[go: up one dir, main page]

JPH0622396A - Piezoelectric element and hydrophone using the same - Google Patents

Piezoelectric element and hydrophone using the same

Info

Publication number
JPH0622396A
JPH0622396A JP4198932A JP19893292A JPH0622396A JP H0622396 A JPH0622396 A JP H0622396A JP 4198932 A JP4198932 A JP 4198932A JP 19893292 A JP19893292 A JP 19893292A JP H0622396 A JPH0622396 A JP H0622396A
Authority
JP
Japan
Prior art keywords
piezoelectric element
strip
shaped
hydrophone
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4198932A
Other languages
Japanese (ja)
Other versions
JP3079175B2 (en
Inventor
Takayoshi Hyodo
孝義 兵藤
Norimichi Murakami
訓通 村上
Noriyuki Yoshitake
宣之 吉武
Taku Sato
卓 佐藤
Kazumoto Suzuki
和元 鈴木
Kenichi Nakamura
謙一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Kureha Corp
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp, Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Kureha Corp
Priority to JP04198932A priority Critical patent/JP3079175B2/en
Publication of JPH0622396A publication Critical patent/JPH0622396A/en
Application granted granted Critical
Publication of JP3079175B2 publication Critical patent/JP3079175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Insulated Conductors (AREA)

Abstract

(57)【要約】 【目的】 概ね円筒形であり、可撓性、耐衝撃性に優れ
た、音波の送受信に適したポリマー圧電素子および該ポ
リマー圧電素子を用いて変形雑音を低減し、良好な受波
感度と可撓性を維持したハイドロフォンを与える。 【構成】 帯状ポリマー圧電体1の両面に互いに対向す
る電極層2a、2bを設けてなる可撓性の帯状圧電素子
10を、ある中央軸Oのまわりに螺旋状に捲回し、全体
として円筒に近似した配置構造とする。対向電極層は、
帯状圧電体の長さ方向に離間して複数対設けてもよい。
ハイドロフォン形成のために好ましくは帯状ポリマー圧
電体を一対用い、互いの分極方向が逆となる様に中央金
属層を介して積層する。
(57) [Abstract] [Purpose] A polymer piezoelectric element having a substantially cylindrical shape, excellent in flexibility and impact resistance, and suitable for transmitting and receiving sound waves, and deformation noise is reduced by using the polymer piezoelectric element. A hydrophone that retains excellent wave receiving sensitivity and flexibility is provided. A flexible strip-shaped piezoelectric element 10 having electrode layers 2a, 2b facing each other on both sides of a strip-shaped polymer piezoelectric body 1 is spirally wound around a certain central axis O to form a cylinder as a whole. Use an approximate arrangement structure. The counter electrode layer is
A plurality of pairs may be provided so as to be separated from each other in the lengthwise direction of the strip-shaped piezoelectric body.
In order to form the hydrophone, it is preferable to use a pair of strip-shaped polymer piezoelectric bodies and stack them with a central metal layer interposed so that their polarization directions are opposite to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可撓性の帯状ポリマー
圧電体をある中心軸のまわりに螺旋形状に捲回し、円筒
様構造とした圧電素子、ならびに該圧電素子を用いた、
特にえい航型ソーナーとしての適用性に優れた可撓性を
有するハイドロフォンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric element having a cylindrical structure in which a flexible band-shaped polymer piezoelectric material is spirally wound around a certain central axis, and the piezoelectric element is used.
In particular, the present invention relates to a flexible hydrophone having excellent applicability as a towed sonar.

【0002】[0002]

【従来の技術】円筒形状の圧電素子の一例として、えい
航型ソーナーが知られている(特開昭55−76962
号、同57−60992号、特開平2−278178号
各公報等)。これは、主として船舶の発する機関音、ス
クリュー音、キャビテーション音等を受信すべく、ハイ
ドロフォン受波器を所定の間隔で直線状に多数配置して
発信音波の周波数帯域に適合したハイドロフォンリニア
アレイとなし、各受波器の出力位相を整相処理して目標
とする船舶を探知せんとするものであり、通常はこのハ
イドロフォンリニアアレイを電線を配置したロープ等を
介して、船舶によりえい航する形態を採る。
2. Description of the Related Art A towed sonar is known as an example of a cylindrical piezoelectric element (JP-A-55-76962).
No. 57-60992, JP-A-2-278178, etc.). This is a hydrophone linear array that is suitable for the frequency band of transmitted sound waves by arranging a number of hydrophone receivers in a straight line at predetermined intervals in order to mainly receive engine sounds, screw sounds, cavitation sounds, etc. emitted by ships. In order to detect the target vessel by phasing the output phase of each receiver, this hydrophone linear array is usually towed by the vessel via a rope with electric wires. Take the form.

【0003】従来、このようなえい航型ソーナーに用い
られる音波検出素子としては、中空円筒状に成形された
セラミック圧電素子、例えばPZT圧電素子が用いられ
ていた。
Conventionally, as a sound wave detecting element used in such a towed sonar, a ceramic piezoelectric element formed in a hollow cylindrical shape, for example, a PZT piezoelectric element has been used.

【0004】この種の中空円筒状圧電素子は、それを音
波の送波器とした場合、音波が周波数によらず半径方向
に等方的に、即ち等しい音圧で放射されるものであり、
他方、受波器としては素子を長さ方向の中心軸の周りに
回転しても受信感度が不変のものである。換言すれば、
半径方向の送受波感度に指向性のないという特徴があ
る。
When a hollow cylindrical piezoelectric element of this kind is used as a sound wave transmitter, the sound wave is radiated isotropically in the radial direction regardless of the frequency, that is, at an equal sound pressure,
On the other hand, as the wave receiver, the receiving sensitivity does not change even if the element is rotated around the central axis in the longitudinal direction. In other words,
There is no directivity in the transmission / reception sensitivity in the radial direction.

【0005】一方、超音波加工の分野ではチタン酸バリ
ウム磁気等の電歪素子が、大きな変位を得るために円筒
状の形態で利用されていた。また、米国特許第2497
108号明細書には、セラミック圧電体の中空円筒から
切り出して螺旋状に形成したバイモルフを利用した継電
器が開示されている。
On the other hand, in the field of ultrasonic machining, an electrostrictive element such as barium titanate magnet has been used in a cylindrical shape to obtain a large displacement. Also, US Pat. No. 2,497
No. 108 discloses a relay using a bimorph formed by spirally cutting a hollow cylinder of a ceramic piezoelectric body.

【0006】[0006]

【発明が解決すべき課題】上述した従来の円筒のセラミ
ック圧電素子は、音波の送受波器としては音波の周波数
によらず等方的感度特性が達成され、また電歪素子にお
いては大きな変位が得られるといった利点を有してはい
るが、以下のような問題点を包含する。 (1)剛性がある反面、衝撃に弱く、取り扱いが面倒で
ある。例えば、柔軟性に乏しいため、長尺な素子におい
ては保管が容易ではない。 (2)大口径及び長尺なものの製作が容易ではない。 (3)前記ハイドロフォンリニアアレイのように、受波
器を直線状に多数配置した構造においては、接合部があ
るため曲げ、強度等の機械的特性や比重が不均一であ
り、例えば、えい航ロープを介して伝達されるえい航体
の動揺による衝撃や水流による曲げ応力等により破損し
易く、特性が低下することもある。
The above-mentioned conventional cylindrical ceramic piezoelectric element achieves isotropic sensitivity characteristics as a sound wave transmitter / receiver regardless of the frequency of the sound wave, and a large displacement occurs in the electrostrictive element. Although it has the advantage of being obtained, it includes the following problems. (1) Although it has rigidity, it is weak against impact and is troublesome to handle. For example, since it is poor in flexibility, it is not easy to store it in a long device. (2) It is not easy to manufacture a large diameter and long product. (3) In the structure in which a large number of wave receivers are linearly arranged like the hydrophone linear array, mechanical characteristics such as bending and strength and specific gravity are non-uniform due to the joints. The characteristics of the towed vehicle may be deteriorated due to the shock caused by the motion of the towed vehicle transmitted via the rope, the bending stress caused by the water flow, and the like.

【0007】また、ハイドロフォンリニアアレイを、ロ
−プとともに巻出しあるいは巻上げるに際しての操作性
が著しく悪いという問題点もある。
There is also a problem that the operability when unwinding or winding up the hydrophone linear array together with the rope is extremely poor.

