[go: up one dir, main page]

JPH06247780A - Heat resistant ceramic material - Google Patents

Heat resistant ceramic material

Info

Publication number
JPH06247780A
JPH06247780A JP50A JP3513693A JPH06247780A JP H06247780 A JPH06247780 A JP H06247780A JP 50 A JP50 A JP 50A JP 3513693 A JP3513693 A JP 3513693A JP H06247780 A JPH06247780 A JP H06247780A
Authority
JP
Japan
Prior art keywords
coating layer
thermal shock
ceramic material
shock resistance
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP50A
Other languages
Japanese (ja)
Other versions
JP2559325B2 (en
Inventor
Koji Onishi
宏司 大西
Minoru Kamema
實 亀間
Toshio Kawanami
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP5035136A priority Critical patent/JP2559325B2/en
Publication of JPH06247780A publication Critical patent/JPH06247780A/en
Application granted granted Critical
Publication of JP2559325B2 publication Critical patent/JP2559325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a ceramic material having satisfactory thermal shock resistance. CONSTITUTION:This heat resistant ceramic material has a ceramic coating layer based on SiO2 and having 0.5-15mum average grain diameter, 20-50% porosity, 0.1-10mum average pore diameter and 1.2-1.9g/cm<3> bulk density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱性セラミック材料に
関する。
FIELD OF THE INVENTION This invention relates to refractory ceramic materials.

【0002】[0002]

【従来技術及び問題点】セラミックスは金属に比べて高
温での耐熱性、断熱性に優れたものであり、近年高温で
の構造材料として開発が進められている。しかしながら
高温での使用に際しては、熱衝撃抵抗も重要な特性であ
り、熱衝撃抵抗を向上させるために、高温での強度、靭
性等を向上させることや熱伝導率、熱膨脹性等の改善を
行なうことなど試みられ、そのための手段として、セラ
ミックスの複合化、コーティング層の形成等の方法が検
討されている。
2. Description of the Related Art Ceramics are superior to metals in heat resistance and heat insulation at high temperatures, and are being developed as structural materials at high temperatures in recent years. However, when used at high temperature, thermal shock resistance is also an important characteristic, and in order to improve thermal shock resistance, strength, toughness, etc. at high temperature should be improved and thermal conductivity, thermal expansion property, etc. should be improved. Attempts have been made to this end, and methods such as compounding ceramics and forming a coating layer have been investigated as means for achieving this.

【0003】セラミックス材料を複合化する方法につい
ては、種々の材料で研究が進められているが、満足のい
く熱衝撃抵抗を得るには至っておらず、またプロセスが
複雑でコストが高くなるという難点もある。一方、セラ
ミック材料にコーティング層を形成する方法としては、
CVD、PVD、溶射法等の方法が検討されているが、
大型形状、複雑形状を有する材料については、コーティ
ング層を形成することが難しく、特に、CVD、PVD
法等の場合には、コーティング層が薄く、緻密質なため
熱衝撃抵抗の向上にあまり効果がなく、コストが高くつ
くといった難点がある。また、溶射法の場合には、CV
D、PVD法等に比べてコストは安価であるが、なお高
価であり、またコーティング層が焼結されているので母
材と熱膨脹差があると使用時に剥離が生じ易く、このた
め母材との密着性が悪く熱衝撃抵抗は必ずしも満足のい
くものではない。
Although various materials have been studied for a method of compounding ceramic materials, satisfactory thermal shock resistance has not yet been obtained, and the process is complicated and costly. There is also. On the other hand, as a method of forming a coating layer on a ceramic material,
Although methods such as CVD, PVD, and thermal spraying are being studied,
It is difficult to form a coating layer on a material having a large shape or a complicated shape, and especially CVD, PVD
In the case of the method or the like, since the coating layer is thin and dense, it is not very effective in improving the thermal shock resistance, and there is a drawback that the cost is high. In the case of the thermal spraying method, CV
Although the cost is lower than those of the D and PVD methods, it is still expensive, and since the coating layer is sintered, if there is a difference in thermal expansion from the base material, peeling easily occurs at the time of use. The thermal shock resistance is not always satisfactory.

