obtain a capacity-temperature characteristic of ppm / ° C or less.
【0027】このように本実施例によれば、上記低温焼
結セラミック材料を採用することにより、マイクロ波帯
で高いQ値を得るために必要な内部電極との同時焼成が
可能となり、従来では困難であった積層型の共振器,フ
ィルタを構成できるとともに、小型化に貢献できる。As described above, according to the present embodiment, by adopting the above-mentioned low temperature sintered ceramic material, it is possible to perform simultaneous firing with the internal electrodes necessary for obtaining a high Q value in the microwave band, and in the conventional case. It is possible to construct a multilayer resonator and filter, which were difficult, and contribute to miniaturization.
【0028】[0028]
【表4】 [Table 4]
【0029】実施例2 この実施例では、上述の実施例1で作成した試料S1〜
S9の中から、同様にS2とS6を選択した。また、表
4に示すように、所定量の各ガラス成分にCuOを0.6
〜1.2 wt%添加してガラス粉末(〜)を同様の方法
にて作成した。このCuOの組成比は最終的なセラミッ
ク基板原料の調合時におけるCuO添加量で示してい
る。Example 2 In this example, the samples S1 to S1 prepared in the above-mentioned Example 1 were used.
Similarly, S2 and S6 were selected from S9. Further, as shown in Table 4, CuO is added to each glass component in a predetermined amount in an amount of 0.6
Glass powder (~) was prepared in the same manner by adding ~ 1.2 wt%. The CuO composition ratio is indicated by the amount of CuO added when the final ceramic substrate material is prepared.
【0030】[0030]
【表5】 [Table 5]
【0031】そして表5に示すように、上記試料S2,
S6と、CuOが含有されたガラス粉末〜とを調合
するとともに、両者の添加量を変化させてセラミック材
料を作成した。このセラミック材料から上述と同様の方
法にて成形体を形成し、880〜940 ℃の温度で焼成し、
これにより多層セラミック基板を形成し(試料No. 1〜
No. 16)、この各試料No. 1〜16の誘電率,Q値,
及び静電容量変化率を測定した。Then, as shown in Table 5, the samples S2 and
A ceramic material was prepared by mixing S6 and CuO-containing glass powders and changing the addition amount of both. A molded body is formed from this ceramic material by the same method as described above, and fired at a temperature of 880 to 940 ° C,
As a result, a multilayer ceramic substrate is formed (Sample No. 1
No. 16), dielectric constant, Q value of each sample No. 1-16,
And the rate of change in capacitance were measured.
【0032】表5からも明らかなように、何れの試料N
o. 1〜No. 16においても、1000℃以下の焼成温度で
高い誘電率, 及びQ値を有し、かつ静電容量の変化率の
小さいセラミック基板が得られており、上記実施例と同
様の効果が得られていることがわかる。As is clear from Table 5, any sample N
Also in o. 1 to No. 16, a ceramic substrate having a high dielectric constant and a Q value at a firing temperature of 1000 ° C. or less and a small rate of change in capacitance was obtained, which was the same as that of the above-mentioned examples. It can be seen that the effect of is obtained.
【0033】[0033]
【発明の効果】以上のように本発明に係るセラミック基
板によれば、x・BaO−y・TiO 2 −z・NdO
3/2 を主成分とし、これにBi2 O3 及びPbOを所定
量添加してなる誘電体磁器組成物と、SiO2,BaO,
Al2 O3 ,B2 O3 , SrO等を所定量含むガラスと
からなり、さらにこれらにCuOを所定量添加して焼成
したので、従来では困難であった低温焼成を可能にで
き、内部電極との同時焼結を実現できる効果があり、か
つ高い誘電率,及びQ値を得られるとともに、安定した
温度特性を得ることができ、マイクロ波帯用の積層型共
振器,フィルタに適用できる効果がある。As described above, the ceramic substrate according to the present invention
According to the plate, x ・ BaO-y ・ TiO 2-Z ・ NdO
3/2Is the main component, and Bi2O3And PbO specified
A dielectric porcelain composition added in an amount, and SiO2, BaO,
Al2O3, B2O3And glass containing a predetermined amount of SrO, etc.
And a predetermined amount of CuO added to these
Therefore, low temperature firing, which was difficult in the past, is possible.
Is effective in achieving simultaneous sintering with the internal electrode.
Stable and stable with high dielectric constant and Q value
It is possible to obtain temperature characteristics and
This has the effect of being applicable to shakers and filters.
【図1】本発明のセラミック基板を構成する誘電体磁器
組成物の組成比を説明するための図である。FIG. 1 is a diagram for explaining a composition ratio of a dielectric ceramic composition that constitutes a ceramic substrate of the present invention.