【0008】前記した中空円筒形状のセラミック圧電素
子の問題点、特にセラミックの剛性に起因する問題点
を、柔軟性に優るポリマー圧電素子により解決すること
も考えられる。しかしながら、ポリマー圧電体は、その
上に電極を形成することの困難さのため繋ぎ目のない円
筒形状の圧電素子とすることは容易でなく、また、ポリ
マー圧電体といえども円筒形状では柔軟性はそれ程向上
しない。一方、セラミックス製の中空円筒から切り出さ
れた従来の螺旋素子は、特に大口径及び長尺なものの製
作が容易ではないことに加えて、衝撃に弱く脆弱である
という欠点を有し、柔軟性においてもポリマー圧電体に
比べ数段劣るものである。
It is possible to solve the above-mentioned problems of the hollow-cylindrical ceramic piezoelectric element, in particular, the problems caused by the rigidity of the ceramic by a polymer piezoelectric element having excellent flexibility. However, since it is difficult to form electrodes on the polymer piezoelectric body, it is not easy to form a seamless cylindrical piezoelectric element, and even a polymer piezoelectric body has a flexible cylindrical shape. Does not improve so much. On the other hand, the conventional spiral element cut out from the hollow cylinder made of ceramics has a drawback that it is weak and vulnerable to impact, in addition to the fact that it is not easy to manufacture a large-diameter and long-sized one, and the flexibility is low. Is several steps inferior to the polymer piezoelectric material.

【0009】本発明は、上述した従来の中空円筒形状の
セラミック圧電素子の問題点について改善した圧電素
子、ならびにそれを用いた可撓性を有するハイドロフォ
ンを提供することを目的とする。
It is an object of the present invention to provide a piezoelectric element, which is improved with respect to the problems of the conventional hollow cylindrical ceramic piezoelectric element, and a flexible hydrophone using the same.

【0010】[0010]

【課題を解決するための手段】本発明者等の研究によれ
ば、可撓性の帯状圧電素子を螺旋状に捲回し、概ね円筒
に近い形状とすることにより、感度の等方性を保持しつ
つ、上述した中空円筒形状のセラミック圧電素子の問題
点に対する著しい改善が得られることが見出された。
According to the research conducted by the present inventors, a flexible band-shaped piezoelectric element is spirally wound to have a shape close to a cylinder, thereby maintaining the isotropy of sensitivity. At the same time, it has been found that a significant improvement over the problems of the hollow cylindrical ceramic piezoelectric element described above can be obtained.

【0011】即ち、本発明は、表面に電極層を対向して
設けた可撓性の帯状ポリマー圧電体をある中心軸のまわ
りに螺旋形状に捲回し、前記表面電極層を前記中心軸の
延長方向とほぼ平行に配設した構造を有する圧電素子を
提供するものである。
That is, according to the present invention, a flexible band-shaped polymer piezoelectric material having electrode layers facing each other on its surface is spirally wound around a certain central axis, and the surface electrode layer is extended from the central axis. The present invention provides a piezoelectric element having a structure arranged substantially parallel to the direction.

【0012】また本発明は、一対の帯状ポリマー圧電体
を互いの分極方向が逆となるように中央電極層を間に挟
んで積層して得られる帯状圧電素子を、螺旋状に巻回し
配置し、前記帯状圧電素子の両表面に形成された表面電
極と前記中央電極層との間に生ずる電気出力を取出可能
とした構造を有するハイドロフォンを提供するものであ
る。
Further, according to the present invention, a band-shaped piezoelectric element obtained by laminating a pair of band-shaped polymer piezoelectric materials with a central electrode layer sandwiched therebetween such that the polarization directions thereof are opposite to each other is spirally wound and arranged. The present invention provides a hydrophone having a structure capable of taking out an electric output generated between a surface electrode formed on both surfaces of the strip piezoelectric element and the central electrode layer.

【0013】[0013]

【作用】上述したように、本発明の圧電素子は、帯状圧
電素子の捲回しにより、概ね円筒に近い形状に構成さ
れ、そのため、良好な等方的感度特性を有することに加
えて、上述中空円筒形状のセラミック圧電素子について
主要な問題点であった可撓性および耐衝撃性の不足に対
し、著しい改善が得られる。
As described above, the piezoelectric element of the present invention is formed into a substantially cylindrical shape by winding the band-shaped piezoelectric element. Therefore, in addition to having good isotropic sensitivity characteristics, Significant improvements are obtained over the lack of flexibility and impact resistance that were the major problems with cylindrical ceramic piezoelectric elements.

【0014】またポリマー圧電素子を構成する圧電体に
おいて出力に結び付く変形は面方向の伸縮(二軸)、厚
み変化(一軸)ならびに体積圧縮/膨張変化がある。こ
のうち、えい航型ソーナー等に加えられる機械的応力に
より発生し、雑音のもととなるのは面方向の伸縮変形で
あり、本発明のハイドロフォンにおいては、このような
面方向の伸縮による雑音は、一対のポリマー圧電体を互
いの分極方向が逆となるように中央電極層を介して積層
して得られる帯状圧電素子の使用により、有効に相殺さ
れ、実質的に有害な雑音とならない。他方、このような
帯状圧電素子を螺旋状に巻回し配置した円筒様の構造と
することにより、全体としての可撓性を損なわず、被測
定対象からの音波の音圧は、ポリマー圧電体の厚み方向
の変形或いは体積的圧縮/膨張変化として有効に検出さ
れる。
Deformation associated with the output in the piezoelectric body constituting the polymer piezoelectric element includes expansion and contraction in the plane direction (biaxial), thickness change (uniaxial), and volume compression / expansion change. Of these, the noise generated by mechanical stress applied to the towed sonar and the like is the cause of noise due to expansion and contraction in the surface direction, and in the hydrophone of the present invention, noise due to such expansion and contraction in the surface direction. Is effectively offset by the use of a strip-shaped piezoelectric element obtained by laminating a pair of polymer piezoelectric bodies so that their polarization directions are opposite to each other via a central electrode layer, and substantially no harmful noise occurs. On the other hand, by adopting a cylindrical structure in which such a band-shaped piezoelectric element is wound and arranged in a spiral shape, the flexibility as a whole is not impaired, and the sound pressure of the sound wave from the measured object is equal to that of the polymer piezoelectric material. It is effectively detected as deformation in the thickness direction or volumetric compression / expansion change.

【0015】[0015]

【実施態様】以下、本発明の圧電素子およびハイドロフ
ォンを、その好ましい態様について図面を参照しつつ、
更に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a piezoelectric element and a hydrophone of the present invention will be described with reference to the drawings for preferred embodiments thereof.
Further details will be described.

【0016】図1は、えい航型ソーナーの受波器(ハイ
ドロフォン)として構成された本発明の一実施態様にか
かる螺旋状圧電素子の一部切欠き正面図であり、図2は
図1の切欠面II−IIに沿って取った圧電素子の厚さ
方向断面である。
FIG. 1 is a partially cutaway front view of a spiral piezoelectric element according to an embodiment of the present invention configured as a wave receiver (hydrophone) of a towed sonar, and FIG. 2 is shown in FIG. It is a thickness direction cross section of the piezoelectric element taken along the notch plane II-II.

【0017】図1および図2を参照して、この螺旋状圧
電素子を構成する帯状圧電素子10は、可撓性を有する
帯状圧電体1の両面に表面電極2aおよび2bを形成し
てなる。本発明にかかる螺旋状圧電素子は、この帯状圧
電素子10を、ある中心軸Oの周りに螺旋状に捲回した
形状を有する。そして表面電極2a、2bからは、半田
7付けにより、それぞれリード線8a、8bが接続さ
れ、音波の受信の際にはこれら表面電極間に生ずる電気
出力が螺旋状圧電素子の右端に設けられた端子AB間で
取出せるように、また音波の発信等の際には端子A、B
から圧電体1に電圧を印加できるように構成されてい
る。
With reference to FIGS. 1 and 2, a strip-shaped piezoelectric element 10 constituting this spiral piezoelectric element has surface electrodes 2a and 2b formed on both sides of a flexible strip-shaped piezoelectric body 1. The spiral piezoelectric element according to the present invention has a shape in which the strip piezoelectric element 10 is spirally wound around a certain central axis O. Then, the lead wires 8a and 8b are respectively connected to the surface electrodes 2a and 2b by soldering 7, and an electric output generated between the surface electrodes when receiving a sound wave is provided at the right end of the spiral piezoelectric element. Terminals A and B so that they can be taken out between terminals AB and when transmitting sound waves.
Is configured so that a voltage can be applied to the piezoelectric body 1.