【0004】[0004]

【問題点を解決するための技術】本発明者は上記した従
来技術の問題点に鑑みて、耐熱衝撃抵抗の良好なセラミ
ックス材料を得るべく鋭意研究を重ねてきた。その結
果、主としてSiO2 からなり、粒径、気孔率、気孔径
及び密度を特定範囲の値になるように制御したセラミッ
クスコーティング層は、セラミックス材料の耐熱衝撃性
を大きく向上させることができ、しかもこの様なコーテ
ィング層は、SiO2 を含有するセラミックスコーティ
ング材料に被処理物をディッピングし、コーティング層
を焼結させることなく、500℃以下の比較的低温度で
乾燥、脱水するという非常に簡単な方法で形成できるこ
とを見出し、ここに本発明を完成するに至った。
In view of the above-mentioned problems of the prior art, the inventor of the present invention has conducted extensive studies to obtain a ceramic material having a good thermal shock resistance. As a result, the ceramic coating layer, which is mainly composed of SiO 2 and whose particle size, porosity, pore size and density are controlled to values within a specific range, can greatly improve the thermal shock resistance of the ceramic material. Such a coating layer is a very simple method of dipping an object to be treated in a ceramic coating material containing SiO 2 and drying and dehydrating at a relatively low temperature of 500 ° C. or lower without sintering the coating layer. They found that they can be formed by a method, and completed the present invention.

【0005】即ち、本発明は、主としてSiO2 からな
り、平均粒径が0.5〜15μm、気孔率が20〜50
%、平均気孔径が0.1〜10μm、かさ密度が1.2
〜1.9g/cm3 であるセラミックコーティング層を
有する耐熱性セラミック材料に係る。
That is, the present invention is mainly composed of SiO 2 , has an average particle diameter of 0.5 to 15 μm and a porosity of 20 to 50.
%, Average pore diameter 0.1 to 10 μm, bulk density 1.2
A heat-resistant ceramic material having a ceramic coating layer of ˜1.9 g / cm 3 .

【0006】以下に、本発明耐熱性セラミック材料のセ
ラミックコーティング層が満足すべき要件について詳細
に説明する。
The requirements to be satisfied by the ceramic coating layer of the heat resistant ceramic material of the present invention will be described in detail below.

【0007】a)コーティング層は、主としてSiO2
からなること。
A) The coating layer is mainly composed of SiO 2
Consist of.

【0008】コーティング層は、主としてSiO2 から
なることが必要であり、SiO2 は、コーティング層中
に70重量%以上存在することが好ましい。また、Si
2は、主たる構造が石英又はα−クォーツ結晶である
ことが好ましく、これらはSiO2 中85重量%以上で
あることが好ましい。この様に主たる構造が石英又はα
−クォーツ結晶であるSiO2 は、低熱膨脹率及び高い
耐熱衝撃抵抗を有するものであり、これを主成分とする
コーティング層を有するセラミック材料は、優れた耐熱
衝撃抵抗を有するものとなる。
The coating layer needs to consist mainly of SiO 2 , and SiO 2 is preferably present in the coating layer in an amount of 70% by weight or more. Also, Si
The main structure of O 2 is preferably quartz or α-quartz crystal, and these are preferably 85% by weight or more in SiO 2 . In this way, the main structure is quartz or α
SiO 2 , which is a quartz crystal, has a low coefficient of thermal expansion and high thermal shock resistance, and a ceramic material having a coating layer containing this as a main component has excellent thermal shock resistance.

【0009】また、コーティング層には、フッ化マグネ
シウム及びフッ化カルシウムの少なくとも一種を、好ま
しくは30重量%程度以下、より好ましくは5〜20重
量%程度含有させることができる。これらは、母材とコ
ーティング層との密着強度を高める効果があり、熱衝撃
によるコーティング層の剥離やクラックの発生抑制を防
止する働きをする。これらの添加量が30重量%を上回
ると気孔率、平均気孔径等が小さくなり、耐熱衝撃抵抗
の低下をきたすので好ましくない。
The coating layer may contain at least one of magnesium fluoride and calcium fluoride, preferably about 30% by weight or less, more preferably about 5 to 20% by weight. These have the effect of increasing the adhesion strength between the base material and the coating layer, and act to prevent the peeling of the coating layer and the suppression of cracking due to thermal shock. If the addition amount of these exceeds 30% by weight, the porosity, the average pore diameter, etc. become small and the thermal shock resistance decreases, which is not preferable.