Claims (1)
3/2(但し、x+y+z=100%)と表したとき、上記
x,y,zがそれぞれ2.5 ≦x≦15,52.5≦y≦70,15
≦z≦45のモル%の範囲にあるものを主成分とし、これ
にBi2 O3が17wt%以下及びPbOが10wt%以下添加
された誘電体磁器組成物30〜95wt%と、SiO2 を5〜
60wt%、BaOを40〜80wt%、Al2 O3 ,ZrO2 ,
TiO 2 のうち少なくとも1種を10wt%以下、B2 O3
を5〜20wt%含み、かつSrO,CaO,MgO,Zn
O,PbOのうち少なくとも1種を15wt%以下含むガラ
ス5〜70wt%とからなり、さらにこれらに対してCuO
を3wt%以下添加してなる組成物を焼成したことを特徴
とするセラミック基板。1. x.BaO-y.TiO.2-Z ・ NdO
3/2(However, when expressed as x + y + z = 100%),
x, y, z are 2.5 ≤ x ≤ 15, 52.5 ≤ y ≤ 70, 15 respectively
Main component is in the range of ≦ z ≦ 45 mol%
To Bi2O3Of less than 17 wt% and PbO of less than 10 wt%
30-95 wt% of the dielectric ceramic composition25 to
60wt%, BaO 40 ~ 80wt%, Al2O3, ZrO2,
TiO 2At least one of which is 10 wt% or less, B2O3
5 to 20 wt% of SrO, CaO, MgO, Zn
Glass containing 15 wt% or less of at least one of O and PbO
5 to 70 wt% of CuO and CuO
Characterized by baking a composition formed by adding 3 wt% or less of
And ceramic substrate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1316593A JPH06223625A (en) | 1993-01-29 | 1993-01-29 | Ceramic substrate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1316593A JPH06223625A (en) | 1993-01-29 | 1993-01-29 | Ceramic substrate |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH06223625A true JPH06223625A (en) | 1994-08-12 |
Family
ID=11825567
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1316593A Pending JPH06223625A (en) | 1993-01-29 | 1993-01-29 | Ceramic substrate |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06223625A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6184165B1 (en) | 1998-07-15 | 2001-02-06 | Tdk Corporation | Dielectric porcelain composition |
| WO2001082311A1 (en) | 2000-04-26 | 2001-11-01 | The Furukawa Electric Co., Ltd. | Dielectric ceramic, resin-ceramics composite, and electric parts and antenna and method for their manufacture |
| US6340649B1 (en) | 1999-03-16 | 2002-01-22 | Tdk Corporation | Composition of dielectric ceramics and producing method thereof |
| CN108863347A (en) * | 2018-08-02 | 2018-11-23 | 广东国华新材料科技股份有限公司 | A kind of microwave-medium ceramics and preparation method thereof |
-
1993
- 1993-01-29 JP JP1316593A patent/JPH06223625A/en active Pending
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6184165B1 (en) | 1998-07-15 | 2001-02-06 | Tdk Corporation | Dielectric porcelain composition |
| US6340649B1 (en) | 1999-03-16 | 2002-01-22 | Tdk Corporation | Composition of dielectric ceramics and producing method thereof |
| WO2001082311A1 (en) | 2000-04-26 | 2001-11-01 | The Furukawa Electric Co., Ltd. | Dielectric ceramic, resin-ceramics composite, and electric parts and antenna and method for their manufacture |
| US6686406B2 (en) | 2000-04-26 | 2004-02-03 | The Furukawa Electric Co., Ltd. | Dielectric ceramic, resin-ceramic composite material, electrical part and antenna, and manufacturing method thereof |
| CN108863347A (en) * | 2018-08-02 | 2018-11-23 | 广东国华新材料科技股份有限公司 | A kind of microwave-medium ceramics and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6270716B1 (en) | Process for the production of low-temperature firing ceramic compositions | |
| US5304521A (en) | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition | |
| US6620750B2 (en) | Dielectric ceramic composition and method for manufacturing multilayered components using the same | |
| US6108192A (en) | Dielectric ceramic composition and ceramic electronic parts using the same | |
| US5292694A (en) | Method of producing low temperature firing dielectric ceramic composition containing B2 O3 | |
| US5290740A (en) | Dielectric ceramic composition used for producing dielectric resonator or filter for microwave application | |
| WO2004094338A1 (en) | Lead-free glass for forming dielectric, glass ceramics composition for forming dielectric, dielectric and method for producing laminated dielectric | |
| JPH11310455A (en) | Dielectric porcelain composition and ceramic electronic part using the same | |
| US5479140A (en) | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition | |
| US6372676B1 (en) | Ceramic substrate composition and ceramic circuit component | |
| JP4482939B2 (en) | Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same | |
| JP3084992B2 (en) | Ceramic substrate | |
| JP2003063861A (en) | Composite laminated ceramic electronic part and method for producing the same | |
| KR101084710B1 (en) | Dielectric Ceramic Composition for Electronic Components | |
| JPH06223625A (en) | Ceramic substrate | |
| US5629252A (en) | Method for manufacturing a dielectric ceramic composition dielectric ceramic and multilayer high frequency device | |
| JP2781503B2 (en) | Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them | |
| JP3002613B2 (en) | Dielectric porcelain composition for producing dielectric resonator or filter for microwave, method for producing the same, dielectric resonator or filter for microwave obtained using the dielectric porcelain composition, and method for producing the same | |
| JPH0597508A (en) | Dielectric porcelain composition for high-frequency | |
| JPH0859344A (en) | Dielectric porcelain composition | |
| JP2781502B2 (en) | Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them | |
| JP2781501B2 (en) | Dielectric ceramic composition for low temperature firing | |
| JP2005217170A (en) | Composite multilayer ceramic electronic component | |
| KR100478127B1 (en) | Dielectric Ceramic Composition | |
| KR100635015B1 (en) | Dielectric ceramic composition enables simultaneous low temperature firing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20011030 |