【0018】帯状圧電素子10の幅(d)および螺旋ピ
ッチ(p)は、圧電素子に要求される特性によって適宜
選択されるが、一般に幅2〜50mm程度、好ましくは
5〜20mmであり、1<p/d≦3の範囲とすること
が好ましい。幅が2mm未満では螺旋捲回時に切断が発
生し易く、また50mmを超えると螺旋形状に賦形する
ことが困難になる。また、p/d≦1では、帯状圧電素
子10が部分的に重なったり、あるいは表面電極2a相
互あるいは2a−2b間での接触により電気的ノイズが
生じかねない。他方p/d>3であると素子の面積効率
が低下する。螺旋状圧電素子を構成する螺旋の巻き数
は、前記の等方的感度特性が確保されるように、1以
上、特に3以上とすることが好ましい。
The width (d) and the spiral pitch (p) of the strip-shaped piezoelectric element 10 are appropriately selected according to the characteristics required of the piezoelectric element, but generally the width is about 2 to 50 mm, preferably 5 to 20 mm, and 1 The range of <p / d ≦ 3 is preferable. If the width is less than 2 mm, cutting is likely to occur during spiral winding, and if it exceeds 50 mm, it becomes difficult to shape it into a spiral shape. If p / d ≦ 1, electrical noise may occur due to the strip-shaped piezoelectric elements 10 partially overlapping each other or due to contact between the surface electrodes 2a or between 2a-2b. On the other hand, if p / d> 3, the area efficiency of the device decreases. The number of turns of the spiral forming the spiral piezoelectric element is preferably 1 or more, particularly 3 or more so as to ensure the above-mentioned isotropic sensitivity characteristic.

【0019】各部の材質について説明すると、螺旋状圧
電素子全体として良好な可撓性を与え、あるいは長尺の
螺旋状圧電素子を形成するために、本発明の可撓性圧電
体1はポリマー圧電体により構成する。このようなポリ
マー圧電体1は、表面電極2a、2bを有する帯状体と
した後、巻き回しにより図1に示すような螺旋形状に容
易に賦形することができる。
Explaining the material of each part, in order to give good flexibility as a whole of the spiral piezoelectric element or to form a long spiral piezoelectric element, the flexible piezoelectric body 1 of the present invention is made of polymer piezoelectric material. Consists of the body. Such a polymer piezoelectric body 1 can be easily formed into a spiral shape as shown in FIG. 1 by winding the polymer piezoelectric body 1 into a strip having surface electrodes 2a and 2b.

【0020】ポリマー圧電体1は、一般に知られている
ポリマー圧電材料から任意に構成されるが、フッ化ビニ
リデン(VDF)の単独または共重合体等からなるVD
F系圧電体、あるいは比較的高い耐熱性を有するシアン
化ビニリデン−酢酸ビニル共重合体等が好適に用いられ
る。これらポリマー圧電体材料は、溶融押出等により製
膜後、必要に応じて一軸延伸あるいは軟化温度以下での
熱処理、軟化温度以下での電界印加による分極処理に付
される。なお、ポリマー圧電体1は、一般にフィルム又
はシートの形態をとることができ、その厚みは20〜2
000μm程度、特に100〜1000μmの範囲で選
択されることが好ましい。ポリマー圧電体の厚みが20
μm以下では十分な受波感度が得られず、逆に2000
μm以上ではフィルムの可撓性が損なわれ、更に分極に
高電圧が必要となるため縁面放電が発生し分極が極めて
困難となる。
The polymer piezoelectric material 1 is optionally composed of a generally known polymer piezoelectric material, but is a VD composed of vinylidene fluoride (VDF) homopolymer or copolymer.
An F-based piezoelectric material or a vinylidene cyanide-vinyl acetate copolymer having a relatively high heat resistance is preferably used. After being formed into a film by melt extrusion or the like, these polymer piezoelectric materials are optionally subjected to uniaxial stretching or heat treatment at a softening temperature or lower, and polarization treatment by applying an electric field at a softening temperature or lower. The polymer piezoelectric body 1 can generally take the form of a film or sheet, and its thickness is 20 to 2
It is preferably selected in the range of about 000 μm, particularly 100 to 1000 μm. The thickness of the piezoelectric polymer is 20
If it is less than μm, sufficient wave receiving sensitivity cannot be obtained.
When the thickness is more than μm, the flexibility of the film is impaired, and a high voltage is required for polarization, so that edge discharge occurs and polarization becomes extremely difficult.

【0021】表面電極2a、2bは、螺旋状圧電素子全
体の可撓性を損なうことなく、圧電体1表面に、銀、
銅、アルミニウム、亜鉛等の導電材料の蒸着、溶射、メ
ッキ(特に無電解メッキ)、金属箔の接着貼り付け等に
より0.02μm〜200 μmの厚さ範囲に形成する
ことができる。中でもポリマー圧電体との組合せにおい
て、良好な可撓性を維持しつつ良好な半田付性と優れた
送受波感度を与えるためには、対向電極2a、2bは、
厚さが10〜100μm、特に20〜50μmの溶射電
極層として形成することが好ましい。
The surface electrodes 2a and 2b are formed on the surface of the piezoelectric body 1 by silver, without impairing the flexibility of the entire spiral piezoelectric element.
It can be formed in a thickness range of 0.02 μm to 200 μm by vapor deposition, thermal spraying, plating (especially electroless plating) of a conductive material such as copper, aluminum, zinc or the like, adhesive bonding of a metal foil, and the like. Above all, in the combination with the polymer piezoelectric material, in order to provide good solderability and excellent wave transmission / reception sensitivity while maintaining good flexibility, the counter electrodes 2a and 2b are
It is preferably formed as a sprayed electrode layer having a thickness of 10 to 100 μm, particularly 20 to 50 μm.

【0022】本発明の螺旋状圧電素子の電極2a、2b
の表面には、絶縁被覆を施すのが好ましい。この絶縁被
覆は、図2に対応して図3に示すように、電極2a、2
bを選択的に覆う絶縁被覆層5a、5bとして形成する
こともできるが、より好ましくは、図1に示すように螺
旋状圧電素子全体を絶縁体11中に埋め込んで中実(ま
たは中空)の円筒状に形成して、素子の堅牢性および取
扱い性を併せて向上するのがよい。かかる絶縁被覆体5
a、5bあるいは11は、プラスチック、セラミック、
エラストマー等から使用状況に応じて選択できる。中で
も絶縁体11に関しては、堅牢性に加えて、螺旋状圧電
素子全体としての可撓性を維持するために、ウレタンゴ
ム、シリコーンゴム、ブチルゴム等のエラストマーを用
いることが好ましい。
The electrodes 2a, 2b of the spiral piezoelectric element of the present invention
It is preferable to apply an insulating coating to the surface of the. As shown in FIG. 3, which corresponds to FIG.
It is also possible to form the insulating coating layers 5a and 5b which selectively cover b, but more preferably, as shown in FIG. 1, the entire spiral piezoelectric element is embedded in the insulator 11 to form a solid (or hollow) material. It is preferable to form it in a cylindrical shape to improve the robustness and handleability of the device. Such an insulating cover 5
a, 5b or 11 is plastic, ceramic,
It can be selected from elastomers and the like according to the usage situation. Among them, with respect to the insulator 11, it is preferable to use an elastomer such as urethane rubber, silicone rubber or butyl rubber in order to maintain the flexibility as the whole spiral piezoelectric element in addition to the robustness.

【0023】埋設被覆体11の外形形状は、円柱(筒)
状に限らず、感度に方向性が生じない範囲で他の形状で
あっても良く、例えば、埋設被覆体を楕円柱(筒)状と
なし、曲げ応力に方向性を与えることも可能である。ま
た、埋設被覆体の中心部には、電線類以外に、必要に応
じてプリアンプなどの電気部品や強度部材、充填材とい
ったものを埋設したり、空洞を形成してそれらを配設す
ることもできる。
The external shape of the buried cover 11 is a cylinder.
The shape is not limited to the above, and may be another shape as long as the directionality does not occur in the sensitivity. For example, the embedded coating may be formed into an elliptic cylinder (cylindrical) shape to give direction to the bending stress. . In addition to the electric wires, electric parts such as a preamplifier, a strength member, and a filling material may be buried in the central portion of the buried cover, or a cavity may be formed to dispose them. it can.