【0010】SiO2 以外の成分としては、Al、F
e、Ti等の金属酸化物をSiO2 に対して3重量%程
度以下、アルカリ金属酸化物をSiO2 に対して0.2
重量%程度以下含有してもよい。
Components other than SiO 2 include Al and F
e, metal oxides such as Ti are about 3 wt% or less with respect to SiO 2 , and alkali metal oxides are 0.2 with respect to SiO 2 .
You may contain about less than weight%.

【0011】b)平均粒径を0.5〜15μmとする。B) The average particle size is 0.5 to 15 μm.

【0012】コーティング層における平均粒径を0.5
〜15μmとすることによって、気孔率及び気孔径を適
度に調整することができ、母材との適切な密着強度を付
与することができる。平均粒径が0.5μmを下回ると
SiO2 粒子表面にシラノール基が形成されやすくなり
使用時に弊害が生じ、また母材との密着強度は高くなる
ものの熱衝撃によりコーティング層にクラック、剥離等
が生じ、場合によっては母材に至るまで破壊が生じるの
で好ましくない。一方、平均粒径が15μmを上回ると
母材との密着強度が低下して剥離しやすくなり、耐熱衝
撃性が不十分となる。平均粒径は、好ましくは0.8〜
13μmとする。
The average particle size in the coating layer is 0.5
By adjusting the thickness to be 15 μm, the porosity and the pore diameter can be appropriately adjusted, and appropriate adhesion strength with the base material can be imparted. If the average particle size is less than 0.5 μm, silanol groups are likely to be formed on the surface of the SiO 2 particles, which causes adverse effects at the time of use, and the adhesion strength with the base material increases, but cracks and peeling of the coating layer due to thermal shock may occur. It is not preferable because it may occur, and in some cases, even the base material may be destroyed. On the other hand, when the average particle diameter exceeds 15 μm, the adhesion strength with the base material is lowered, and peeling easily occurs, resulting in insufficient thermal shock resistance. The average particle size is preferably 0.8-
13 μm.

【0013】c)気孔率を20〜50%とする。C) The porosity is 20 to 50%.

【0014】本発明において、気孔率、及び以下で述べ
る平均気孔径、かさ密度は水銀圧入法を用いたポロシメ
ーターにより測定したものである。気孔率を20〜50
%とすることによって、断熱性が良好になり、また熱伝
導速度が遅くなって、良好な熱衝撃抵抗を有するものと
なる。気孔率が20%未満の場合、コーティング層が緻
密になって母材とコーティング層との間に熱歪が大きく
発生し、コーティング層の剥離、クラックの発生等によ
り熱衝撃抵抗が低下するので好ましくない。気孔率が5
0%を上回ると、強度低下がおこり、また熱伝導速度の
遅延効果が少なくなり、やはり熱衝撃抵抗の低下をきた
すので好ましくない。気孔率は、好ましくは20〜40
%とする。
In the present invention, the porosity, and the average pore diameter and bulk density described below are measured by a porosimeter using the mercury porosimetry. Porosity 20 to 50
When it is set to%, the heat insulating property becomes good and the heat conduction speed becomes slow, so that good thermal shock resistance can be obtained. When the porosity is less than 20%, the coating layer becomes dense and a large thermal strain occurs between the base material and the coating layer, and the thermal shock resistance decreases due to peeling of the coating layer, cracks, etc., which is preferable. Absent. Porosity is 5
If it exceeds 0%, the strength is lowered, and the effect of delaying the heat conduction rate is reduced, so that the thermal shock resistance is also lowered, which is not preferable. The porosity is preferably 20-40.
%.

【0015】d)平均気孔径を0.1〜10μmとす
る。
D) The average pore diameter is set to 0.1 to 10 μm.