【0024】表面電極2a、2bは、長尺な帯状圧電体
1の全面にわたって設ける必要はない。例えば、図1に
対応して図4に示すように、帯状圧電体1の長さ方向に
沿って表面電極2a(および2b−図示省略)を離間し
て設け中間の空白部においては、圧電体1を露出させた
構造とすることもできる。その結果、機能的には、表面
電極2a(2b)の存在する領域ごとに、螺旋状の二つ
の圧電素子10aおよび10bが形成されたことにな
る。これら素子10a、10bのうち、10aの表裏面
電極2a、2bは、それぞれ半田7により接続されたリ
ード線81a、81bを介して端子A1、B1に接続さ
れ、両電極間に生ずる電気的出力が端子A1−B1間で
取り出される。他方、素子10bの表裏面電極2a、2
bは、それぞれ半田付されたリード線82a、82bを
介して端子A2、B2に接続され、素子10bに生ずる
出子は端子A2−B2間で取り出される。リード線8
1、82は、図示のように螺旋状圧電素子の中心軸に近
い部分(螺旋の内側)に通すことが好ましい。このよう
な構成のハイドロフォンは、2つに限らず、より多数の
ユニット素子が機能的には独立していて構造的には直線
的に連結されたハイドロフォンリニアアレイとなり、広
い周波数帯域の音波に対する適合性が確保される。ま
た、これら連結素子は一体成形されているので、曲げ、
強度等の機械的特性や比重が均一であるという特徴を有
し、また機能的には複数でも、構造取扱上は、一つの素
子と同等に取扱える利点がある。この連結素子は、各圧
電素子が機能的には独立しているので、異なる周波数で
送受信することができると共に、一方を送信器、他方を
受信器として用いることもできる。
The surface electrodes 2a and 2b need not be provided over the entire surface of the long strip piezoelectric body 1. For example, as shown in FIG. 4 corresponding to FIG. 1, the surface electrodes 2a (and 2b—not shown) are provided along the length direction of the strip-shaped piezoelectric body 1 so as to be spaced apart from each other, and the piezoelectric body is provided in the intermediate blank portion. It is also possible to have a structure in which 1 is exposed. As a result, functionally, two spiral piezoelectric elements 10a and 10b are formed in each region where the surface electrode 2a (2b) is present. Of these elements 10a and 10b, the front and back electrodes 2a and 2b of 10a are connected to terminals A1 and B1 via lead wires 81a and 81b connected by solder 7, respectively, so that an electrical output generated between both electrodes is generated. It is taken out between terminals A1 and B1. On the other hand, the front and back electrodes 2a, 2 of the element 10b
b is connected to the terminals A2 and B2 via the soldered lead wires 82a and 82b, respectively, and the birth of the element 10b is taken out between the terminals A2 and B2. Lead wire 8
It is preferable that 1 and 82 are passed through a portion close to the central axis of the spiral piezoelectric element (inside the spiral) as shown in the drawing. The hydrophone having such a configuration is not limited to two, but a larger number of unit elements are functionally independent and structurally linearly connected to form a hydrophone linear array, which is a sound wave of a wide frequency band. The conformity with is secured. Also, since these connecting elements are integrally molded, bending,
It has a characteristic that mechanical characteristics such as strength and specific gravity are uniform, and even if it has a plurality of functions, it has an advantage that it can be handled in the same manner as one element in terms of structural handling. Since the piezoelectric elements are functionally independent of each other, the coupling element can transmit and receive at different frequencies, and one of them can be used as a transmitter and the other as a receiver.

【0025】次に、本発明の他の好ましい一実施態様に
ついて説明する。
Next, another preferred embodiment of the present invention will be described.

【0026】図5は、本発明のハイドロフォンの一実施
態様の一部切欠き正面図であり、図6は図5の切欠面V
I−VIに沿って取った圧電素子の厚さ方向模式断面図
である。これら図面において、図1〜図4に示したもの
と類似の部位は、同様な符号で示す。
FIG. 5 is a partially cutaway front view of one embodiment of the hydrophone of the present invention, and FIG. 6 is a cutout surface V of FIG.
It is a thickness direction schematic cross section of the piezoelectric element taken along I-VI. In these drawings, parts similar to those shown in FIGS. 1 to 4 are indicated by similar reference numerals.

【0027】図5および図6を参照して、このハイドロ
フォンを構成する帯状圧電素子50は、一対の帯状ポリ
マー圧電体1aおよび1bを、それぞれの分極方向pが
互いに逆となるように配置し、接着剤層4a、4bを介
して中央電極層3に貼付してなる。また、これらポリマ
ー圧電体1a、1bは、その中央電極層3との逆側の面
に、それぞれ表面電極2a、2bを有する。
Referring to FIGS. 5 and 6, a strip-shaped piezoelectric element 50 constituting this hydrophone has a pair of strip-shaped polymer piezoelectric bodies 1a and 1b arranged so that their polarization directions p are opposite to each other. , And is attached to the central electrode layer 3 via the adhesive layers 4a and 4b. Moreover, these polymer piezoelectric bodies 1a and 1b have surface electrodes 2a and 2b on the surface opposite to the central electrode layer 3, respectively.

【0028】本発明のハイドロフォンは、このような帯
状圧電素子50を、図5に示すようにある中心軸Oのま
わりに螺旋状に巻回し配置し、その両面の表面電極2a
および2bからの出力(出力端子A、C)を短絡させ、
中央電極層3からの出力(出力端子B)との間での電圧
出力を検出手段5により取出可能とした構成を有する。
In the hydrophone of the present invention, such a strip-shaped piezoelectric element 50 is spirally wound around a certain central axis O as shown in FIG. 5, and the surface electrodes 2a on both sides thereof are arranged.
And the outputs from 2b (output terminals A and C) are short-circuited,
It has a configuration in which the voltage output between the output from the central electrode layer 3 (output terminal B) can be taken out by the detection means 5.

【0029】上述したような面方向の伸縮応力による雑
音を防止し、音波の良好な検出特性ならびに全体として
の優れた可撓性を確保するためには、帯状圧電素子は、
中心に位置する中央電極層3を中立軸として応力変形が
上下対称となる層構成とされ、例示すれば、中央電極層
3を帯状圧電素子全体の剛性を支配するような金属箔電
極となし、可撓性のある蒸着電極または特に金属溶射電
極で表面電極2aおよび2bを形成することが好まし
い。
In order to prevent the noise due to the expansion and contraction stress in the surface direction as described above, and to secure good detection characteristics of sound waves and excellent flexibility as a whole, the strip-shaped piezoelectric element is
The central electrode layer 3 located in the center has a layer configuration in which stress deformation is vertically symmetrical with respect to the neutral axis. For example, the central electrode layer 3 is a metal foil electrode that controls the rigidity of the entire strip-shaped piezoelectric element. It is preferred to form the surface electrodes 2a and 2b by flexible vapor deposition electrodes or especially metal sprayed electrodes.

【0030】この第二実施例において、中央電極層3
は、前述したようにポリマー圧電体1a、1bおよび表
面電極2a、2bと比較して剛性の大な、例えば、銅、
アルミニウム、錫、亜鉛、金、銀、白金等の厚さが6〜
200μm程度、特に20〜120μmの金属箔により
形成することが好ましい。しかし、前述したように中央
電極層3が中立点となり、上下のポリマー圧電体が曲げ
応力に対して対称に変形されるような層構成が好ましく
採用されるが、その限りにおいて、中央電極層3として
上記の金属箔以外のものも用いられる。
In this second embodiment, the central electrode layer 3
Is, for example, copper, which has higher rigidity than the polymer piezoelectric bodies 1a and 1b and the surface electrodes 2a and 2b, as described above.
Thickness of aluminum, tin, zinc, gold, silver, platinum, etc. is 6 ~
It is preferably formed of a metal foil having a thickness of about 200 μm, particularly 20 to 120 μm. However, as described above, the central electrode layer 3 serves as a neutral point, and a layer configuration in which the upper and lower polymer piezoelectric bodies are deformed symmetrically with respect to bending stress is preferably adopted. Other than the above-mentioned metal foil can also be used.

【0031】接着剤層4a、4bは、導電性粒子を分散
させた導電性の接着剤により形成することもできるが、
より接着強度の優れるエポキシ系樹脂、ウレタン系樹
脂、ポリエステル系樹脂、ブタジエン系樹脂、アクリル
系樹脂等の接着剤により5〜40μm程度の層とした時
にも、出力特性は良好に維持される。
The adhesive layers 4a and 4b can be formed of a conductive adhesive in which conductive particles are dispersed,
Even when a layer having a thickness of about 5 to 40 μm is formed with an adhesive such as an epoxy resin, a urethane resin, a polyester resin, a butadiene resin, or an acrylic resin, which has more excellent adhesive strength, the output characteristics are maintained well.

【0032】本実施例において圧電素子50の表面電極
2a、2bは、銀、銅、アルミニウム、亜鉛等からなる
厚さが10〜100μm、好ましくは20〜50μmの
溶射電極あるいは0.02〜0.1μm程度の蒸着電極
となし、良好な可撓性を維持することが好ましい。この
構成により、中央電極層3として比較的剛性の高い金属
箔電極を用いた場合にも、帯状圧電素子50全体として
は良好な可撓性が維持され、図5に示すような螺旋状巻
回し構造が可能となる。そして、図5に示す螺旋状巻回
し構造と相まって、全体として良好な可撓性を有する円
筒様形状の圧電素子50が得られる。この素子は、半径
方向に関して可撓性に有意な差はなく、ソーナーの展開
や収納時の操作性に優れたものとなる。
In the present embodiment, the surface electrodes 2a, 2b of the piezoelectric element 50 are made of silver, copper, aluminum, zinc or the like and have a thickness of 10 to 100 μm, preferably 20 to 50 μm, or 0.02 to 0. It is preferable to form a vapor deposition electrode of about 1 μm and maintain good flexibility. With this configuration, even when a metal foil electrode having a relatively high rigidity is used as the central electrode layer 3, good flexibility is maintained as the entire band-shaped piezoelectric element 50, and the spiral winding as shown in FIG. Structure is possible. Then, in combination with the spirally wound structure shown in FIG. 5, a cylindrical piezoelectric element 50 having good flexibility as a whole is obtained. This element has no significant difference in flexibility in the radial direction, and has excellent operability during deployment and storage of the sonar.

【0033】また、本実施例のように積層したポリマー
圧電体を用いる場合にも、表面電極2a、2bは、長尺
な帯状圧電素子50の全面にわたって設けられる必要は
なく、図4の例で説明したように圧電素子50の長さ方
向に所定の間隔の電極空白部をもって不連続に形成する
こともできる。かかる帯状圧電素子50を螺旋形状に巻
回して形成されたハイドロフォンは、機能的に図5に示
す素子のユニットが多数直線的に連結されたハイドロフ
ォンリニアアレイとなり、従来のハイドロフォンアレイ
に比べ、一体成形されているので曲げ、伸度、強度等の
機械的特性や比重が均一であるという特徴を有する。そ
して、そのため例えば引張衝撃に対する耐久性に優れた
ものとなる。
Also, when the laminated polymer piezoelectric material is used as in this embodiment, the surface electrodes 2a and 2b do not need to be provided over the entire surface of the long strip piezoelectric element 50, and in the example of FIG. As described above, the piezoelectric elements 50 can be formed discontinuously with the electrode blank portions at predetermined intervals in the length direction. The hydrophone formed by spirally winding the strip-shaped piezoelectric element 50 is a hydrophone linear array in which a large number of element units shown in FIG. 5 are linearly connected, and compared to a conventional hydrophone array. Since it is integrally molded, it has a characteristic that mechanical properties such as bending, elongation, strength, etc. and specific gravity are uniform. Therefore, for example, the durability against tensile impact becomes excellent.

【0034】本発明のハイドロフォンは、先に図1〜図
4の実施例についても同様に、上記したような帯状圧電
素子50を、上記中心軸Oを与える電気絶縁性の支持体
例えばゴム弾性体の棒又は筒に螺旋形状に巻回し、その
外表面に絶縁被覆を施した構成をもつこともできる。し
かし、帯状圧電素子にかかる応力の残留を防止し、測定
感度を向上するためには、一旦、剛性あるいは弾性の棒
状体の回りに帯状圧電素子を巻回して螺旋状に賦形した
後、該棒状体を取り除き、螺旋状に賦形した帯状圧電素
子50を、ウレタンゴム、シリコンゴム、ブチルゴム等
からなるエラストマー被覆体11中に埋め込んだ形態と
することが好ましい。かくして、全体としての良好な可
撓性と、良好な受波感度を有する図5に示すような円筒
棒状のハイドロフォンが得られる。
In the hydrophone of the present invention, similarly to the embodiments shown in FIGS. 1 to 4, the belt-shaped piezoelectric element 50 as described above is provided on the electrically insulating support body which gives the central axis O, for example, rubber elasticity. It is also possible to have a structure in which a body rod or a cylinder is spirally wound and an insulating coating is applied to the outer surface thereof. However, in order to prevent the stress applied to the strip-shaped piezoelectric element from remaining and to improve the measurement sensitivity, the strip-shaped piezoelectric element is once wound around a rigid or elastic rod-shaped body and then spirally shaped. It is preferable that the rod-shaped body is removed and the strip-shaped piezoelectric element 50 formed in a spiral shape is embedded in the elastomer coating 11 made of urethane rubber, silicon rubber, butyl rubber, or the like. Thus, a cylindrical rod-shaped hydrophone as shown in FIG. 5 having good flexibility as a whole and good wave receiving sensitivity is obtained.

【0035】一方、被覆体11の外形形状は円柱状であ
ることが好ましいが、他の形状であっても良く、例え
ば、被覆体11を楕円柱状となし、曲げ応力に方向性を
与えることも可能である。また、被覆体11の中心部に
は信号線、給電線などの電線並びに深度計、方位計など
の電気部品や強度部材、充填材といったものを埋設した
り、空洞を形成してそれらを配設することもできる。
On the other hand, the outer shape of the covering 11 is preferably cylindrical, but may be other shapes, for example, the covering 11 may be formed into an elliptic cylinder to give directionality to bending stress. It is possible. Further, in the center of the covering body 11, electric wires such as signal lines and power supply lines and electric parts such as a depth gauge and an azimuth gauge, a strength member, and a filling material are embedded, or a cavity is formed to dispose them. You can also do it.

【0036】帯状圧電素子50は、一般に幅が2〜50
mm程度、好ましくは5〜20mmであり、これを例え
ば間隔1〜20mm(好ましくは間隔/巾≦1)、巻き
数1以上、巻き径8〜50mmとして巻き回すことによ
り、所望の長さを有するハイドロフォンが得られる。
The strip piezoelectric element 50 generally has a width of 2 to 50.
mm, preferably 5 to 20 mm, and having a desired length, for example, with a spacing of 1 to 20 mm (preferably spacing / width ≦ 1), a winding number of 1 or more, and a winding diameter of 8 to 50 mm. A hydrophone is obtained.

【0037】このようにして得られる個々のハイドロフ
ォン素子を、所望の波長域の音波に適合するように変化
させた間隔で、順次接続することにより、えい航型ソー
ナーとしての使用に適したハイドロフォンアレイが得ら
れる。
The individual hydrophone elements thus obtained are sequentially connected at intervals that are changed so as to be compatible with sound waves in a desired wavelength range, thereby making the hydrophone suitable for use as a towed sonar. An array is obtained.

【0038】上記においては、圧電体1が単層または2
層の場合を例示してきたが、この圧電体1は、より多数
の圧電体を積層した構造とすることもでき、この際、各
圧電体層間には中間電極層を介在させてもよい。
In the above, the piezoelectric body 1 is a single layer or two.
Although the case of layers has been illustrated, the piezoelectric body 1 may have a structure in which a larger number of piezoelectric bodies are laminated, and in this case, an intermediate electrode layer may be interposed between the respective piezoelectric body layers.

【0039】また上記においては、本発明の螺旋状圧電
素子を、その好ましい一実施態様であるえい航型ソーナ
ーの受波器について主として説明してきた。しかしなが
ら、本発明の特に帯状圧電素子10を用いた螺旋状圧電
素子は、これに限らずパイプ等の円筒状被検査体に対す
る超音波探傷器や超音波厚み計の探触子として、あるい
は、超音波洗浄器のプローブ等の発振(信)素子として
も用いることができる。この際には、図1、図4あるい
は図5で示したリード線(信号線)8a、8b、8c、
81a、81b、82a、82b等は、給電線として用
いられることになる。
Further, in the above, the spiral piezoelectric element of the present invention has been mainly described with respect to a wave receiver of a towed sonar which is a preferred embodiment thereof. However, the spiral piezoelectric element using the band-shaped piezoelectric element 10 of the present invention is not limited to this, but as a probe of an ultrasonic flaw detector or an ultrasonic thickness gauge for a cylindrical inspection object such as a pipe, or It can also be used as an oscillating (receiving) element such as a probe of a sonic cleaner. At this time, the lead wires (signal wires) 8a, 8b, 8c shown in FIG. 1, FIG. 4 or FIG.
81a, 81b, 82a, 82b etc. will be used as a feeder.

【0040】なお、円筒状被検査体を検査するための探
触子として本発明の螺旋状圧電素子を用いる場合には、
被検査体と該圧電素子との間の音響学的接触を良好に保
つために、素子の周囲を可撓性のチューブまたはバルー
ンで密封し、その内部に液体を吸排する手段を設けるこ
とが好ましい。
When the spiral piezoelectric element of the present invention is used as a probe for inspecting a cylindrical inspection object,
In order to maintain good acoustic contact between the object to be inspected and the piezoelectric element, it is preferable to seal the periphery of the element with a flexible tube or balloon, and to provide a means for sucking and discharging liquid inside the element. .

【0041】[0041]

【実施例】実施例1 図1および図2に示した実施態様に従い、ハイドロフォ
ンを製造した。
Example 1 A hydrophone was manufactured according to the embodiment shown in FIGS.

【0042】まずフッ化ビニリデン(VDF)/トリフ
ルオロエチレン(TrFE)のモル比75/25の共重
合体(数平均分子量=1.75×105 、呉羽化学工業
(株)製)を、ダイス温度265℃でシート押出し、1
25℃で13時間の熱処理後、75MV/mの電界下、
123℃での保持時間5分、昇降時間を含めて全1時間
の分極処理を行ない、厚さ500μmのポリマー圧電体
フィルムを得、更にその両面を粒度#60のアルミナ系
研磨剤でサンドブラストにより粗面化後、電気溶線式溶
射機(加藤メタリコン(株)製、DK式金属溶射機E
型)を用いエアー圧力5kg/cm2 、電圧15Vの条
件で溶射を行ない厚さ各約40μmの亜鉛溶射電極2
a、2bを形成した。
First, a vinylidene fluoride (VDF) / trifluoroethylene (TrFE) copolymer having a molar ratio of 75/25 (number average molecular weight = 1.75 × 10 5 , manufactured by Kureha Chemical Industry Co., Ltd.) was diced. Sheet extrusion at a temperature of 265 ° C, 1
After heat treatment at 25 ° C. for 13 hours, under an electric field of 75 MV / m,
A holding time of 5 minutes at 123 ° C and a polarization treatment of 1 hour including the ascending / descending time were performed to obtain a polymer piezoelectric film with a thickness of 500 μm. After surface treatment, electro-spraying type thermal spraying machine (manufactured by Kato Metallikon Co., DK type metal spraying machine E)
Type) and sprayed under conditions of an air pressure of 5 kg / cm 2 and a voltage of 15 V, and a zinc sprayed electrode 2 having a thickness of about 40 μm each 2
a and 2b were formed.