【0016】平均気孔径が0.1μmを下回ると、気孔
率が小さい場合と同様に熱衝撃抵抗の低下が起こる。一
方、平均気孔径が10μmを上回ると、コーティング層
の強度が低くなり、また母材とコーティング層との密着
性が悪くなり、熱衝撃抵抗向上の効果が少なくなるので
好ましくない。平均気孔径は、好ましくは0.1〜5μ
mとする。
When the average pore diameter is less than 0.1 μm, the thermal shock resistance is reduced as in the case where the porosity is small. On the other hand, if the average pore diameter exceeds 10 μm, the strength of the coating layer is lowered, the adhesion between the base material and the coating layer is deteriorated, and the effect of improving the thermal shock resistance is reduced, which is not preferable. The average pore diameter is preferably 0.1-5 μ
m.

【0017】e)かさ密度を1.2〜1.9g/cm3
とする。
E) The bulk density is 1.2 to 1.9 g / cm 3.
And

【0018】かさ密度が1.2g/cm3 を下回ると気
孔率の増大を伴い、熱衝撃抵抗が低下する。また、かさ
密度が1.9g/cm3 を上回るとコーティング層が緻
密となり母材との間の熱膨脹差による歪が大きくなって
コーティング層の剥離や崩壊につながるので好ましくな
い。かさ密度は好ましくは1.3〜1.7g/cm3
する。
If the bulk density is less than 1.2 g / cm 3 , the porosity increases and the thermal shock resistance decreases. On the other hand, if the bulk density exceeds 1.9 g / cm 3 , the coating layer becomes dense and the strain due to the difference in thermal expansion from the base material increases, leading to peeling or collapse of the coating layer, which is not preferable. The bulk density is preferably 1.3 to 1.7 g / cm 3 .

【0019】本発明の耐熱性セラミックス材料では、コ
ーティング層の厚さは通常10μm程度以上とすること
が好ましい。また、最大厚さは母材が受ける熱衝撃の度
合により異なるが、通常3mm程度までとすることが好
ましい。
In the heat-resistant ceramic material of the present invention, the thickness of the coating layer is usually preferably about 10 μm or more. Further, the maximum thickness varies depending on the degree of thermal shock received by the base material, but it is usually preferable to be up to about 3 mm.

【0020】本発明の耐熱性セラミックス材料は、良好
な耐熱衝撃性を有するものであり、コーティング層を形
成すべき母材としては、溶融金属中への浸漬用セラミッ
クス、測温用保護管、鋳ぐるみ、溶鋼用酸素センサ等の
使用時に過酷な熱衝撃を受けるセラミックス材料が適当
であり、材質は特に限定されない。また、ZrO2 固体
電解質にコーティングして耐熱衝撃抵抗の良好なシリコ
ンセンサとしても使用できる。
The heat-resistant ceramic material of the present invention has good thermal shock resistance, and the base material on which the coating layer is to be formed includes ceramics for immersion in molten metal, protective tubes for temperature measurement, and castings. A ceramic material that is subjected to a severe thermal shock when using a gurumi, an oxygen sensor for molten steel, or the like is suitable, and the material is not particularly limited. It can also be used as a silicon sensor having a good thermal shock resistance by coating it with a ZrO 2 solid electrolyte.

【0021】本発明耐熱性セラミックス材料は、例えば
以下に示す方法で製造できる。
The heat resistant ceramic material of the present invention can be produced, for example, by the following method.