【0043】次いで上記で得られた図2に示す積層構造
を有する圧電素子から、約10mm巾でマシン方向(M
D)スリットして帯状圧電素子10を得た。
Next, from the piezoelectric element having the laminated structure shown in FIG. 2 obtained above, a machine direction (M
D) Slitting was performed to obtain the strip piezoelectric element 10.

【0044】この帯状圧電素子10を、直径7mmφの
真ちゅう棒に巻き付け、テープで巻いて固定後、70
℃、1時間の熱処理後室温まで徐冷して、帯状圧電素子
への螺旋形くせ付けを行ない、真ちゅう棒を取り外し
た。このくせ付け工程で用いられる真ちゅう棒は、次の
賦形工程で用いられる真ちゅう棒よりも直径の小さいも
のが好ましく用いられる。
This strip-shaped piezoelectric element 10 was wound around a brass rod having a diameter of 7 mm, wound with tape and fixed, and then 70
After heat treatment at 1 ° C for 1 hour, the material was gradually cooled to room temperature, spirally attached to the belt-shaped piezoelectric element, and the brass rod was removed. The brass rod used in this blunting process preferably has a smaller diameter than the brass rod used in the next shaping process.

【0045】続いて、直径10mmの真ちゅう棒に板状
のスクリュー翼をピッチ15mmで螺旋に取付けた賦形
工具を用意し、該工具に上記のくせ付けした螺旋状圧電
素子を一定の間隔(約5mm)となるように直ちに巻き
付け、室温に10分以上放置して型付けを行なった。か
くして、長さ120mmの賦形された螺旋状圧電素子を
得、それから上記賦形工具を素子の半分程を残して抜き
出し、直径20mmのテフロン製モールド枠中に、治具
を用いて軸合わせして挿入後、十分に脱気したポリウレ
タン樹脂(日本ゼオン(株)製「TYPE3318/2
023/DOA=50/40/10」(重量比))をモ
ールド枠の半分程まで流し込み、60℃で6時間の加熱
硬化後、治具、モールド枠及び賦形工具を取り外した。
そして、螺旋状圧電素子の一端部に端子A、Bに連なる
リード線8a、8bを半田7により接合し、再びモール
ド枠に戻して残りの未被覆部分に上記ポリウレタン樹脂
を注型し、同様に硬化させることにより、図1に示すよ
うに螺旋状に巻回し賦形された帯状圧電素子10が絶縁
被覆体11中に埋め込まれた形態のハイドロフォン(長
さ約135mm)が得られた。
Subsequently, a shaping tool in which a plate-shaped screw blade is spirally attached to a brass bar having a diameter of 10 mm with a pitch of 15 mm is prepared, and the spiral piezoelectric element having the above-mentioned curl is attached to the tool at a constant interval (about (5 mm) and immediately wound, and allowed to stand at room temperature for 10 minutes or more to mold. Thus, a shaped spiral piezoelectric element having a length of 120 mm was obtained, and then the shaping tool was taken out leaving about half of the element, and axially aligned using a jig in a Teflon mold frame having a diameter of 20 mm. Fully degassed after being inserted by using "TYPE3318 / 2 manufactured by Nippon Zeon Co., Ltd."
(023 / DOA = 50/40/10 ”(weight ratio)) was poured to about half of the mold frame, and after heat curing at 60 ° C. for 6 hours, the jig, the mold frame and the shaping tool were removed.
Then, the lead wires 8a and 8b connected to the terminals A and B are joined to one end of the spiral piezoelectric element by the solder 7, and then returned to the mold frame and the polyurethane resin is cast on the remaining uncoated portion. By curing, a hydrophone (about 135 mm in length) was obtained in which the strip-shaped piezoelectric element 10 spirally wound and shaped as shown in FIG. 1 was embedded in the insulating coating 11.

【0046】このようにして得られたハイドロフォンに
ついて受波器としての性能を試験するために、前記のス
リットされた帯状圧電素子とそれを螺旋形状に賦形しウ
レタンエラストマーに埋込んだハイドロフォンの静水圧
圧電ひずみ定数dh を測定し、両者を比較した。
In order to test the performance of the thus obtained hydrophone as a wave receiver, the slit-shaped piezoelectric element having slits and the hydrophone obtained by shaping the slit-shaped piezoelectric element in a spiral shape and embedded in a urethane elastomer were used. The hydrostatic piezoelectric strain constant d h was measured and the two were compared.

【0047】測定結果を下表1に示す。表から、本発明
の圧電素子においては、賦形後においても賦形前の受波
感度が維持されることが判る。ここで、静水圧圧電ひず
み定数dh は、以下の方法で求めた。
The measurement results are shown in Table 1 below. From the table, it is understood that the piezoelectric element of the present invention maintains the wave receiving sensitivity before shaping even after shaping. Here, hydrostatic piezoelectric constant d h was determined by the following method.

【0048】耐圧容器に入れたシリコン油中に試料を浸
漬し、容器に窒素ガス源から圧力P(ニュートン(N)
/m2 )を加えながら試料の電荷量Q(クーロン
(C))を測定する。そして、ゲージ圧2Kg/cm2
近辺での圧力上昇dPに対する電荷の増加量dQを得、
下式で計算した。
Immerse the sample in silicon oil placed in a pressure resistant container.
Pickle and pressure P (Newton (N) from the nitrogen gas source into the container.
/ M2 ) Is added to the sample, the charge amount Q (Coulomb
(C)) is measured. And gauge pressure 2Kg / cm2
The amount of charge increase dQ with respect to the pressure increase dP in the vicinity is obtained,
It was calculated by the following formula.

【0049】dh =(dQ/dP)/A 単位は、C/Nである。ここで、Aは電極面積(m2
である。
D h = (dQ / dP) / A The unit is C / N. Where A is the electrode area (m 2 )
Is.

【0050】[0050]

【表1】 [Table 1]

【0051】このハイドロフォンは、手で容易に曲げる
ことができ、曲率半径8cm程度で屈曲を数回繰り返し
た後に、再測定を行ったところ、dh 定数に変化はなか
った。このように本発明の圧電素子は柔軟性に優れてい
ることが判る。
This hydrophone can be easily bent by hand, and after repeated bending several times with a radius of curvature of about 8 cm and then re-measured, the d h constant did not change. Thus, it can be seen that the piezoelectric element of the present invention has excellent flexibility.

【0052】実施例2 図5および図6に示した実施態様に従い、ハイドロフォ
ンを製造した。
Example 2 A hydrophone was manufactured according to the embodiment shown in FIGS. 5 and 6.

【0053】まず、実施例1と同様にして、厚さ500
μmのポリマー圧電体フィルムを得、更にその一面を粗
面化した。
First, in the same manner as in Example 1, the thickness 500
A μm polymer piezoelectric film was obtained, and one surface thereof was roughened.

【0054】別途、両面を粗面化した厚さ35μmの銅
箔の両面に、ポリエステル系接着剤(東洋紡(株)製
「バイロン30SS」と日本ポリウレタン(株)製「コ
ロネートL」との99:1(重量比)混合物)を厚さ1
0μmで塗布後、前記で得られたポリマー圧電体フィル
ムから切り出した一対の圧電体フィルムを、それらの分
極特性が互いに逆向きとなるように貼付し、50℃、2
0kg/cm2 の条件で接着剤を硬化させて、図6の表
面電極2a、2bを除く1a/4a/3/4b/1bの
積層体を得た。
Separately, a polyester adhesive (Toron Co., Ltd. “Byron 30SS” and Nippon Polyurethane Co., Ltd. “Coronate L” 99: 1 (weight ratio) mixture) to thickness 1
After coating at 0 μm, a pair of piezoelectric films cut out from the polymer piezoelectric film obtained above were attached so that their polarization characteristics were opposite to each other, and the temperature was kept at 50 ° C. for 2
The adhesive was cured under the condition of 0 kg / cm 2 to obtain a laminated body of 1a / 4a / 3 / 4b / 1b excluding the surface electrodes 2a and 2b of FIG.