【0022】まず、SiO2 原料に、バインダー及び分
散剤を添加し、水、エチルアルコール等の溶媒中で、S
iO2 の平均粒径が0.5〜15μm程度となるよう
に、ポットミル、アトリッションミル等の粉砕機を用い
て湿式で粉砕、混合、分散してコーティング材のスラリ
ーを得る。SiO2 原料としては、純度97%以上で、
平均粒子径0.5〜15μm程度の最密充填しやすい粒
径分布を有するものを用いることが好ましい。バインダ
ーとしては、通常の焼結体の製造に用いるものを使用で
き、灰分の少ないものが好ましい。バインダーの具体例
としては、ポリビニルアルコール(PVA)、ワックス
エマルジョン、カルボキシメチルセルロース(CMC)
等を挙げることができる。分散剤としては、スルホン酸
アンモニウム塩、ピロリン酸ソーダ等を使用できる。フ
ッ化マグネシウム及びフッ化カルシウムの少なくとも一
種を配合する場合には、スラリーの調製の際に必要量を
添加し、粉砕、混合、分散を行なえばよい。スラリーの
粘度は、スラリー粒度とコーティング厚さに応じて20
〜1000cp程度の範囲に適宜調整する。粘度調整
は、上記した溶媒及び分散剤を適宜添加することによっ
て行えばよい。
First, a binder and a dispersant are added to a SiO 2 raw material, and S and S are added in a solvent such as water or ethyl alcohol.
A slurry of a coating material is obtained by wet pulverization, mixing and dispersion using a pulverizer such as a pot mill or an attrition mill so that the average particle diameter of io 2 is about 0.5 to 15 μm. As a SiO 2 raw material, with a purity of 97% or more,
It is preferable to use one having an average particle size of about 0.5 to 15 μm and a particle size distribution that facilitates closest packing. As the binder, those used for the production of ordinary sintered bodies can be used, and those having a low ash content are preferable. Specific examples of the binder include polyvinyl alcohol (PVA), wax emulsion, carboxymethyl cellulose (CMC).
Etc. can be mentioned. As the dispersant, ammonium sulfonate, sodium pyrophosphate, etc. can be used. When at least one of magnesium fluoride and calcium fluoride is blended, a necessary amount may be added at the time of preparing the slurry, and pulverization, mixing and dispersion may be performed. The viscosity of the slurry is 20 depending on the slurry particle size and coating thickness.
It is appropriately adjusted to a range of about 1000 cp. The viscosity may be adjusted by appropriately adding the above-mentioned solvent and dispersant.

【0023】次いで、上記コーティング材料に、コーテ
ィング層を形成すべき母材を浸漬し、厚さ10μm〜3
mm程度となるようにコーティング材料を付着させる。
その後、水和物がない場合には、常温〜200℃程度で
乾燥し、水和物が形成されている場合には、これが脱水
分解する温度以上であって500℃程度以下の温度で乾
燥脱水することが好ましい。このようにして、本発明の
セラミックコーティング層を有する耐熱性セラミック材
料を得ることができる。
Then, the base material on which the coating layer is to be formed is dipped in the above coating material to have a thickness of 10 μm to 3 μm.
The coating material is attached so that the thickness is about mm.
Then, if there is no hydrate, it is dried at room temperature to about 200 ° C, and if a hydrate is formed, it is dried and dehydrated at a temperature not lower than the temperature at which it decomposes by dehydration and not higher than about 500 ° C. Preferably. In this way, the heat resistant ceramic material having the ceramic coating layer of the present invention can be obtained.

【0024】[0024]

【発明の効果】本発明の耐熱性セラミック材料では、セ
ラミックスコーティング層が母材の耐熱衝撃向上に有効
であり、しかも熱膨脹係数の異なる材料にコーティング
しても剥離や割れが生じにくい特徴がある。また、この
コーティング層は、湿式スラリー法により容易に任意の
厚さに形成でき、しかもコーティング材を焼結させるこ
となく、高強度を有するものとなるため、低コストであ
る。
The heat-resistant ceramic material of the present invention is characterized in that the ceramic coating layer is effective for improving the thermal shock resistance of the base material, and that even if it is coated on a material having a different thermal expansion coefficient, peeling or cracking does not easily occur. In addition, this coating layer can be easily formed to an arbitrary thickness by the wet slurry method, and has high strength without sintering the coating material, so that the cost is low.

【0025】[0025]

【実施例】【Example】

実施例1 平均粒子径10〜30μmの種々のSiO2 粉末に、バ
インダーとしてワックスエマルジョンを固形分100重
量部に対して10重量部添加し、分散剤としてスルホン
酸アンモニウム塩を固形分100重量部に対して5重量
部添加し、スラリー粘度が200cpとなるように水を
添加して、Al2 3 製ポットミルとボールを用いて粉
砕・分散・混合し、コーティング用スラリーを作製し
た。得られたスラリー中のSiO2 粉末の平均粒子径は
表1に示す通りである。フッ化マグネシウム又はフッ化
カルシウムを添加する場合は、所定量の原料を加えた
後、上記した粉砕・分散・混合を行なった。
Example 1 To various SiO 2 powders having an average particle diameter of 10 to 30 μm, 10 parts by weight of a wax emulsion was added as a binder based on 100 parts by weight of solid content, and ammonium sulfonate as a dispersant was added to 100 parts by weight of solid content. On the other hand, 5 parts by weight was added, water was added so that the slurry viscosity became 200 cp, and the mixture was pulverized, dispersed and mixed using an Al 2 O 3 pot mill and balls to prepare a coating slurry. The average particle size of the SiO 2 powder in the obtained slurry is as shown in Table 1. In the case of adding magnesium fluoride or calcium fluoride, after adding a predetermined amount of raw materials, the above-mentioned pulverization, dispersion and mixing were performed.

【0026】このコーティング用スラリーに、4.5×
3.0×35mmの一端封管のZrO2 管(Mg−PS
Z)を浸漬し、厚さ80μmのコーティング層をZrO
2 管の外表面に形成し、120℃で乾燥した。形成され
たコーティング層のかさ密度、気孔率、平均気孔径、平
均粒径及び添加剤量を表1に示す。添加剤量は、コーテ
ィング層中の重量%で示す。この様にしてコーティング
層を形成したZrO2管について、一端封管側より20
mmの深さまで1600℃の溶鋼中に浸漬し、引き上げ
て母材及びコーティング膜の損傷程度を比較した。その
結果を表1に示す。
4.5 × to this coating slurry
3.0 × 35 mm ZrO 2 tube (Mg-PS)
Z) and dip the coating layer with a thickness of 80 μm into ZrO
Two tubes were formed on the outer surface and dried at 120 ° C. Table 1 shows the bulk density, porosity, average pore diameter, average particle diameter and additive amount of the formed coating layer. The amount of the additive is shown by weight% in the coating layer. The ZrO 2 tube with the coating layer thus formed is 20
It was dipped in molten steel at 1600 ° C. to a depth of mm and pulled up to compare the degree of damage of the base material and the coating film. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】損傷程度;○:母材、コーティング層共に
クラック及び剥離が認められない。
Degree of damage; ◯: No crack or peeling is observed in both the base material and the coating layer.

【0029】△:コーティング層にクラック又は剥離が
認められた。
Δ: Cracks or peeling were observed in the coating layer.

【0030】×:母材にまでクラック及び破壊が認めら
れた。
X: Cracks and fractures were observed even in the base material.

【0031】No.1〜6の試料は、本発明のコーティ
ング層を形成した材料であり、溶鋼中に浸漬して引き上
げた場合にもZrO2 管の破壊は全く認められず、また
コーティング層にクラック、剥離等も全く認められなか
った。コーティングを行なわなかったZrO2 管(試料
No.7)は全て破壊した。No.8〜11の試料は、
本発明の要件を満足しないコーテイング層を形成した材
料であり、熱衝撃によりコーティング層にクラックなど
の損傷が認められ、また、熱衝撃によりZrO2 管に破
壊、クラックの発生等が認められたものもあった。
No. Samples 1 to 6 are materials on which the coating layer of the present invention is formed, and even when immersed in molten steel and pulled up, the ZrO 2 tube was not broken at all, and cracks, peeling, etc. were observed in the coating layer. It was not recognized at all. All uncoated ZrO 2 tubes (Sample No. 7) broke. No. Samples 8-11 are
A material having a coating layer which does not satisfy the requirements of the present invention, in which damage such as cracks is recognized in the coating layer due to thermal shock, and breakage or crack generation is recognized in the ZrO 2 tube due to thermal shock. There was also.