【0055】次いで、上記で得た積層体の両表面を粒度
♯60のアルミナ系研磨材でサンドブラストにより粗面
化後、電気溶線式溶射機(加藤メタリコン(株)製、D
K式金属溶射機E型)を用いエアー圧力5kg/c
2 、電圧15Vの条件で溶射を行ない厚さ約40μm
の亜鉛溶射電極2a、2bを形成した。
Then, both surfaces of the laminate obtained above were roughened by sand blasting with an alumina-based abrasive having a grain size of # 60, and then electro-spraying type thermal spraying machine (manufactured by Kato Metallikon Co., D
Air pressure 5kg / c using K type metal sprayer E type)
Thermal spraying is performed under the conditions of m 2 and voltage of 15 V, and the thickness is about 40 μm.
The zinc sprayed electrodes 2a and 2b were formed.

【0056】次いで上記で得られた図6に示す積層構造
を有する圧電素子から、約10mm巾でマシン方向(M
D)にスリットして帯状圧電素子50を得た。
Then, from the piezoelectric element having the laminated structure shown in FIG. 6 obtained above, a machine direction (M
The strip-shaped piezoelectric element 50 was obtained by slitting into D).

【0057】この帯状圧電素子50について、実施例1
と同様のくせ付けおよび型付けをして、長さ120mm
の賦形された螺旋状圧電素子50を得、その後、更に実
施例1と同様にポリウレタン中に埋込成形して、図5に
示すように螺旋状に巻回し賦形された帯状圧電素子50
がウレタンエラストマー被覆体11中に埋め込まれた形
態のハイドロフォン(長さ約135mm)が得られた。
Example 1 of this strip-shaped piezoelectric element 50
120mm in length with the same curling and patterning as
The shaped spiral piezoelectric element 50 is obtained, and thereafter, it is embedded and molded in polyurethane in the same manner as in Example 1, and spirally wound as shown in FIG.
A hydrophone (length: about 135 mm) having a form embedded in the urethane elastomer coating 11 was obtained.

【0058】このようにして得られたハイドロフォンの
電極取り出し部(図5の右端)を手でもって振り子状に
振った時の端子A−B間および端子AC−B間(図6に
示すようにAC間を短絡)における出力をディジタルオ
シロスコープ(DL−2240型、横河電気(株))に
より測定した。出力波形のオシログラフチャートを、そ
れぞれ図7(端子A−B間)および図8(端AC−B
間)に示す。図で縦軸は出力(20mV/div.)、
横軸は時間(0.5sec/div.)である。
The electrode take-out portion (right end in FIG. 5) of the hydrophone thus obtained was shaken with a hand in a pendulum shape between terminals A and B and between terminals AC and B (as shown in FIG. 6). The output in AC was short-circuited was measured by a digital oscilloscope (DL-2240 type, Yokogawa Electric Corp.). An oscillograph chart of the output waveform is shown in FIG. 7 (between terminals AB) and FIG. 8 (end AC-B), respectively.
Between). In the figure, the vertical axis is the output (20 mV / div.),
The horizontal axis represents time (0.5 sec / div.).

【0059】図7と図8との比較から明らかなように、
本発明の構造に従う端子AC−B間出力(図8)におい
ては、ハイドロフォンの伸縮による変形ノイズが効果的
に相殺されていることがわかる。
As is clear from the comparison between FIG. 7 and FIG.
It can be seen that in the output between the terminals AC and B (FIG. 8) according to the structure of the present invention, the deformation noise due to the expansion and contraction of the hydrophone is effectively canceled.

【0060】また、前記のスリットされた帯状圧電素子
と、それを螺旋形状に賦形しウレタンエラストマーに埋
込したハイドロフォンの静水圧圧電ひずみ定数dh を実
施例1と同様にして測定し、両者を比較した。測定結果
を下表2に示す。表から、実施例1と同様に、賦形後に
おいても賦形前の受波感度が維持されている。
Further, the hydrostatic piezoelectric strain constant d h of the slit strip piezoelectric element and the hydrophone in which the slit was formed in a spiral shape and embedded in a urethane elastomer was measured in the same manner as in Example 1, The two were compared. The measurement results are shown in Table 2 below. From the table, as in Example 1, the wave receiving sensitivity before shaping is maintained even after shaping.

【0061】[0061]

【表2】 [Table 2]

【0062】続いて、ハイドロフォンを治具により曲率
半径10cmに固定して同様な測定を行ったところ、d
h 定数に変化はなかった。
Subsequently, when the hydrophone was fixed to a radius of curvature of 10 cm by a jig and the same measurement was carried out, d
There was no change in the h constant.

【0063】[0063]

【発明の効果】上述したように、本発明によれば、可撓
性の帯状圧電体を螺旋状に捲回した構造とすることによ
り、円筒状圧電素子に比べて著しく改善された柔軟性な
らびに耐衝撃性を有し、音波の送受信素子として好適な
圧電素子が提供される。
As described above, according to the present invention, since the flexible strip-shaped piezoelectric body is spirally wound, the flexibility and the flexibility significantly improved as compared with the cylindrical piezoelectric element can be obtained. A piezoelectric element having impact resistance and suitable as a sound wave transmitting / receiving element is provided.

【0064】また、一対の帯状ポリマー圧電体の逆側貼
り合わせ構造を有する帯状圧電素子と、該帯状圧電素子
の螺旋状巻回し構造の採用により、全体としての可撓性
を維持しつつ、機械的応力の印加による雑音発生を防止
し且つ受波感度の良好なハイドロフォンが提供される。
Further, by adopting a strip-shaped piezoelectric element having a structure in which a pair of strip-shaped polymer piezoelectric bodies are bonded to each other on the opposite side, and a spirally wound structure of the strip-shaped piezoelectric elements, while maintaining the flexibility as a whole, Provided is a hydrophone which prevents generation of noise due to the application of dynamic stress and has a good receiving sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧電素子の一実施態様にかかるハイド
ロフォンの概ね正面から見た一部切欠き斜視図。
FIG. 1 is a partially cutaway perspective view of a hydrophone according to an embodiment of the piezoelectric element of the present invention, as viewed from the front.

【図2】図1の切欠き面II−IIに沿って取った帯状
圧電素子の厚さ方向模式断面図。
2 is a schematic cross-sectional view in the thickness direction of the strip-shaped piezoelectric element taken along the cutout surface II-II in FIG.

【図3】図2に対応する絶縁被覆層を有する帯状圧電素
子の厚さ方向模式断面図。
3 is a schematic cross-sectional view in the thickness direction of a strip-shaped piezoelectric element having an insulating coating layer corresponding to FIG.

【図4】本発明の圧電素子の他の実施態様にかかる連結
素子構造を有するハイドロフォンの概ね正面から見た斜
視図。
FIG. 4 is a perspective view of a hydrophone having a connecting element structure according to another embodiment of the piezoelectric element of the present invention, viewed from the front.

【図5】本発明のハイドロフォンの一実施態様の概ね正
面から見た一部切欠き斜視図。
FIG. 5 is a partially cutaway perspective view of an embodiment of the hydrophone of the present invention as viewed from the front.

【図6】図5の切欠面VI−VIに沿って取った帯状圧
電素子の厚さ方向模式断面図。
6 is a schematic cross-sectional view in the thickness direction of a strip-shaped piezoelectric element taken along the cutout surface VI-VI in FIG.

【図7】比較例(A−B間出力取出構造)によるポリマ
ー圧電素子を使用したハイドロフォンにおける機械的変
形によるノイズ発生状況を示すオッシログラフチャー
ト。
FIG. 7 is an oscillograph chart showing a noise generation state due to mechanical deformation in a hydrophone using a polymer piezoelectric element according to a comparative example (AB output extraction structure).

【図8】実施例(AC−B間出力取出構造)によるポリ
マー圧電素子を使用したハイドロフォンにおける機械的
変形によるノイズ発生状況を示すオッシログラフチャー
ト。
FIG. 8 is an oscillograph chart showing a noise generation state due to mechanical deformation in a hydrophone using a polymer piezoelectric element according to an example (AC-B output extraction structure).