【0032】[0032]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】主としてSiO2 からなり、平均粒径が
0.5〜15μm、気孔率が20〜50%、平均気孔径
が0.1〜10μm、かさ密度が1.2〜1.9g/c
3 であるセラミックコーティング層を有する耐熱性セ
ラミック材料。
1. Mainly made of SiO 2 , having an average particle diameter of 0.5 to 15 μm, a porosity of 20 to 50%, an average pore diameter of 0.1 to 10 μm, and a bulk density of 1.2 to 1.9 g /. c
A refractory ceramic material having a ceramic coating layer that is m 3 .
【請求項2】セラミックコーティング層がフッ化マグネ
シウム及び/又はフッ化カルシウムを30重量%以下含
有するものである請求項1に記載の耐熱性セラミック材
料。
2. The heat resistant ceramic material according to claim 1, wherein the ceramic coating layer contains 30% by weight or less of magnesium fluoride and / or calcium fluoride.
JP5035136A 1993-02-24 1993-02-24 Heat resistant ceramic material Expired - Lifetime JP2559325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035136A JP2559325B2 (en) 1993-02-24 1993-02-24 Heat resistant ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5035136A JP2559325B2 (en) 1993-02-24 1993-02-24 Heat resistant ceramic material

Publications (2)

Publication Number Publication Date
JPH06247780A true JPH06247780A (en) 1994-09-06
JP2559325B2 JP2559325B2 (en) 1996-12-04

Family

ID=12433509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035136A Expired - Lifetime JP2559325B2 (en) 1993-02-24 1993-02-24 Heat resistant ceramic material

Country Status (1)

Country Link
JP (1) JP2559325B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073049A (en) * 1999-07-19 2001-03-21 Her Majesty In Right Of Canada As Represented By The Minister Of Natural Resources Method for producing preform for magnesium metal-based composite material, method for producing metal-based composite material, and composite material
US6844281B2 (en) * 1999-07-19 2005-01-18 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Reinforcement preform for metal matrix composites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073049A (en) * 1999-07-19 2001-03-21 Her Majesty In Right Of Canada As Represented By The Minister Of Natural Resources Method for producing preform for magnesium metal-based composite material, method for producing metal-based composite material, and composite material
US6844281B2 (en) * 1999-07-19 2005-01-18 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Reinforcement preform for metal matrix composites

Also Published As

Publication number Publication date
JP2559325B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
Zhu et al. Preparation of silicon carbide reticulated porous ceramics
US20130331256A1 (en) Porous ceramic bodies and process for their preparation
JPS649266B2 (en)
US7993571B2 (en) Silicon carbide ceramic components having oxide layer
Yao et al. Effect of recoating slurry compositions on the microstructure and properties of SiC reticulated porous ceramics
KR960011356B1 (en) Insulating coating for refractories, coating process and the associated articles
JP6253554B2 (en) Composite refractory and method for producing the same
US6297183B1 (en) Aging resistant porous silicon carbide ceramic igniter
JP2559325B2 (en) Heat resistant ceramic material
JP2559324B2 (en) Heat resistant ceramic material
EP1443031A1 (en) Thermally insulating coating material for refractory containing carbon
US7452606B2 (en) Silicon carbide ceramic components having oxide layer
JP4571588B2 (en) Silicon carbide ceramic member having an oxide layer
JP2002128563A (en) Ceramic member for thermal treatment which has good thermal shock resistance
Hanna et al. Oxidation resistance, compressive strength and thermal shock resistance of SiC ceramics prepared by two processing routes
JP4292016B2 (en) Method for producing fused siliceous refractories
RU2610482C1 (en) Method for obtaining porous aluminium oxide ceramics
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2002137962A (en) Component for heat treatment consisting of mullite-based sintered compact
JP2842174B2 (en) Brick for coke oven, method for producing the same, and furnace wall structure of coke oven
US3244540A (en) High alumina refractory bodies
JP2015036587A (en) Heat insulation material and manufacturing method thereof
Jiang et al. Fabrication of Silicon Carbide Reticulated Porous Ceramics through Organic Foam Infiltration Process
JP6214514B2 (en) Insulation
JP2002316870A (en) Member for heat treatment consisting of zirconia sintered compact

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 17

EXPY Cancellation because of completion of term