【符号の説明】[Explanation of symbols]

1、1a、1b:帯状ポリマー圧電体、 2a、2b:表面電極層、 3:中央電極層、 4a、4b:接着剤層、 5a、5b:絶縁被覆層、 6:電圧出力検出手段、 7:半田、 8a、8b、8c、81a、81b、82a、82b:
リード線、 10、10a、10b、50:螺旋状に巻き回した帯状
圧電素子、 11:被覆体、 O:中心軸、 A、B、A1、B1、A2、B2:端子。
1, 1a, 1b: band-shaped polymer piezoelectric material, 2a, 2b: surface electrode layer, 3: central electrode layer, 4a, 4b: adhesive layer, 5a, 5b: insulating coating layer, 6: voltage output detecting means, 7: Solder, 8a, 8b, 8c, 81a, 81b, 82a, 82b:
Lead wire, 10, 10a, 10b, 50: Piezoelectric element wound in a spiral shape, 11: Cover, O: Central axis, A, B, A1, B1, A2, B2: Terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉武 宣之 東京都中野区江原町1−34−5 (72)発明者 佐藤 卓 福島県いわき市錦町原田183−1 (72)発明者 鈴木 和元 福島県いわき市植田町本町1−9−3 (72)発明者 中村 謙一 福島県いわき市勿来町四沢作田4の32 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Yoshitake 1-34-5 Eharacho, Nakano-ku, Tokyo (72) Inventor Taku Sato 183-1 Nishikimachi Harada, Iwaki, Fukushima Prefecture (72) Inventor Kazumoto Suzuki Fukushima 1-9-3 Honcho, Ueda-cho, Iwaki, Japan (72) Inventor Kenichi Nakamura 32, 4 Sakuta, Shizawa, Nakoso-cho, Iwaki-shi, Fukushima Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面に電極層を対向して設けた帯状のポ
リマー圧電体をある中心軸のまわりに螺旋形状に捲回
し、前記表面電極層を前記中心軸の延長方向とほぼ平行
に配設した構造を有する圧電素子。
1. A strip-shaped polymer piezoelectric material having electrode layers provided facing each other on its surface is spirally wound around a central axis, and the surface electrode layers are arranged substantially parallel to the extension direction of the central axis. A piezoelectric element having the above structure.
【請求項2】 前記表面電極層がポリマー圧電体の延長
方向において離間して複数対設けられた請求項1に記載
の圧電素子。
2. The piezoelectric element according to claim 1, wherein a plurality of pairs of the surface electrode layers are provided at intervals in the extension direction of the polymer piezoelectric material.
【請求項3】 前記ポリマー圧電体が中央電極層を間に
挟んで積層された一対のポリマー圧電体である請求項1
または2に記載の圧電素子。
3. The polymer piezoelectric material is a pair of polymer piezoelectric materials laminated with a central electrode layer interposed therebetween.
Alternatively, the piezoelectric element described in 2.
【請求項4】 前記表面電極層の外表面を絶縁被覆して
なる請求項1〜3のいずれかに記載の圧電素子。
4. The piezoelectric element according to claim 1, wherein the outer surface of the surface electrode layer is insulation-coated.
【請求項5】 一対の帯状ポリマー圧電体を互いの分極
方向が逆となるように中央電極層を間に挟んで積層して
得られる帯状圧電素子を、螺旋状に巻回し配置し、前記
帯状圧電素子の両表面に形成された表面電極と前記中央
電極層との間に生ずる電気出力を取出可能とした構造を
有する可撓性に優れたハイドロフォン。
5. A strip-shaped piezoelectric element obtained by stacking a pair of strip-shaped polymer piezoelectric bodies with a central electrode layer sandwiched therebetween such that the polarization directions of the strip-shaped polymer piezoelectric bodies are opposite to each other. A hydrophone excellent in flexibility having a structure capable of taking out an electric output generated between a surface electrode formed on both surfaces of a piezoelectric element and the central electrode layer.
【請求項6】 前記螺旋状に巻回し配置した帯状圧電素
子をエラストマー被覆体中に埋め込み、全体として円筒
棒状とした請求項5に記載のハイドロフォン。
6. The hydrophone according to claim 5, wherein the strip-shaped piezoelectric element wound and arranged in a spiral shape is embedded in an elastomer coating to form a cylindrical rod shape as a whole.
JP04198932A 1992-07-03 1992-07-03 Piezoelectric element and hydrophone using the same Expired - Lifetime JP3079175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04198932A JP3079175B2 (en) 1992-07-03 1992-07-03 Piezoelectric element and hydrophone using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04198932A JP3079175B2 (en) 1992-07-03 1992-07-03 Piezoelectric element and hydrophone using the same

Publications (2)

Publication Number Publication Date
JPH0622396A true JPH0622396A (en) 1994-01-28
JP3079175B2 JP3079175B2 (en) 2000-08-21

Family

ID=16399371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04198932A Expired - Lifetime JP3079175B2 (en) 1992-07-03 1992-07-03 Piezoelectric element and hydrophone using the same

Country Status (1)

Country Link
JP (1) JP3079175B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526601A (en) * 1993-12-14 1996-06-18 Kureha Kagaku Kogyo Kabushiki Kaisha Flexure sensor and fishing rod equipped therewith
US6713944B2 (en) * 2002-01-02 2004-03-30 Omron Corporation Actuator and method of manufacturing a strain element
JP2004304193A (en) * 2004-03-31 2004-10-28 Kyoto Univ Functional element, device using functional element, and method of manufacturing functional element
US8798113B2 (en) 2006-06-13 2014-08-05 Arndt Dung Wall elements for water-cooled, current-conducting electrode bearing arms and electrode bearing arms produced from such wall elements
WO2017092829A1 (en) * 2015-12-04 2017-06-08 Harman Becker Automotive Systems Gmbh Electro-active loudspeaker
GB2604676A (en) * 2021-03-11 2022-09-14 Thales Holdings Uk Plc An acoustic sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077963B2 (en) 2008-11-28 2012-11-21 株式会社キャットアイ Fixture
JP7352549B2 (en) 2017-12-22 2023-09-28 ビー アンド エル センサー テクノロジーズ エルエルシー Device and method for sensing underwater sound pressure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121799A (en) * 1979-03-13 1980-09-19 Toray Ind Inc Electroacoustic conversion element
JPH01208098A (en) * 1987-12-30 1989-08-22 Inst Fr Petrole High sensitivity tube type piezoelectric transducer
JPH0277676A (en) * 1988-07-11 1990-03-16 Inst Fr Petrole Piezoelectric sensor composed of at least one pair of flexible long-sized sensing member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121799A (en) * 1979-03-13 1980-09-19 Toray Ind Inc Electroacoustic conversion element
JPH01208098A (en) * 1987-12-30 1989-08-22 Inst Fr Petrole High sensitivity tube type piezoelectric transducer
JPH0277676A (en) * 1988-07-11 1990-03-16 Inst Fr Petrole Piezoelectric sensor composed of at least one pair of flexible long-sized sensing member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526601A (en) * 1993-12-14 1996-06-18 Kureha Kagaku Kogyo Kabushiki Kaisha Flexure sensor and fishing rod equipped therewith
US6713944B2 (en) * 2002-01-02 2004-03-30 Omron Corporation Actuator and method of manufacturing a strain element
US6983521B2 (en) 2002-01-02 2006-01-10 Omron Corporation Method of manufacturing a strain element
JP2004304193A (en) * 2004-03-31 2004-10-28 Kyoto Univ Functional element, device using functional element, and method of manufacturing functional element
US8798113B2 (en) 2006-06-13 2014-08-05 Arndt Dung Wall elements for water-cooled, current-conducting electrode bearing arms and electrode bearing arms produced from such wall elements
WO2017092829A1 (en) * 2015-12-04 2017-06-08 Harman Becker Automotive Systems Gmbh Electro-active loudspeaker
GB2604676A (en) * 2021-03-11 2022-09-14 Thales Holdings Uk Plc An acoustic sensor
GB2604676B (en) * 2021-03-11 2024-09-11 Thales Holdings Uk Plc An acoustic sensor

Also Published As

Publication number Publication date
JP3079175B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
US5288551A (en) Flexible piezoelectric device
US5357486A (en) Acoustic transducer
US4233477A (en) Flexible, shapeable, composite acoustic transducer
US5423220A (en) Ultrasonic transducer array and manufacturing method thereof
US5321332A (en) Wideband ultrasonic transducer
US7847468B2 (en) Ultrasonic transducer and ultrasonic apparatus having the same
US20040123946A1 (en) Large-area fiber composite with high fiber consistency
JPH0431480B2 (en)
JPS60100950A (en) ultrasonic probe
JP3093849B2 (en) Flexible laminated piezoelectric element
US4841494A (en) Underwater piezoelectric arrangement
JPS5959000A (en) Concave ultrasonic probe and its manufacturing method
JP2018520547A (en) Impedance matching layer for ultrasonic transducer with metallic protective structure
JP3079175B2 (en) Piezoelectric element and hydrophone using the same
US3277436A (en) Hollow electro-acoustic transducer
US7288878B1 (en) Piezoelectric transducer assembly
US4401910A (en) Multi-focus spiral ultrasonic transducer
US5220538A (en) Electro-acoustic transducer insulation structure
US5257243A (en) Flexible acoustic array with polymer hydrophones
Cheng et al. Design, fabrication, and performance of a flextensional transducer based on electrostrictive polyvinylidene fluoride-trifluoroethylene copolymer
JP3270616B2 (en) Wave receiving piezoelectric element
JPH0587974U (en) Multilayer piezoelectric element
JPH04245899A (en) Ultrasonic sensor
Moffett et al. Ultrasonic microprobe hydrophones
EP0134346B1 (en) Ultrasonic transducers

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13